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Underestimation of reliability is discussed from the viewpoint of deflation in estimates of
reliability caused by artificial systematic technical or mechanical error in the estimates
of correlation (MEC). Most traditional estimators of reliability embed product–moment
correlation coefficient (PMC) in the form of item–score correlation (Rit) or principal
component or factor loading (λi). PMC is known to be severely affected by several
sources of deflation such as the difficulty level of the item and discrepancy of the
scales of the variables of interest and, hence, the estimates by Rit and λi are always
deflated in the settings related to estimating reliability. As a short-cut to deflation-
corrected estimators of reliability, this article suggests a procedure where Rit and λi in the
estimators of reliability are replaced by alternative estimators of correlation that are less
deflated. These estimators are called deflation-corrected estimators of reliability (DCER).
Several families of DCERs are proposed and their behavior is studied by using polychoric
correlation coefficient, Goodman–Kruskal gamma, and Somers delta as examples of
MEC-corrected coefficients of correlation.

Keywords: reliability, deflation in reliability, item-score correlation, deflation in correlation, coefficient alpha,
coefficient theta, coefficient omega, maximal reliability

INTRODUCTION: ATTENUATION AND DEFLATION IN THE
ESTIMATES OF RELIABILITY

Reliability of test score (REL) is used in several ways of which quantifying the amount of random
error in a score variable generated by a compilation of multiple test items may be the most concrete
one in the measurement modeling settings. The formula of the average standard error of the
measurement S.E.m. = σE = σX

√
1− REL is derived strictly from the basic definition of reliability

REL = σ2
T
/
σ2

X = 1− σ2
E
/
σ2

X , where σ2
X , σ2

T , and σ2
E refer to the variances of the observed score

variable (X) and the unobserved true score (T) and error (E) related to the classic relation of X = T
+ E (Gulliksen, 1950). Reliability is also used in assessing the (overall) quality of the measurement,
in correcting the attenuation of the estimates of regression or path models, in correcting the
attenuation in correlations in validity studies and meta-analyses, and for providing confidence
intervals around these estimates (see, e.g., Gulliksen, 1950; Schmidt and Hunter, 2015; Revelle and
Condon, 2018; Aquirre-Urreta et al., 2019). In all cases, the interest related to the accuracy of the
estimates of reliability is understandable.

A less discussed challenge in the estimates by the traditional estimators of reliability is that their
estimates may be radically deflated caused by artificial systematic errors during the estimation or
attenuated as a natural consequence of random errors in the measurement (see the discussion of
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the terms in, e.g., Chan, 2008; Lavrakas, 2008; Gadermann et al.,
2012; Revelle and Condon, 2018); deflation and its correction are
the foci in this article. Empirical examples discussed later show
that, in certain types of datasets, typically with very easy and very
difficult tests and tests with incremental difficulty level including
both easy and difficult items, the estimates of reliability may be
deflated by 0.40–0.60 units of reliability (see, e.g., Zumbo et al.,
2007; Gadermann et al., 2012; Metsämuuronen and Ukkola, 2019;
see section “Practical Consequences of Mechanical Error in the
Estimates of Correlation in Reliability”).

Guttman (1945) was the first to show the technical or
mechanical underestimation in the estimators of reliability.
He showed that all estimators in his family of estimators
λ1 to λ6 underestimate the true population reliability. This
result generalizes to such known estimators of reliability
as Brown–Spearman prophecy formula (ρbs; Brown, 1910;
Spearman, 1910), Flanagan–Rulon prophecy formula (ρFR;
Rulon, 1939), coefficient alpha (ρα) generalized from Kuder
and Richardson (1937) formula KR20 (ρKR20) by Jackson
and Ferguson (1941) and later named by Cronbach (1951),
and estimators called the greatest lower bound (ρGLB; e.g.,
Jackson and Agunwamba, 1977; Woodhouse and Jackson, 1977)
because these are all special cases of λ1 − λ6. Hence, using
these estimators, the true (population) reliability is always
underestimated. Later, Novick and Lewis (1967) pointed out that
the underestimation related to the measurement modeling holds
if the true values (taus) are not essentially identical and the
error components related to the test items do not correlate (see
the discussion also in Raykov, 2012; Raykov and Marcoulides,
2017).

Since Guttman (1945), the underestimation in ρα has been
handled in numerous studies and it has been connected to,
among others, a simplified assumption of the classical test theory
including unidimensionality, violations in tau–equivalence and
latent normality, and uncorrelated errors (see discussion in,
e.g., Green and Yang, 2009, 2015; Trizano-Hermosilla and
Alvarado, 2016). Some scholars have been ready even to reject
ρα for all (see, e.g., Yang and Green, 2011; Dunn et al., 2013;
Trizano-Hermosilla and Alvarado, 2016; McNeish, 2017) but the
discussion is still going on. In many practical testing settings,
even though better options are available, ρα may still be used as
one of the lower bound estimators of reliability because the basic
assumptions of alpha such as unidimensionality and uncorrelated
errors are usually met (e.g., Metsämuuronen, 2017; Raykov and
Marcoulides, 2017).

On the top of attenuation related to the measurement
modeling, the estimates of reliability are also deflated—
sometimes radically as discussed above. The root cause for the
deflation is that the estimates by product-moment correlation
coefficient (PMC; Pearson, 1896) embedded in the traditional
estimators of reliability in the form of item–score correlation
(Rit) or principal- or factor loading (λi) may be seriously
deflated approximating 100% with items with extreme difficulty
level and large sample size (see Metsämuuronen, 2020b, 2021b).
Deflation in PMC is caused by a phenomenon called here
artificial systematic technical or mechanical error in the estimates
of correlation (MEC). This phenomenon and its consequences

are discussed in section “Mechanical Error in the Estimates of
Correlation in PMC and some consequences.”

Replacing PMC in the estimators of reliability by a less-MEC-
defected coefficient of correlation called later MEC-corrected
estimators of correlation leads us to new kinds of estimators of
reliability named here deflation-corrected estimators of reliability
(DCER). DCERs can be divided into two types. One, focused
on this article, are MEC-corrected estimators of reliability where
PMC is replaced by a totally different estimator of correlation that
is less prone to deflation than PMC. The other types of DCERs
not discussed in this article could be called attenuation-corrected
estimators of reliability; in these, PMC is replaced by relevant
attenuation-corrected estimators of correlation. Some options for
the latter are proposed by Metsämuuronen (2021c); attenuation
corrected PMC and eta. The idea of DCER have been discussed
(although not by this name) also, for instance, by Zumbo et al.
(2007) and Gadermann et al. (2012) related to their ordinal alpha
and ordinal theta; ordinal alpha and theta uses the matrix of inter-
item RPCs instead of PMCs in the calculations and those are
special cases of DCERs.

