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A large portion of mathematics education centers heavily around imitative reasoning
and rote learning, raising concerns about students’ lack of deeper and conceptual
understanding of mathematics. To address these concerns, there has been a growing
focus on students learning and teachers teaching methods that aim to enhance
conceptual understanding and problem-solving skills. One suggestion is allowing
students to construct their own solution methods using creative mathematical reasoning
(CMR), a method that in previous studies has been contrasted against algorithmic
reasoning (AR) with positive effects on test tasks. Although previous studies have
evaluated the effects of CMR, they have ignored if and to what extent intrinsic cognitive
motivation play a role. This study investigated the effects of intrinsic cognitive motivation
to engage in cognitive strenuous mathematical tasks, operationalized through Need
for Cognition (NFC), and working memory capacity (WMC). Two independent groups,
consisting of upper secondary students (N = 137, mean age 17.13, SD = 0.62, 63
boys and 74 girls), practiced non-routine mathematical problem solving with CMR
and AR tasks and were tested 1 week later. An initial t-test confirmed that the CMR
group outperformed the AR group. Structural equation modeling revealed that NFC
was a significant predictor of math performance for the CMR group but not for the AR
group. The results also showed that WMC was a strong predictor of math performance
independent of group. These results are discussed in terms of allowing for time and
opportunities for struggle with constructing own solution methods using CMR, thereby
enhancing students conceptual understanding.

Keywords: algorithmic reasoning, working memory capacity, Need for Cognition (NFC), mathematical struggle,
creative mathematical reasoning

INTRODUCTION

A solid grasp of mathematics is a valuable life skill and a foundational goal of the Swedish national
curriculum (Skolverket, 2019; The Swedish National Agency for Education). However, how to
best teach and learn mathematics is a long-debated subject, both in Sweden and internationally
(Loveless, 2004). A recurring concern in this debate is a lack of conceptual understanding among
students for the mathematics they learn and utilize (Battista, 2001; Lithner, 2008). It is, therefore,
hardly a surprise that learning and teaching methods that place a strong emphasis on conceptual
understanding have been gaining more attention in the last decades (Gollub, 2002; Stylianides and
Stylianides, 2007; Lithner, 2008, 2017; Shield and Dole, 2013). However, much of the mathematical
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education still centers around memorization and repetition,
denoted as rote learning, rather than conceptual understanding
(Bergqvist, 2007; Bergqvist and Lithner, 2012; Boesen et al.,
2014). Indeed, in a study by Jäder et al. (2019) examining
mathematic textbooks from 12 countries, it was discovered that
most tasks (79%) could be solved using predefined solutions
or algorithms, and an additional 13% of tasks required only
minor tweaking of a previously provided template. This reliance
on rote learning and imitation-based reasoning implies that
when facing a task, students often problem-solve by recalling
and applying algorithms they have previously memorized,
based on perceived similarities to older tasks, but with little
conceptual understanding of those algorithms (Lithner, 2008;
Boesen et al., 2010). As a result, students reuse memorized
potentially inadequate methods and thus struggle to understand
why they failed or why their mathematical models did not fit
(Battista, 2001).

An alternative is helping students achieve a deeper conceptual
understanding by letting them create their own solution methods.
Lithner (2008) presented a research framework that characterizes
different types of mathematical reasoning. In this framework
rote learning and imitation-based mathematical reasoning are
connected to algorithmic reasoning (AR). Learners recall and
apply previously memorized solution methods or algorithms,
but with no conceptual insight or reflection on why that
method should be applied. AR is contrasted with creative
mathematical reasoning (CMR), where students create solutions
when encountering new problems. CMR is defined by three
criteria: (1) Novelty: the learner creates a new solution method
or re-creates a forgotten one; (2) Plausibility: The learner can
make arguments supporting this choice of strategy and why
conclusions reached through applying the method are true or
plausible; and (3) Anchoring: these arguments must be anchored
in the intrinsic mathematical properties of the components
used in the reasoning sequence. This process of creating a
new solution implies that the learners have less support or
instructions provided to them. It is argued that allowing for
struggle with mathematical problems facilitates learning and
develops conceptual understanding (Hiebert and Grouws, 2007;
Fyfe and Rittle-Johnson, 2017). Such mathematical struggle is a
key aspect of CMR (Jonsson et al., 2016).