The crucial role of item–total correlation in the deflation
of reliability has been discussed during the years (e.g.,
Metsämuuronen, 2009, 2016, 2017)1 and some options of
corrected estimators of reliability have been initially suggested,
however, without further studies of their behavior (see, e.g.,
Metsämuuronen and Ukkola, 2019; Metsämuuronen, 2020a,b,
2021b). According to simulations (see, e.g., Metsämuuronen,
2020b, 2021b,d), some good alternatives for PMC are polychoric
correlation coefficient (RPC; Pearson, 1900, 1913), Goodman–
Kruskal gamma (G; Goodman and Kruskal, 1954), Somers delta
(D; Somers, 1962), dimension-corrected G and D (G2 and D2;
Metsämuuronen, 2020a, 2021b) and bi- and polyreg correlation
(see Livingston and Dorans, 2004; Moses, 2017). Notably, first,
some estimators of item–score correlation may be found equally
good alternatives or even better than RPC, G, or D. Second,
although it seems that nonparametric coefficients of correlation
based on order of the cases would be the best options for PMC,
this is not categorically true. Of nonparametric options, Kendall’s
tau-a (Kendall, 1938) and tau-b (Kendall, 1948), as examples,
tend to underestimate true correlation even more than PMC (see
Kendall, 1949; Metsämuuronen, 2021d; see Figure 1).

This article discusses the mechanisms of how the deflation
related to coefficients of correlation causes deflation in the
estimates of reliability and proposes several concrete options
to solve the problem. Numerical examples are given of their
behavior. It is asked, what is the effect of changing an estimator
with a high quantity of deflation with an estimator with
remarkably less deflation in the estimates of reliability? Section
“Mechanical Error in the Estimates of Correlation in Product–
Moment Correlation Coefficient and Some Consequences”
discusses PMC as the root cause of the deflation in reliability,
section “Deflation-Corrected Estimators of Reliability” discusses
the conceptual base of the DCERs, and sections “Materials and

1The basic contents of the derivation of underestimation of PMC in the
measurement modeling settings, later elaborated in Metsämuuronen (2016), were
initially published in Metsämuuronen (2009); in Finnish.
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FIGURE 1 | Magnitude of deflation in different estimators. TauB, Kendall tau-b; Rit, PMC; RBIS, biserial correlation; D, Somers delta (X dependent); D2,
dimension-corrected D; RREG, r-polyreg correlation; RPC, polychoric correlation; G, Goodman-Kruskal gamma; G2, dimension-corrected G.

Methods” and “Results” give numerical examples of how the
deflation in the estimates of reliability is reduced when using
DCERs instead of the traditional estimators.

MECHANICAL ERROR IN THE
ESTIMATES OF CORRELATION IN
PRODUCT–MOMENT CORRELATION
COEFFICIENT AND SOME
CONSEQUENCES

In measurement modeling settings, MEC refers to a characteristic
of estimators of correlation to underestimate the true correlation
between the test items (gi) and the latent trait θ manifested as
a score variable (X) caused by artificial technical or mechanical
reasons. In what follows, section “Product–Moment Correlation
Coefficient, Mechanical Error in the Estimates of Correlation,
and Deflation” discusses the overall effect of MEC in PMC,
section “Sources of Mechanical Error in the Estimates of
Correlation Affecting Deflation in Product–Moment Correlation
Coefficient” discusses sources of MEC affecting deflation, section
“Product–Moment Correlation Coefficient and the Estimators of
Reliability” discusses how PMC is embedded in the estimators
of reliability, and section “Practical Consequences of Mechanical
Error in the Estimates of Correlation in Reliability” discusses
what the effect of deflation in PMC in the estimates of reliability
in the empirical dataset may be.

Product–Moment Correlation
Coefficient, Mechanical Error in the
Estimates of Correlation, and Deflation
The phenomenon of attenuation in the estimates by PMC is
well-known. Pearson (1903) and Spearman (1904) may be the
first scholars discussing the mechanical errors in estimators of
correlation, while Brown (1910) and Spearman (1910) may be

the first to connect this to reliability. All of them tried to find a
solution to the known challenge in the estimates of correlation
known today as restriction of range (see the literature in Sackett
and Yang, 2000; Sackett et al., 2007; Meade, 2010). It is known
that when only a portion of the range of values of the variable
is actualized in a sample it leads to inaccuracy in the estimates
of PMC, that is, the values are attenuated. Schmidt and Hunter
(1999), specifically, discusses the need of utilizing the knowledge
from attenuation correction when estimating measurement error.

Even if there was no obvious restriction of range obtained due
to a reduced variance in the score variable within the sample,
PMC underestimates the true correlation always if the scales
of the variables are not equal (see algebraic reasons in, e.g.,
Metsämuuronen, 2017). This kind of deflation in PMC caused
by mechanical reasons is easy to illustrate by two identical
continuous variables with an obvious perfect correlation, ρXX =

1. If we dichotomize one to be a binary variable (item g) and
polytomize the other to include several ordinal or interval-
scaled bins (score X), PCM between these variables cannot
reach the obvious true (perfect latent) correlation. Instead, the
value depends, among others, on the cut-off where the ordered
continuous variable is dichotomized to 0s and 1s, that is, of
the item difficulty. If the cut-off is extreme, PMC approximates
0 irrespective of the fact that the true correlation between the
variables was perfect (see simulation e.g., in Metsämuuronen,
2021b). Even at the highest, PMC cannot reach the perfect ρXX =

1; if there are no ties in the score, the highest value approximates
0.866.2 Then, because of deflation, the loss of information in
PMC may vary 13–100% depending on the item difficulty and the
sample size. This loss of information is illustrated in Figure 1.

To give a practical illustration of the magnitude of error
caused by deflation of correlation by different estimators, let us

2The value depends on, to some extent, the number of bins in the variable with
wider scale. For example, with 10, 20, 30, 200, and 1,000 bins, the maximum value
is 0.8704, 0.8671, 0.8665, 0.8660, and 0.8660, respectively. This is easy to confirm
by forming these sets of variables.
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consider the situation described above: two identical variables
with (obvious) perfect correlation ρXX = 1. Let there be 1000
cases and a normal distribution in the original variables. One
of the variables becomes an item g by categorizing it into three
categories (0, 1, and 2; df (g) = 2) and the other is polytomized into
21 categories (score X, df (X) = 20). The cut points are arbitrary
from the illustration viewpoint; let the average difficulty level
of the item be p(g) = 0.90 (or, p(g) = 0.10) that is, we have a
very easy (or difficult) item, and the test score be of a medium
difficulty level, p(X) = 0.50. Figure 1 illustrates the differences
between some known estimators of correlation; the estimators are
discussed later with literature.

Knowing that the latent correlation is perfect, the magnitude
of the correlation strictly indicates the amount of deflation.
We note that, of the estimators in the example, tau-b, biserial
correlation (Pearson, 1909), and PMC (Rit) cannot reach
the (obvious) perfect correlation between the two versions
of the same variable and, more, the magnitude of deflation
is remarkable (0.43, 0.34, and 0.31 units of correlation,
respectively). Of the estimators, D, D2, and RREG give far better
approximations of the latent correlation even if there still is some
error in the estimates (0.010, 0.009, and 0.001 units of correlation,
respectively). In contrast, RPC, G, and G2 reach the perfect latent
correlation, that is, there is no deflation in the estimates when
it comes to difficulty level of the items. Notably though, there
may be other factors causing deflation or underestimation of
association. Some of these factors are discussed in what follows
(see also Metsämuuronen, 2021d).

Sources of Mechanical Error in the
Estimates of Correlation Affecting
Deflation in Product–Moment Correlation
Coefficient
By modifying the above example of two identical variables with
relevant traditional coefficients of correlations such as RPC, G,
and D, Metsämuuronen (2021b) concluded that PMC is affected
(at least) by six sources of MEC: (1) Discrepancy in scales of
the variables in general: PMC cannot reach the true (perfect)
correlation between the item and the score when the dimensions
of the variables differ from each other; (2) Item difficulty and item
variance: the more extreme the item difficulty, the less variance,
and the more underestimation in PMC. The loss of information
approximates 100% with extremely easy and difficult items; (3)
The number of categories in the item: the fewer the categories,
the more underestimation in PMC; (4) The number of categories
in the score: the fewer the categories, the lesser predictable the
underestimation is; (5) The number of tied cases in the score:
more there are tied cases in the score, lesser predictable the
underestimation is. This is related to the sample size and the
number of categories in the score (point 4); (6) The distribution
of the latent variable: PMC underestimates the true correlation
more if the latent variable is normal or skewed than in the
cases of even distribution. These sources of the MEC are not the
only possible ones although they are characteristics to PMC (see
Metsämuuronen, 2021b).

Although rigorous studies have been done on these elements
(e.g., Martin, 1973, 1978; Olsson, 1980; Anselmi et al., 2019;
Metsämuuronen, 2021b) these tend to be fragmentary; systematic
studies of the several elements of MEC would enrich our
knowledge of the phenomenon. Notably, in all the six conditions
above related to the attenuation in PMC, such benchmarking
coefficients as RPC and G appeared to be MEC-free in the
simulation (see Metsämuuronen, 2021b); the estimates reach the
perfect correlation either strictly (G = 1) or asymptotically (RPC≈
1) irrespective of the condition. D appeared to be less affected by
MEC than PMC but not to the extent as RPC and G (see also
Figure 1). The reason for the latter is that while RPC and G are
not affected by the tied cases, D is, specifically, with short tests
(see the differences of D and G also in Metsämuuronen, 2021a).

Product–Moment Correlation Coefficient
and the Estimators of Reliability
PMC is deep-rooted to the practices within the test theory and
measurement modeling settings. From the reliability viewpoint,
on the one hand, PMC is strictly visible in such classic estimators
as ρBS, ρFR, ρKR21, ρα , ρGLB, and λ1 − λ6 discussed above.
Common to these estimators is that the variance of the test
score (σ2

X) inherited from the basic definition of reliability is
visible in the formula3 and σ2

X , on its behalf, can be expressed
by using the item–score correlation (Rit = ρiX = PMC): σ2

X =(
k∑

i=1
σi × ρiX

)2

(Lord et al., 1968) where k refers to number of

items in the compilation and σito the standard deviations of
partitions or items. Then, as an example, coefficient alpha can be
expressed as (Lord et al., 1968):

ρα =
k

k− 1

1−

k∑
i=1
σ 2

i

σ 2
X

 = k
k− 1

1−

k∑
i=1
σ 2

i(
k∑

i=1
σi × ρiX

)2


(1)

On the other hand, PMC is embedded in the estimators
based on factor- and principal component analysis because the
factor- and principal component loadings (λi) are, essentially,
correlations between an item and the score variable (e.g., Cramer
and Howitt, 2004; Yang, 2010). This concerns such estimators of
reliability as coefficient theta (ρTH ; Armor, 1973; see also Lord,
1958; Kaiser and Caffrey, 1965), known also as Armor’s theta:

ρTH =
k

k− 1

1−
1

k∑
i=1

λ2
i

 , (2)

where λi are principal component loadings of the (first
or only) principal component, coefficient omega (ρω;

3We recall that, although the traditional formula of ρBS is usually expressed by
using PMC between two parallel tests, it can be expressed also by using σ2

X in the
form familiar from ρFR (see Lord et al., 1968).
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Heise and Bohrnstedt, 1970; McDonald, 1970), known also
as McDonald’s omega total:

ρω =

(
k∑

i=1
λi

)2

(
k∑

i=1
λi

)2

+

k∑
i=1

(
1− λ2

i
) , (3)

and coefficient rho, known also as maximal reliability
(ρMAX) or Raykov’s rho (Raykov, 1997a, 2004) based on
the conceptualization suggested by Li et al. (1996) and Li (1997):

ρMAX =
1

1+ 1
k∑

i=1
(λ2

i
/
(1−λ2

i ))

(4)

(e.g., Cheng et al., 2012) where λi are factor loadings.
From the traditional measurement modeling viewpoint (see,

e.g., McDonald, 1999; Revelle and Condon, 2018) the forms in
Eqs. (1) to (4) implicitly assume that ρiXand λi are deflation-free.
However, on the one hand, ρiX is known to be severely deflated
(see above). On the other hand, if we use the operationalization
familiar in principal component analysis (PCA), exploratory
factor analysis (EFA), and structural equation modeling (SEM)
where λi is a principal component- or factor loading, assumption
of deflation-free estimates is too optimistic assumption because
λi is, essentially, a correlation between item and the factor (or
principal component) score variable (Yang, 2010). That is, λi is
(essentially) ρiX being deflated as discussed above.

Practical Consequences of Mechanical
Error in the Estimates of Correlation in
Reliability
The effect of MEC in deflation in the estimates of reliability
may be remarkable. Two empirical examples are given. The first
example comes from Gadermann et al. (2012) who report a
dataset where, by using ordinal alpha (αORD; Zumbo et al., 2007),
another kind of DCER based on replacing the inter-item matrix
of PMCs by a matrix of RPCs, the estimate by ρα was deflated
from 0.85 (αORD) to 0.46 (ρα), that is, 0.39 units of reliability
which equals 46% (=0.85–0.46)/0.85).