To date, several studies have consistently found that practicing
non-routine mathematical problem solving with CMR tasks is
superior to practicing with AR tasks for performance on post-
test assessments (Jonsson et al., 2014, 2016, 2020a; Karlsson
et al., 2015; Norqvist et al., 2019b). Moreover, using transfer
tasks (untrained tasks), Jonsson et al. (2020a) found empirical
evidence that practicing with CMR tasks enhanced conceptual
understanding of mathematics better than practicing by AR tasks.
The theoretical justification is that in order to solve a task without
an available solution method, it is necessary to understand the
underlying mathematics, while an AR task may be solved without
activating such understanding by simply following a recipe.

A critical feature of these studies has been to include
measures of individual differences in cognitive abilities, such
as working memory and fluid intelligence. These constructs
are well-established predictors for mathematical achievement

(Carroll, 1993; Floyd et al., 2003; Andersson and Lyxell, 2007;
Ashcraft and Krause, 2007; Campos et al., 2013; Peng et al., 2019).
The overall finding is that cognitive ability is a strong predictor of
performance but is independent of practice conditions (i.e., AR
or CMR; Jonsson et al., 2020a).

Another factor of importance, but which has not previously
been in focus, is the role that individual differences in intrinsic
cognitive motivation play in learning, here operationalized
through the construct Need for Cognition (NFC; Weissgerber
et al., 2018). NFC is considered a stable personality trait defined
as “differences among individuals in their tendency to engage in
and enjoy thinking” (Cacioppo and Petty, 1982, p. 116). NFC is
not a measure of intelligence or cognitive abilities per se but rather
a reflection of individual preference to exert more cognitive effort
(Hill et al., 2016; Sandra and Otto, 2018; Weissgerber et al., 2018).
NFC has been shown to predict academic achievement (Elias
and Loomis, 2002) and positive associations between NFC and
numerical ability have been observed (Bruine, de Bruin et al.,
2015). However, the relationship between NFC and the CMR/AR
distinction is unexplored. NFC is positively related to personality
traits such as Openness to Experience and Conscientiousness and
has repeatedly been found to have a weak to modest positive
correlation to fluid intelligence, averaging around r = 0.20
to r = 0.30 (Fleischhauer et al., 2010; Furnham and Thorne,
2013; Hill et al., 2013) as well as being predictive of school
success in terms of grade point average (Strobel et al., 2019).
Although Hill et al. (2013) found no relationship between NFC
and working memory, a follow-up study showed that working
memory mediated the relationship between NFC and intelligence
(Hill et al., 2016). Hill et al. (2016) argued that average working
memory abilities are necessary for NFC to have a positive effect
on intelligence tests. Furthermore, a study by Gonthier and
Roulin (2020) found that working memory capacity (WMC) and
Need for Cognition (NFC) predicted the type of strategy used on
intelligence tests (Raven’s Advanced Progressive Matrices). High
NFC and WMC were linked to the selection of more complex
and accurate problem-solving strategies, and working memory
moderated the shift toward simpler, less accurate strategies as the
tasks grew more demanding. Individuals with both high NFC and
WMC continued to use more complex and effective strategies
throughout the tasks (Gonthier and Roulin, 2020). Albeit solving
Ravens matrices is different from solving mathematical tasks
it has been argued that there are many similarities between
mathematical tasks typically used in schools and tasks on tests
that aim to measure fluid intelligence (Blair et al., 2005).

The positive correlations between NFC, WMC and math
achievements (e.g., Ashcraft and Krause, 2007; Hill et al., 2016)
indicate that NFC and WMC influence math performance.
Hence, as CMR tasks invoke struggle in students as a key part
of the strategy’s effectiveness (Jonsson et al., 2016), how engaged
and motivated a student is to struggle with CMR tasks could be
an important factor in their degree of success.

Based on previous finding that cognitive ability is a strong
predictor of performance but is independent of practice
conditions (CMR/AR) and the assumption that practicing with
CMR tasks include struggle and that high NFC is associated
with more complex task solving strategies, we posed three
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hypotheses: (1) practicing with CMR tasks is hypothesized to
be superior to practicing with AR tasks on subsequent test
performance (2) WMC is hypothesized to significantly predict
test performance, independent of group. (3) NFC is hypothesized
to significantly predict test performance for the CMR group but
not the AR group.