Another example comes from a national level testing program
of learning outcomes (n = 7,770; Metsämuuronen and Ukkola,
2019) where the preconditions of understanding the instruction
language were assessed with a very easy 8-item, 11-point
test. It was expected that only students with second language
background in the instruction language would make mistakes in
the test; of all test takers, 72% gave the full marks. The magnitude
of the estimate of reliability by the traditional coefficient alpha
was found to be ρα = 0.25 and by rho ρMAX = 0.48. By using a
DCER based on Somers D where ρiX is replaced by D (i |X ) = DiX
in the formula of alpha (see later Eq. 23), the magnitude of
deflation-corrected alpha was ρα_DiX = 0.86. Then, the magnitude
of the estimate by ρα was deflated around 0.60 units of reliability
(71%) and the estimate by ρMAX around 0.38 units of reliability
(44%). The obvious reason for the remarkably higher estimate

by ρα_DiX is that, in the case of binary items with extreme
difficulty level, PMC as well as the factor loadings are severely
attenuated while, in the binary case, D is less deflated. In
both examples, the deflation in the estimates by the traditional
estimators is remarkable. The latter example will be re-analyzed
in section “Practical Example of Calculating Deflation-Corrected
Estimators of Correlations Discussed in This Article” in details.

DEFLATION-CORRECTED ESTIMATORS
OF RELIABILITY

Conceptual Base of the
Deflation-Corrected Estimators of
Reliability
Suggesting a radically new way of estimating reliability urges
in-depth discussion of theoretical foundations of the new
approach. However, here, the new concepts are built based
on the traditional measurement models (see, e.g., McDonald,
1999; Cheng et al., 2012) which are, however, rethought and
reconceptualized to also include the elements of deflation. Some
further alternatives to consider for rethinking reliability are
discussed in section “Options for Correcting the Deflation in
Estimators of Reliability.” The effect of deflation is discussed
here theoretically only to the extent that makes the notation in
deflation-corrected estimators of reliability understandable.

Let wi be a general weight factor that links the observed values
(xi) of an item gi with the latent variable θ manifested as a score
variable:

xi = wiθ+ ei (5)

generalized from the traditional one-latent variable model (e.g.,
McDonald, 1999; Cheng et al., 2012). It is relevant to assume that
the weight factor wi is a coefficient of correlation (−1 ≤ wi ≤

+1) such as Rit, RPC, G, or D, or principal component- or factor
loadings (λi). Also, the latent variable θ may be manifested as
varying types of relevantly formed compilation of items such as
a raw score (θX), factor score variable (θFA), principal component
score variable (θPC), a theta score formed by the item response
theory (IRT) or Rasch modeling (θIRT), or a possible non-linear
compilation of the items (θNonL).

Eq. (5) generalizes to the compilation of items as

k∑
i=1

xi =

k∑
i=1

wiθ+

k∑
i=1

ei, (6)

where k is the number of items in the compilation. Eq. (6)
corresponds with the classic relation of the observed score (X),
true score (T), and error (E) in the classical measurement model,
that is, X = T + E discussed above. To visualize the differences
between different models, this general (congeneric, one-latent
variable) model without considering the elements of deflation is
as in Figure 2A.

From the correlation viewpoint, knowing that all generally
used estimators of correlation give identical estimates of the
correlation for original variables and for the standardized
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FIGURE 2 | (A) A general one-factor measurement model without elements of related to deflation. (B) A general one-factor measurement model with elements of
error related to deflation. (C) Deflation-corrected one-latent variable measurement model.

versions of the variables, without loss of generality, we can assume
that gi and θ are standardized, xi, θ ∼ N (0, 1). Then, parallel
to the traditional model (see e.g., Cheng et al., 2012), the error
variance of the test score ψ2

i can be estimated as

ψ2
i = σ2

E = VAR(
k∑

i=1

ei) =

k∑
i=1

(
1− w2

i
)
. (7)

Eq. (7) can be strictly used in estimating the reliability of the
score variable (REL = 1− σ2

E
/
σ2

X). If we use principal component
loadings as the weight factor and principal component score as a
manifestation of θ, the conceptualization of error variance in Eq.
(7) is used strictly in ρTH (Eq. 2) and, when using factor loadings
and factor score variable, it leads to such estimators as ρω and
ρMAX (Eqs. 3 and 4).

The traditional estimators of reliability assume that Rit and
factor/principal component loadings are deflation-free. This is
a too optimistic assumption as discussed and illustrated above
(see Figure 1). If the observed value of wi embeds deflation, as it
typically does when using the traditional estimators of correlation
and loadings, the magnitude of the observed correlation or
loading by a deflated or MEC-defected (MECD) weight factor
(wi_MECD) is, obviously, lower than MEC-free (MECF) weight
factor (wi_MECF), that is,

wi_MECF = wi_MECD + ewi_MEC (8a)

or

wi_MECD = wi_MECF − ewi_MEC (8b)

where the exact magnitude of the error element related to
deflation in estimation (ewi_MEC) is largely unknown although it
is positive (ewi_MEC > 0), and it depends on the characteristics of
the item and the weight factor as discussed above. While knowing
that a certain part of the measurement error is strictly technical
or mechanical in nature, but its magnitude could be reduced, it
makes sense to reconceptualize the classic relation of X = T + E
into a form

X = T + (ERandom + EMEC), (9)

where the element EMEC related to deflation is something we
can deal with. Notably, this kind of “systematic error” is not a
kind we usually consider as “systematic” such as a typo in the
test item or some technical problem in processes (see Gulliksen,
1950; Krippendorff, 1970). The latter type of error is usually
considered harmless from the reliability viewpoint and its effect
is added to the random part of the error. Consequently, we can
reconceptualize the measurement model in Eq. (5) as

xi = wi × θ+
(
ei_Random + ewiθ_MEC

)
, (10)

where the notation ewiθ_MECrefers to the fact that the magnitude
of the deflation depends on the characteristics of the weighting
factor w, item i, and the score variable θ. This model using a
weight factor including radical deflation such as Rit or λi may
be illustrated as in Figure 2B. Notably, the magnitude of the total
error

(
ei_Random + ewiθ_MEC

)
is, factually, equal to the one seen

in the model in Figure 2A. However, now the two components
are just visual.