MATERIALS AND METHODS

In the present study, we extend a previously published
experiment Jonsson et al. (2020a, experiment 1), which in turn
was part of a larger data collection, including a battery of nine
cognitive tests (see Jonsson et al., 2020b for a detailed description
of all cognitive tasks). In Jonsson et al. (2020a, experiment 1),
two independent groups of upper secondary students engaged
in practicing either CMR tasks (N = 65) or AR tasks (N = 72).
They solved 14 CMR and AR task sets, respectively, and were
tested 1 week later on two types of practiced tasks and two types
of transfer test tasks (see below for a description of both post-
test practiced and transfer tasks). Moreover, measures of fluid
intelligence using Raven’s Advanced Progressive Matrices (Raven
et al., 2003) and a measure of complex working memory, denoted
as operation span (Unsworth and Engle, 2005), were used to form
a composite score of cognitive proficiency. A proficiency score
that was entered together with group (AR/CMR) and math track
(level of math education) as factors in a multivariate ANOVA.
The multivariate ANOVA and four follow-up ANOVAs revealed
significant CMR effects for all four different types of post-test
tasks. The analyses also revealed a main effect of cognitive
proficiency, but no multivariate group × cognitive proficiency
interaction and no effect of math tracks. Hence the effect of
group on the test tasks was independent of cognitive proficiency
and math tracks.

From the same data set, we here extracted measures of
working memory assessing WMC and NFC in conjunction with
a composite score of the four test tasks as the outcome variable.
Working memory is important, for example, in the selection
of non-verbal problem-solving strategies. Beilock et al. (2007)
found that working memory influences students’ mathematical
problem-solving strategies. Working memory capacity is a key
for controlling attention and inhibiting irrelevant information
(Engle et al., 1999; Unsworth and Engle, 2005) and for retrieval
from secondary memory (Shelton et al., 2010). Deficiencies in
working memory have been connected to increased mathematical
difficulties in children (Andersson and Lyxell, 2007).

Participants
One hundred and fifty students were enrolled in the study.
Six participants dropped out, and an additional seven had to
be discarded due to administrative errors, so the experiment
included 137 Swedish upper secondary students from the north
of Sweden (63 boys and 74 girls, mean age of 17.13, SD = 0.62).
Participants were recruited in class, from both natural science
and social science programs and randomly assigned to either the
AR or the CMR group. All participants were fluent in Swedish.
Written informed consent was obtained from the students in

FIGURE 1 | Examples of AR and CMR practice tasks and how they were
presented to the students on their laptop screen. (A) AR practice task; (B)
CMR tasks practice task; (C) CMR task asking for the formula.

accordance with the Helsinki declaration. The Regional Ethics
Committee at Umeå University, Sweden, approved the study
(see Jonsson et al., 2020a, experiment 1 for details). Of those
137 participants, three did not answer all items in the NFC
survey and one did not respond to all tasks in the post-
test. For these participants, data were replaced using regression
imputation in AMOS 27.

Materials
Practice Tasks
The practice tasks consisted of 14 × 2 task sets of corresponding
items (14 for AR and 14 for CMR, respectively). Each set had 10
sub-tasks. The practice task sets used in this study were chosen
randomly from a larger pool of 28 task sets, designed to lead
students toward using AR and CMR, respectively (Figures 1A,B).
The AR tasks were designed to be similar to tasks found
in standard mathematic textbooks. For each AR task, both a
solution method (algorithm) and an example of how it should
be applied were provided (Figure 1A). For the CMR tasks, no
further guidance, such as an algorithm or example, was given
(Figure 1B). In all CMR task sets the third subtask was to
construct a formula (Figure 1C). Students were given 4 min to
complete each of the 14 task sets and if a participant finished all 10
subtasks, the software randomly re-sampled new numerical tasks
until time ran out. This served to make sure the AR and CMR
practice conditions were equally long.

Frontiers in Psychology | www.frontiersin.org 3 January 2022 | Volume 12 | Article 797807

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-797807 January 4, 2022 Time: 12:15 # 4

Jonsson et al. Mathematical Reasoning

FIGURE 2 | Examples of test tasks and how they were presented to the
students on their laptop screen. (A,C) Practiced test tasks and (B,D) transfer
test task.

Post-test Tasks
There were 21 post-test tasks, 14 of which had the same layout as
the CMR practice tasks (but using different numbers) and were
denoted as “numerical practiced task” and “formula practiced
task” (Figures 2A,C). In addition, seven tasks differed from the
practice session tasks, which were denoted as “numerical transfer
tasks” and “formula transfer tasks” (Figures 2B,D). The transfer
post-test tasks shared underlying solution ideas with the practice
tasks, but could not be solved using the same formulas. The
distinction between transfer test tasks and practiced test tasks is
further described in Jonsson et al. (2020a; experiment 1). The
time limit for the post-test tasks was 4 min. More extensive
descriptions of both practiced tasks and test tasks can be found
in Jonsson et al. (2014), Norqvist et al. (2019a), and Jonsson et al.
(2020a) as well as in Supplementary Material provided with the
Jonsson et al.’s (2020a) study.

Working Memory Measures
The working memory measures included were operation span
(Unsworth and Engle, 2005), block span, and digit span
assessing the central executive, spatial short term memory and
phonological short term memory, respectively (Baddeley, 2003).
In the operation span task, participants are instructed to do
mathematical calculations. After each calculation, they are asked

to maintain a letter (displayed for 800 ms) in their memory. They
are then presented with a new mathematical task and asked to
maintain both the previous and the new letter in their memory.
After a full set is completed (each set contains three to seven
letters), the participants are asked to identify the letters in the
order they were presented. There were three sets of each size and
the participants score was the sum of all correctly recalled sets
(Unsworth and Engle, 2005). Operation span was administered
via computer and self-paced. In the block span task participants
were instructed to remember squared blocks presented on a
computer screen in 4 × 4 matrices separated by an interstimulus
interval of 1 s. The squares were presented as sequences of squares
increasing in difficulty—from two squares, three squares, four
squares. . . . up to a limit of 16 squares. After a delay of 2 s
participants were prompted to tap on the squares in the same
order as they were presented. The total number of perfectly
recalled sequences was used as the dependent variable. In the
digit span task, numbers between 1 and 9 were presented on the
computer screen in random order with an interstimulus interval
of 1 s. After a delay of 2 s, participants were prompted to recall
the numbers in the same order as they were presented. The test
started with a two-digit sequence and increased by one digit as
long as the participants managed to repeat the correct sequence.
The highest sequence length was used as dependent measure., See
Jonsson et al. (2020b) for extensive descriptions of the tasks and
their psychometric properties.

Need-for-Cognition
Need for Cognition was measured by the Mental Effort Tolerance
Questionnaire (METQ; Dornic et al., 1991), a Swedish adaptation
of the original NFC Scale by Cacioppo and Petty (1982). The
METQ consists of 30 items that are rated on a 5-point Likert-
like scale (from 1 = strongly disagree to 5 = strongly agree). 12
items indicate positive and 18 items negative attitudes toward
engaging in cognitive activity. The negative attitude items are
scored reversely. An example of a positive attitude item from
the METQ scale is “It is important to ponder upon why things
work as they do” (Dornic et al., 1991, p. 316). Stenlund and
Jonsson (2017) evaluated the psychometric properties of the 30-
item METQ scale and found good internal consistency (α= 0.88)
and test-retest reliability (r= 0.88). The high internal consistency
and high test-re-test reliability indicate that the full 30 item NFC
scale is a valid and reliable measure.

The working memory tasks and METQ, were selected
due to their known associations with math performance and
mathematical problem-solving strategies tasks (e.g., Beilock
et al., 2007; Gonthier and Roulin, 2020) as well as their good
psychometric properties. See Jonsson et al. (2020b) for extensive
descriptions of the tasks and their psychometric properties.

Procedure
In a between-group design, the participants were randomly
assigned to either the AR or CMR groups (N = 72 and 65,
respectively). The working memory measures and the NFC
survey were completed 1 week before the practice session, and
there was 1 week between the practice and post-test sessions.
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During the training session students worked individually,
receiving mathematics tasks and submitting answers through a
computer. We recognize that both cooperative and individual
learning can be valuable (e.g., Cross, 2009; OECD, 2017; Parveen
et al., 2017) in ordinary classrooms. The individual approach
in this study was motivated by the ambition to link individual
measures of working memory and NFC to mathematical practice
and posttest performance. After a student submitted an answer,
the correct answer was displayed. No such feedback was given
after the formula construction tasks (the third CMR task). This
was to prevent the CMR task from turning into an AR task, as the
students could then memorize the formula and apply it to later
subtasks instead of constructing their own solution.

For the post-test session, the practiced and transfer tasks could
be further split into numerical and formula tasks. In the formula
tasks for both practiced and transfer tasks, the students were
asked to write down the formula (Figures 2C,D). The practiced
tasks were presented before the transfer tasks. The first task for
both practiced and transfer tasks was a formula task and the
second a numerical task.