While knowing that some estimators of correlation are less
deflated than some others, it makes sense to select such coefficient
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as the weighting factor where the quantity of technical or
mechanical error would be as low as possible. However, it may
be difficult to find an estimator of correlation without deflation,
that is, that would be totally deflation- or MEC-free. In what
follows, the concept of deflation-corrected and, specifically, MEC-
corrected estimator (MECC) is used to refer such estimators
where the deflation is known to be radically smaller than in
PMC. If selecting wisely the weight factor, the magnitude of
error component related to deflation may be near zero, that is,
ewiθ_MEC ≈ 0. If we use options of wi that would lead us to the
condition of ewiθ_MEC ≈ 0, because of Eq. (10), this will lead us
to a model where the measurement error would be as near the
MEC-free condition as possible, that is,

xi = wi_MECC × θ+
(
ei_Random + ewiθ_MEC

)
≈ wi_MECC × θ+ ei_Random. (11)

This measurement model where MEC-corrected weight factors
such as RPC, G, or D are used, could be illustrated as in Figure 2C.

As with Eq. (7), knowing that all generally used estimators of
correlation give identical estimate of the correlation for original
variables (gi and θ) and for the standardized versions of the
variables, we can assume that gi and θ are standardized, xi, θ ∼
N (0, 1). Then, assuming that item-wise random errors do not
depend on the true scores, the item-wise MEC-corrected error
variance (ψ2

i_MECC) is

ψ2
i_MECC = VAR(ei) = VAR(xi)−

(
wi_MECC

)2
× VAR (θ)

= 1− w2
i_MECC, (12)

that is, ei_MECC ∼ N
(
0,ψ2

i_MECC
)

where ψ2
i_MECC =

1− w2
i_MECC. Then, after the deflation-correction, the Eq.

(9) could be written as

X = T + ERandom + EMEC − EMEC

= T + ERandom (13)

and Eq. (10) as

k∑
i=1

xi =

k∑
i=1

wi_MECC × θ+

k∑
i=1

ei_Random. (14)

Consequently, the deflation-corrected error variance of the
test score can be written as

k∑
i=1

ψ2
i_MECC =

k∑
i=1

(
1− w2

i_MECC
)
, (15)

where the form corresponds to the traditional error variance

k∑
i=1

ψ2
i =

k∑
i=1

(
1− λ2

i
)

(16)

used in the traditional estimators of omega and rho in
Eqs. (3) and (4) (see, e.g., Cheng et al., 2012). In the
deflation-corrected estimators or reliability, instead of using
factor- or principal component loadings we use deflation-
corrected estimators of correlation.

Theoretical Deflation-Corrected
Estimators of Reliability
By being open for different manifestations of wi and θ, some
options for the base of the deflation-corrected estimators of
reliability are theoretical deflation-corrected alpha based on Eq.
(1):

ρα_wiθ =
k

k− 1

1−

k∑
i=1

σ2
i(

k∑
i=1

σi × wiθ

)2

, (17)

theoretical deflation-corrected theta based on Eq. (2):

ρTH_wiθ =
k

k− 1

1−
1

k∑
i=1

w2
iθ

 , (18)

theoretical deflation-corrected omega based on Eq. (3):

ρω_wiθ =

(
k∑

i=1
wiθ

)2

(
k∑

i=1
wiθ

)2

+

k∑
g=1

(
1− w2

iθ
) , (19)

and theoretical deflation-corrected rho based on Eq. (4):

ρMAX_wiθ =
1

1+ 1
k∑

i=1
(w2

iθ
/
(1−w2

iθ))

, (20)

where wiθ refers to the general model where the manifestations
of θ may vary as well as the linking coefficient w and, obviously,
the estimate varies item-wise. Obviously, using the estimators
(17) to (20) outside of their original context of raw scores or
principal component- and factor analysis is debatable. Here, a
stand-point is taken that the forms could be used as stand-
alone estimators even without their original contexts. This is
consistent with a more general measurement model discussed
above. Alternatively, the estimators (18) to (20) may be taken as
an output of renewed procedures in the principal component-
and factor analysis where wi is a less deflated estimator
of correlation than the traditional principal component- and
factor loading.

Examples of Practical
Deflation-Corrected Estimators of
Reliability
By combining the theoretical estimators in Eqs. (17) to (20) and
different operationalizations of wi, we get varying families of
deflation-corrected estimator of reliability. Let us assume that
we do not fix the manifestation of θ, and we use such MEC-
corrected weight factors as RPC, G and D directed so that “item
given score” or D = D (i|X) usually labeled as “score dependent” in
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the common software packages (of the correct direction of D, see
Metsämuuronen, 2020b). This leads us to such practical family of
deflation-corrected estimators of reliability as deflation-corrected
alpha based on Eq. (17) as

ρα_RPCiθ =
k

k− 1

1−

k∑
i=1

σ2
i(

k∑
i=1

σi × RPCiθ

)2

 , (21)

ρα_Giθ =
k

k− 1

1−

k∑
i=1

σ2
i(

k∑
i=1

σi × Giθ

)2

 , (22)

and

ρα_Diθ =
k

k− 1

1−

k∑
i=1

σ2
i(

k∑
i=1

σi × D
(
g|θ
)

iθ

)2



=
k

k− 1

1−
∑ k

i=1σ
2
i(

k∑
i=1

σi × Diθ

)2

 . (23)

Because of using totally different type of estimator than
PMC, these could be called special types of DCERs, namely,
MEC-corrected estimators of reliability. If using some relevant
attenuation-corrected estimator of correlation (see some options
in Metsämuuronen, 2021c), a family of attenuation-corrected
alpha would be obtained.

The notation in names ρα_RPCiθ, ρα_Giθ, and ρα_Diθ refers to
the facts that the base of the estimator is alpha (α), the weight
factor is manifested as RPC, G, or D representing different types
of correlations between item and the score variable, and the
manifestation of the score variable (θ) could be a raw score (θX)
or factor score variable (θFA), as examples. Some of these kinds of
estimators are discussed by Metsämuuronen and Ukkola (2019)
and Metsämuuronen (2020b, 2021a,b). Another type of solution
is discussed by Zumbo et al. (2007) and Gadermann et al. (2012)
by replacing the matrix of PMCs by a matrix of RPCs in forming
the factor loadings; this leads to a coefficient called ordinal alpha
discussed above.

More effective estimators than above are expected if coefficient
theta (Eq. 18) is used as a base for the estimators and

RPC, G, and D as wi.4 We get a family of deflation-corrected theta
based on Eq. (18):

ρTH_RPCiθ =
k

k− 1

1−
1

k∑
i=1

RPC2
iθ

 , (24)

ρTH_Giθ =
k

k− 1

1−
1

k∑
i=1

G2
iθ

 , (25)

and

ρTH_Diθ =
k

k− 1

1−
1

k∑
i=1

D2
iθ

 (26)

or a family of deflation-corrected omega based on Eq. (19):

ρω_RPCiθ =

(
k∑

i=1
RPCiθ

)2

(
k∑

i=1
RPCiθ

)2

+

k∑
i=1

(
1− RPC2

iθ
) , (27)

ρω_Giθ =

(
k∑

i=1
Giθ

)2

(
k∑

i=1
Giθ

)2

+

k∑
i=1

(
1− G2

iθ
) , (28)

and

ρω_Diθ =

(
k∑

i=1
Diθ

)2

(
k∑

i=1
Diθ

)2

+

k∑
i=1

(
1− D2

iθ
) , (29)

or a family of deflation-corrected rho based on Eq. (20):

ρMAX_RPCiθ =
1

1+ 1
k∑

i=1
(RPC2

iθ
/
(1−RPC2

iθ))

, (30)

ρMAX_Giθ =
1

1+ 1
k∑

i=1
(G2

iθ
/
(1−G2

iθ))

, (31)

4The effectiveness is expected because, in their original context, ρTH maximizes ρα

(Greene and Carmines, 1980), the magnitude of the estimates by ρMAX is higher
than those by ρω (Cheng et al., 2012), and all three give higher value than alpha if
the item–score correlations or loadings are not equal (e.g., Cheng et al., 2012).
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and
ρMAX_Diθ =

1
1+ 1

k∑
i=1
(D2

iθ
/
(1−D2

iθ))

. (32)

These families could be called also MEC-corrected theta,
omega, and rho. Notably, Zumbo et al. (2007) and
Gadermann et al. (2012) also discuss the use of Armor’s
theta as a basis for ordinal theta by replacing the matrix of PMCs
by a matrix of RPCs in the estimation.

Many good or even better alternative could be found
for RPC, G, and D considering that using RPC may
lead us to challenges in interpreting the reliability as
reflecting unobservable variables (see critique in Chalmers,
2017) and G tend to underestimate correlation when
there are more than four categories in the item and
D with three categories or more (see Metsämuuronen,
2021b). For the polytomous case, instead of G and
D, the dimension-corrected G and D are suggested
(Metsämuuronen, 2021b).

The characteristics of the estimators above are not
discussed in-depth here; simulations would be beneficial in
this matter. However, in the hypothetic extreme datasets
with deterministic item discrimination in all items leading
to RPCi = RPCj ≈ Gi = Gj = Di = Dj = 1,5 DCERs
based on theta and omega would lead to perfect reliability:
ρTH_RPCiθ ≈ ρTH_Giθ = ρTH_Diθ = k

/ (
k− 1

) (
1− 1

/
k
)
≡ 1

and ρω_RPCiθ ≈ ρω_Giθ = ρω_Diθ =
(
k
)2
/((

k
)2
+ 0

)
≡ 1.

In the case, estimators (21) to (23) based on alpha can
reach the value ρα_RPCiθ ≈ ρα_Giθ = ρα_Diθ = 1 only when all
item variances are equal (σi = σi = σ), that is, for instance,
when the items are standardized. In the case, ρα_RPCiθ =

ρα_Giθ = ρα_Diθ =k
/ (

k− 1
) (

1− kσ2
/(

k (σ× 1)
)2
)
=

k
/ (

k− 1
)
×
(
1− 1

/
k
)
≡ 1. Otherwise, the maximum value is

ρMax
α_RPCiθ ≈ ρ

Max
α_Giθ = ρ

Max
α_Diθ =

k
k−1

1−
k∑

i=1
σ2

i

/(
k∑

i=1
σi

)2
.

Notably, in the deterministic case, estimators based on rho
(Eqs. 30 to 32) could not be used because this would require
division by zero which is not defined. Aquirre-Urreta et al.
(2019) also noted that rho may produce overestimates of the
true reliability with finite samples familiar in real-world testing
settings. A practical reason for this is that the formula is sensitive
to very high values of loadings. In small sample sizes familiar in
the real-world datasets, the possibility to obtain deterministic or
near-deterministic situation in one or several items increases.
In deterministic patterns, ρMAX cannot be estimated at all
and in the near-deterministic patterns the factor loading
may be artificially high leading to obvious overestimation in
reliability. In what follows in a numerical example, the outcomes
based on the DCERs in Eqs. (21) to (23), (30) and (31) are
illustrated and the traditional estimators (1) to (4) are used
as benchmarks.
5Notably, RPC cannot reach the perfect 1. With enhanced procedures of the
estimation by adding a very small number like 10−50 to each element of logarithm
and when the embedded PMC≈ 1 such as 0.99999999, RPC ≈ 1.

MATERIALS AND METHODS

Dataset Used in the Numerical Example
As a simple numerical example, the dataset consisting of a set
of 30 multiple choice questions forming 30 binary items and
n = 49 randomly selected test-takers from a national level datasets
of mathematics test (N = 4,023; FINEEC, 2018) representing
small-scale tests with finite samples is used in illustrating the
difference between the traditional estimators and deflation-
corrected estimators of reliability. The dataset with estimates of
different score variables and weight factors are in Supplementary
Appendix 1.6

Measurement Model
The general measurement model discussed in section
“Conceptual Base of the Deflation-Corrected Estimators of
Reliability” is applied. By using the general one-factor model
and by varying w and the operationalization of θ, examples of
traditional and deflation-corrected estimates of reliability of the
score are given by modifying mainly the form of rho (Eq. 20)
with some benchmarking estimates by the form of alpha (Eq. 17).

Operationalizations of the Latent
Variable and the Linking Factor
In the empirical section, five operationalizations for θ are used:
an unweighted raw score (θX), a principal component score
variable (θPC), a factor score variable by maximum likelihood
estimation (θFA), a theta score by one-parameter IRT model or
Rasch model (θIRT), and a nonlinear weighted score by a simple

weighting factor 1/pi (θNonL = θPI =
k∑

i=1
gi
/

pi) where the test-

takers are weighted by the proportion of correct answers pi; the
more demanding item, the higher the weight.

Seven options as the weighting factor between θ and gi
are used. First, traditional estimators used in the traditional
estimators of reliability: Rit with θX , principal component loading
with θPC, and ML-estimate of the factor loading with θFA; second,
alternative coefficients RPC, G, and D for deflation-corrected
estimators of reliability; and, third, the traditional PMC (later, R
or Riθ) as a benchmarking coefficient for the DCERs when not
using the traditional alpha. The statistics for and calculations of
the estimates are collected in Supplementary Appendix 1.

Combining the operationalizations above, we get estimators of
reliability related to five different scores and seven linking factors;
only selected combinations are used (see condensed in Table 1).