Both the practice and the post-test sessions were conducted
in the students’ classroom. No teacher or peer support was
available, but the students were offered the assistance of a simple
virtual calculator displayed on the screen of their laptops. The
software used automatically corrected and saved the students’
answers during both the practice and post-test sessions. For
additional examples and descriptions of the tasks used in this
study, see Norqvist et al. (2019a).

Statistical Analyses
In Jonsson et al. (2020a, experiment 1) the statistical analyses
showed that training with CMR tasks was superior to training
with AR tasks on all four types of test tasks: retrieving the
formula from memory for both practiced- and transfer tasks
and solving numerical practiced- and transfer tasks. In order
to reduce the number of models, we collapsed the four test
tasks (two practiced and two transfer tasks) used in Jonsson
et al. (2020a, experiment 1) to a composite overall measure of
performance, denoted as composite test performance (C-TP).

The working memory measures were used as indicators
of a latent WMC factor, while the items in the NFC scale,
with a Chronbachs alpha of 0.89, were collapsed to form a
composite score of NFC.

First, the descriptive information of the study sample was
summarized followed by zero-order correlations between all the
variables included in the analyses (see Tables 1, 2). Second, to
confirm the AR-CMR group differences found in Jonsson et al.
(2020a, experiment 1), an initial t-test of the composite test

scores was conducted. Third, three structural equation models
(SEM) investigated the effects of WMC and NFC on C-TP (the
dependent variable). The first model included all participants, the
second and third analyzed CMR and AR groups separately. Due
to the known correlation between WMC and NFC (e.g., Stenlund
and Jonsson, 2017; Gonthier and Roulin, 2020), the models
covary the latent factor WMC with NFC. Three fit indices were
used to evaluate the models, including the comparative fit index
(CFI), the root mean square error of approximation (RMSEA),
and χ2 divided by degrees of freedom. To attain an acceptable fit
for CFI, the value must be equal to or greater than 0.95 (Browne
and Cudeck, 1989). RMSEA values need to be equal to or less
than 0.06 to attain a good model fit and 0.08 for a reasonable fit
(Browne and Cudeck, 1989; Hu and Bentler, 1999). Note that the
sample sizes used in the group specific analyses could be regarded
as low (Kline, 2013). However, Tanaka (1987) argued that a
sample size of 50 could be enough when the model is simple.
The models in this study contain only one exogenous latent
factor, one exogenous manifest variable and one endogenous
variable. The data were analyzed using SPSS (IBM Corporation,
Armonk, NY, United States) and AMOS 27 (Arbuckle, 2016) with
bias-corrected percentile method as bootstrapping procedure.

Ethical Considerations
The data used in this study were obtained as part of a research
project that has been approved by the Regional Ethical Review
Board in Umeå. The process of collecting the data followed
current principles and guidelines as specified by the Swedish
Research Council. Written informed consent was obtained from
each participant.

RESULTS

Descriptive statistics and correlations between the continuous
variables can be seen in Tables 1, 2, respectively. All continuous
variables were approximately normally distributed, with values
below 0.81 for both skewness and kurtosis. No values outside a
third interquartile range were detected. T-tests confirmed that
the groups were equal with respect to NFC, operation span,
digit span and block span, all p’s > 0.17), meaning that the two
groups can be considered to be equal when it comes to working
memory and NFC. The correlations were significant, except for
the correlation between block span and NFC (see Table 2).
The initial t-test confirmed as expected that participants in the
CMR group outperformed their counterparts in the AR group
t(135)= 3.44, p < 0.001.

TABLE 1 | Descriptive statistics for the continuous variables.

C-TP Operation span Block span Digit span NFC

CMR 0.297 (0.216) 32.231 (16.668) 13.754 (2.616) 3.108 (1.047) 102.776 (16.340)

AR 0.179 (0.182) 30.875 (16.152) 13.466 (2.959) 3,278 (1,224) 99.139 (14.674)

Mean values with standard deviation in the parentheses. CMR, Creative Mathematical Reasoning group; AR, Algorithmic Reasoning group: C-TP, Composite Test
Performance; NFC, Need for Cognition.
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TABLE 2 | Pearson’s correlations.