6The dataset used in this article is a simple one intending to lead the reader
to the concepts and relevant estimators by offering all necessary calculations in
Supplementary Appendix 1. A dataset comprising a more in-depth comparison
of different estimators is also available at http://dx.doi.org/10.13140/RG.2.2.27971.
94241. This wider dataset is a simulation including 1,440 estimates of reliability
drawn from the same real-life dataset as used in Supplementary Appendix 1,
however, so that the sample size is varied (n = 25, 50, 100, 200) as well as the
number of categories and difficulty levels in the items and the score, and more
options for the weight element are compared: traditional weights, RPC, G, D,
RREG, G2, D2, RAC, and EAC. Unlike the dataset used in this article, the score
variables in the larger dataset do not include θIRT and θPI though.
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First, traditional estimators (alpha, theta, omega, and rho; Eqs.
1–4) of which rho is re-notated here to match with the other
estimators:

ρMAX_λiθFA = ρMAX =
1

1+ 1

/
k∑

i=1

(
λ2

iθFA

/(
1− λ2

iθFA

)) , (33)

where the notation ρMAX_λiθFA refers to facts that coefficient rho is
the base of the coefficient (MAX), the manifestation of the score
variable is the factor score variable (θFA), and the manifestation
of the weight factor is the ML-estimate of the factor loading
(wi = λi=λiθFA).

Second, five estimators based on the form of rho and item–
score correlation (ρiθ = Riθ) as the linking factor:

ρMAX_RiθX =
1

1+ 1

/
k∑

i=1

(
R2

iθX

/(
1− R2

iθX

)) , (34)

where the score is θX and wi = RiθX , (34)

ρMAX_RiθPC =
1

1+ 1

/
k∑

i=1

(
R2

iθPC

/(
1− R2

iθPC

)) , (35)

where the score is θPC and wi = RiθPC ,

ρMAX_RiθFA =
1

1+ 1

/
k∑

i=1

(
R2

iθFA

/(
1− R2

iθFA

)) , (36)

where the score is θFA and wi = RiθFA ,

ρMAX_RiθIRT =
1

1+ 1

/
k∑

i=1

(
R2

iθIRT

/(
1− R2

iθIRT

)) , (37)

where the score is θIRT and wi = RiθIRT , and

ρMAX_RiθPI =
1

1+ 1

/
k∑

i=1

(
R2

iθPI

/(
1− R2

iθPI

)) , (38)

where the score is θPI and wi = RiθPI .
Third, the parallel estimators using RPC = RPCiθ as the linking

factor:

ρMAX_RPCiθX =
1

1+ 1

/
k∑

i=1

(
RPC2

iθX

/(
1− RPC2

iθX

)) , (39)

where the score is θX and wi = RPCiθX ,

ρMAX_RPCiθPC =
1

1+ 1

/
k∑

i=1

(
RPC2

iθPC

/(
1− RPC2

iθPC

)) ,(40)

where the score is θPC and wi = RPCiθPC ,

ρMAX_RPCiθFA =
1

1+ 1

/
k∑

i=1

(
RPC2

iθFA

/(
1− RPC2

iθFA

)) ,(41)

where the score is θFA and wi = RPCiθFA ,

ρMAX_RPCiθIRT =
1

1+ 1

/
k∑

i=1

(
RPC2

iθIRT

/(
1− RPC2

iθIRT

)) ,(42)

where the score is θIRT and wi = RPCiθIRT , and

ρMAX_RPCiθPI =
1

1+ 1

/
k∑

i=1

(
RPC2

iθPI

/(
1− RPC2

iθPI

)) , (43)

where the score is θPI and wi = RPCiθPI .
Fourth, the parallel estimators using G = Giθ as the linking

factor:

ρMAX_GiθX =
1

1+ 1

/
k∑

i=1

(
G2

iθX

/(
1− G2

iθX

)) , (44)

TABLE 1 | Estimators of reliability covered in the empirical section.

Weight factor (the base of the estimator)

Rit(alpha)a RPC(alpha)b G(alpha)b D(alpha)b λPC(theta)a λML(omega)a λML(rho)a R(rho)b RPC(rho)b G(rho)b

Eqs. 1 21 22 23 2 3 4, 33 34–38 39–43 44–48

Score type θX x x x x x x X

θPC x x x X

θFA x x x x X

θIRT x x X

θPI x x X

aTraditional estimates.
bDeflation-corrected estimates.
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where the score is θX and wi = GiθX ,

ρMAX_GiθPC =
1

1+ 1

/
k∑

i=1

(
G2

iθPC

/(
1− G2

iθPC

)) , (45)

where the score is θPC and wi = GiθPC ,

ρMAX_GiθFA =
1

1+ 1

/
k∑

i=1

(
G2

iθFA

/(
1− G2

iθFA

)) , (46)

where the score is θFA and wi = GiθFA ,

ρMAX_GiθIRT =
1

1+ 1

/
k∑

i=1

(
G2

iθIRT

/(
1− G2

iθIRT

)) , (47)

where the score is θIRT and wi = GiθIRT ,
and

ρMAX_GiθPI =
1

1+ 1

/
k∑

i=1

(
G2

iθPI

/(
1− G2

iθPI

)) , (48)

where the score is θPI and wi = GiθPI .
Additionally, DCERs based on coefficient alpha (Eqs. 21–

23) are used as benchmarks to the traditional estimators
(see Table 1). Of the calculation of the estimates, see
Supplementary Appendix 1.

RESULTS

Eight outcomes of the comparison are worth highlighting. First,
of the estimators based on the form of rho (Eqs. 33 to 48), the
ones using RPC and G as the linking factor give notably higher
estimates (0.961–0.968) in comparison to those using PMC
(0.894–0.909) and traditional factor- or principal component
loadings (ρMAX = 0.894, ρω = 0.864, ρTH = 0.879) or alpha
(ρα = 0.862) (Table 2). This is caused by the better behavior
of RPC and G in relation to deflation with the items with

extreme difficulty levels in comparison to PMC (see Figure 3).
The estimates of reliability based on RPC and G tend to be
more deflation-free than those based on traditional principal
component- and factor loadings or PMC, that is, eRit_MEC,
eλi_MEC >> eRPCiθ_MEC≈ eGiθ_MEC. The possible overestimation
by DCERs is discussed later.

Second, in comparison to the estimates by Eqs. (34) to (38)
related to PMC (0.894–0.909) and the traditional ρMAX (0.894),
the estimates by Eqs. (39) to (48) related to RPC and G tend to
be close to each other (0.961–0.969) even though they indicate
different aspects of the correlation. While RPC estimates the
inferred correlation of the (unobservable) latent variables, G
estimates the probability that the test takers are in the same order
both in an item and a score. The same magnitude of the estimates
may be interpreted to indicate that the estimators reflect the same
deflation-free reliability of the test score.