Variables 1 2 3

1. O span —

2. Digit span 0329*** —

3. Block span 0.388*** 0.185* —

4. NFC 0.301*** 0.190* 0.08Pns

***p < 0.0001; *p < 0.05.

Figures 3A–C shows the SEM models with regression weights
for the overall model (a), the CMR group (b) and the AR group
(c), separately. The results of standardized and unstandardized
beta weights, standard error and p-values from the SEM analyses
accompanied by bootstrapping (95% CI) and p-values can be
seen in Table 3. The overall model indicated reasonable fit with
CFI= 0.975, RMSEA= 0.066, χ2/df= 1.60, p= 0.172, explaining
42% of the variance for C-TP. The model fit for CMR was
excellent; CFI = 1.00, RMSEA = 0.000, χ2/df = 0.81, p = 0.516,
explaining 50% of the variance for C-TP. Model fit was a bit
lower for AR; CFI = 0.925, RMSEA = 0.105, χ2/df = 1.78,

p = 0.129, explaining 35% of the variance for C-TP. The direct
effect of WMC on C-TP was almost identical across groups. The
most apparent difference was that the NFC > C-TP path was
significant for the CMR model (β = 0.26) but not for the AR
model (β= 0.00) (see Table 3 for details). However, constraining
the NFC > C-TP path and performing a Boostrapping, bias-
corrected percentile significant test did not reach a significant
between group difference, p= 0.15.

DISCUSSION

How to help students better develop a conceptual understanding
of mathematics is under scrutiny and is regarded as an important
question (e.g., Loveless, 2004; Lithner, 2008, 2017). One suggested
solution is to help students build conceptual understanding
by constructing their own solution methods, denoted using
CMR (Lithner, 2008, 2017). CMR is often contrasted against
the more common method based on imitative reasoning, AR.
Several previous publications have shown that practicing with
CMR tasks when students construct the solution is superior
to AR (Jonsson et al., 2014, 2016, 2020a; Norqvist et al., 2019b).

FIGURE 3 | The figure shows the standardized regression weights for both groups (A), CMR (B) and AR (C), separately. C-PT, composite test performance; WMC,
Working memory capacity; NFC, Need for Cognition.
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TABLE 3 | Path analyses with test task performance as dependent variable.

Bootstrapping (BC 95% CI)

Overall β B S.E p Lower Higher p

WMC→ C-TP 0.571 0.259 0.076 <0.001 0.132 0.576 0.001

NFC→ C-TP 0.163 0.002 0.001 0.059 0.000 0.005 0.108

WMC→ Digit span 0.400*

WMC→ O-span 0.749 26.773 7.364 <0.001 17.035 53.329 0.001

WMC→ Block span 0.533 3.255 0.951 <0.001 1.742 6.849 0.001

CMR group

WMC→ C-TP 0.572 0.325 0.141 0.021 0.148 1.049 0.002

NFC→ C-TP 0.263 0.003 0.002 0.021 0.000 0.008 0.037

WMC→ Digit span 0.364*

WMC→ O-span 0.774 33.801 13.963 0.015 15.498 160.732 0.001

WMC→ Block span 0.601 4.120 1.756 0.019 1.729 16.225 0.001

AR group

WMC→ C-TP 0.594 0.185 0.068 0.007 0.072 1.186 0.005

NFC→ C-TP 0.003 0.000 0.002 0.980 −0.004 0.003 0.970

WMC→ Digit span 0.478*

WMC→ O-span 0.735 20.256 6.781 0.003 10.382 52.447 0.001

WMC→ Block span 0.601 2.371 0.914 0.009 0.679 10.786 0.013

BC, bias corrected; 2,000 bootstrap samples; β, Standardized regression weight; B, Unstandardized regression weight; P, Significance of Estimates; *Constrained
parameter.

However, to what extent intrinsic cognitive motivation influences
performance has not been investigated. Here we extended
a previous publication (Jonsson et al., 2020a, experiment 1)
by assessing the influence of NFC and WMC on math
performance independent of group and separately for CMR and
AR groups. To reduce the number of parameters, we collapsed
the four dependent measures used in Jonsson et al. (2020a,
experiment 1) to a composite score (C-TP), assessing participants
overall performance. The initial analyses of the psychometric
properties showed that all continuous variables were normally
distributed and that the groups were equal regarding the
cognitive ability measures and NFC. In line with previous studies,
it was hypothesized that practicing with CMR tasks should
be superior to practicing with AR tasks on subsequent test
performance. It was hypothesized that NFC would be predictive
of performance for the CMR group but not for the AR group.
It was also hypothesized that WMC would predict performance
for both groups.

The initial t-test of group difference based on the composite
score of the four dependent variables used in Jonsson et al.
(2020a, experiment 1) was significant. Hence participants in the
CMR group outperformed their counterparts in the AR group,
as indicated in Table 1, confirming hypothesis 1. This result also
replicated other previous findings (Jonsson et al., 2014, 2016;
Norqvist et al., 2019b), adding to a growing pile of evidence
showing the positive effects of encouraging students to train
creative mathematical reasoning.

The second hypothesis was confirmed, showing that the
measure of NFC did predict mathematical performance following
CMR—but not AR training. This finding is in line with
the argument that NFC support selection of more complex
and accurate problem-solving strategies (Rudolph et al., 2018;

Gonthier and Roulin, 2020). To note is that the group comparison
for the NFC > C-TP path did not reach significance. However,
it seems likely that this is a question of power. In addition,
in all three SEM analyses, we covary NFC and WMC, thereby
controlling for the combined effects of NFC and WMC.

The third hypothesis, that WMC would predict mathematical
performance on the post-test independent of group was also
confirmed. The main effect of WMC is in line with established
research on the effects of cognitive abilities on mathematical
performance (e.g., Campos et al., 2013; Peng et al., 2019). The
fact that the effect of WMC was obtained independent of group
indicates that using CMR is not only for the cognitively stronger
students. However, the positive correlation between WMC, and
NFC, and the effect of NFC on CMR tasks implies that the
motivation to engage in cognitively strenuous tasks is higher
among those with higher WMC. From a didactical perspective,
it is therefore critical to allow, provide time, and encourage all
students to struggle with mathematical problems to create their
own task solutions. Thereby, CMR training could be accessible
and effective even for students who lack the motivation to engage
in cognitively strenuous mathematical tasks.

Limitations and Future Research
The psychometric properties, tight SEM models, and hypothesis-
driven analyses are strengths. With that said, the significant
effects of NFC must be interpreted with caution, partly due to
the relatively low sample size and that this is the first study
that focused on NFC and creative mathematical reasoning.
Another important note is that the sample was restricted to
upper secondary students. Since NFC is known no develop
over time, and the correlation with WMC is relatively high, the
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external validity in terms of generalizability to younger students
is difficult to assess.

We hope that this first study on the influence of intrinsic
cognitive motivation regarding creative and algorithmic
mathematical reasoning will encourage researchers to conduct
more studies. Considering the developmental paths of both NFC
and cognitive ability, a longitudinal within-subject approach
would be desirable.

Although more research is needed, we emphasize the need
to provide time and opportunities for struggle with creative
mathematical tasks, thereby enhancing students conceptual
understanding. With that said, we have in previous studies
discussed the potential of combining the CMR approach
with other validated methods that are designed to facilitate
mathematical understanding, such as worked example, self-
explanation and retrieval practice. Regarding retrieval practice
and CMR, we have in a recent publication (Stillesjö et al.,
2021) demonstrated common neurocognitive long-term memory
effects by using functional magnetic brain imaging (fMRI). The
brain imaging data indicate that active learning conditions, such
as CMR and retrieval practice engage a shared brain network
with higher functional brain activity for these learning methods
when compared to more passive such as re-study and AR, despite
dissimilar study material (math problems for CMR and Swahili
vocabulary for retrieval practice). These findings are argued
to be related to the formation and reactivation of semantic
representations and raise the question and potential of combining
retrieval practice with CMR. It is also interesting to discuss the
potential to integrate CMR with cooperative learning. Indeed,
an initial study focusing on collaborative learning using CMR
tasks has, as pointed out above, been conducted (Granberg and
Olsson, 2015). Designing situations which invite to cooperative
struggle with CMR tasks seems feasible and a productive way
to move forward. However, the effects of combining CMR with
retrieval practice or cooperative learning is at the end of the day
an empirical question.

CONCLUSION

In summary, this study demonstrates that training with CMR
tasks yields better mathematical performance than AR tasks and
that cognitive abilities strongly affect mathematical performance
independent of group. These results add to a stable pattern of
CMR, showing good effects on mathematical performance and

strengthening its viability as an educational strategy. Although
WMC was a significant and robust predictor, the effects were
equally strong in both groups. The influence of NFC on
performance for those that had practiced with CMR tasks
seems logical in relation to the structure of CMR tasks and
the NFC construct.
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