Third, the magnitudes of the estimates by the traditional
coefficients rho by Eq. (4)(ρMAX_λiθFA = ρMAX = 0.894), theta
by Eq. (2) (ρTH = 0.879), and omega by Eq. (3) (ρω = 0.864)
are higher than by the traditional coefficient alpha by Eq. (1)
(ρα = 0.862). This is expected because only in the theoretical
case that all the factor loadings or item–score correlations are
equal, the magnitude of the estimates by ρα would reach those
by the other estimates. However, it seems that ρMAX does not
produce the “maximal” reliability per se for the given test.
In the dataset at hand, even the traditional PMC between an
item and the factor score variable would lead to a somewhat
higher estimate (ρMAX_RiθFA = 0.909) than using the factor
loadings nothing to say of the deflation-corrected estimates
(ρMAX_RPCiθFA = 0.969 and ρMAX_GiθFA = 0.968). Hence, the
thinking that “maximal reliability (in the form seen in Eq. 4) is
the highest possible reliability that a test can achieve” (Cheng
et al., 2012, p. 53 as an example), seems not be true in the
absolute sense. Notably though, when using PMC and RPC as
the linking factor, the score formed by the factor modeling,
traditionally taken as the “optimal linear combination” of the
items (see, Li, 1997), tends to have the highest reliability in
comparison to the other types of score variables although the
difference is not notable.

Fourth, coefficient alpha is known to underestimate the true
reliability. By using the DCERs based on alpha, that is, Eqs.
(21) to (23), the estimates are notably higher (ρα_RPCiθX = 0.937,

TABLE 2 | Comparison of the estimates of reliability.

Weight factor (the base of the estimator)

Rit(alpha)a RPC(alpha)b G(alpha)b D(alpha)b λPC(theta)a λML(omega)a λML(rho)a R(rho)b RPC(rho)b G(rho)b

Eqs. 1 21 22 23 2 3 4, 33 34–38 39–43 44–48

Score type θX 0.8619 0.9374 0.9420 0.9343 0.9024 0.9628 0.9682

θPC 0.8789 0.9069 0.9661 0.9656

θFA 0.8641 0.8943 0.9094 0.9688 0.9681

θIRT 0.8944 0.9628 0.9682

θPI 0.8987 0.9614 0.9609

aTraditional estimates.
bDeflation-corrected estimates.
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FIGURE 3 | Difference between the estimates of item–score correlation by G and PMC (R).

ρα_GiθX = 0.942, and ρα_DiθX = 0.934), and these are not far
from the estimates by the DCERs based on rho with the raw score
ρMAX_RPCiθX = 0.963 by Eq. (39) and ρMAX_GiθX = 0.968 by Eq.
(44). This seems to indicate that the reliability of the raw score
may be closer than what we have thought to the ones manifested
as the optimal linear combination of the items.

Fifth, obviously, the outcomes of forming the score differ
radically from each other. On the one hand, the scores formed
by PCA, EFA, and IRT modeling follow the standardized normal
distribution while the raw score and the non-linearly weighted
score differ from this logic. On the other hand, the score variables
by PCA (θPC), EFA (θFA), and non-linear summing (θPI) do
not include tied cases in the dataset; each test takers got their
own category in θPC, θFA and θPI while the scores by IRT
(θIRT) and the raw score (θX) have identical number of tied
cases; in the one-parameter model used in the analysis, θIRT
is a logistic transformation of θX . Consequently, the DCERs
for the raw score (Eqs. 39 and 44) and for the IRT score
(Eqs. 42 and 47) are identical (ρMAX_RPCiθX =ρMAX_RPCiθIRT
= 0.963 and ρMAX_GiθX = ρMAX_GiθIRT = 0.968) because the
order of the test takers remains the same in the logistic
transformation. Regardless of the differences in the structure
of the score variables, the estimators based on G as a linking
factor produce estimates that are largely at the same magnitude
of reliability with the scores by raw score, EFA, and IRT by Eqs.
(44), (46), and (47): ρMAX_GiθX ≈ ρMAX_GiθFA ≈ ρMAX_GiθIRT ≈

0.968 and the differences are not wide either when using RPC

(0.963–0.969). Notably, when using RPC and G as the linking
factor, the score formed by EFA with no tied cases cannot
discriminate the test-takers remarkably more accurately than
the score with tied cases (θIRT or θX). This reflects the non-
obvious fact that reliability of the score variable, in a sense of
discriminating the test takers from each other, is not strictly
connected with the number of tied values in the score variable
nor the type of scale.

Sixth, the obvious reason for the higher magnitude of the
estimates by DCERs using RPC and G in comparison to PMC
is caused by the better behavior of RPC and G with items with
extreme difficulty levels. With these kinds of items, specifically,
PMC is highly deflated while RPC and G are not at all affected by
item difficulty (see simulation in Metsämuuronen, 2021b). The
difference between the estimates of correlation by PMC and G is
illustrated in Figure 3; the graphs would be essentially identical
with PMC and RPC because the difference between the estimates
by RPC and G are subtle in binary case (see Metsämuuronen,
2020b, 2021b).

Seventh, Green and Yang (2009) approximate that, by using
ρα, the true reliability may be underestimated up to 11%
although, in real-life testing settings, the underestimation may
be nominal (Raykov, 1997b). Assuming that RPC does not
overestimate correlation, when knowing the magnitude of the
estimate by the traditional coefficient alpha related to the raw
score by Eq. (1) (ρα = 0.862) and the deflation-corrected
estimate by RPC related to the factor score variable by Eq. (33)
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(ρMAX_RPCiθFA = 0.969) in the given dataset, the magnitude of
the deflation in the traditional estimate by ρα appears to be
0.1068 units of reliability, that is, 11.0% (=(0.969–0.862)/0.969)
in comparison to the one by deflation-corrected rho. By using
the same logic, the traditional maximal reliability ρMAX = 0.894
is deflated by 7.7%. These seem decent magnitudes considering
that, in the empirical cases, the deflation may be 70 or 44%
as discussed in section “Practical Consequences of Mechanical
Error in the Estimates of Correlation in Reliability.” The reason
for the decent deflation is that the dataset used in the example
is neither extremely easy nor extremely difficult. An obvious
confounding factor is that the score variables differ between
coefficients alpha and rho. If the score variable would be
harmonized as being the raw score and the weighting factor
would be harmonized to RPC, we can assess the pure effect of
the estimator itself. The magnitude of the deflation-corrected
alpha (Eq. 21) is ρα_RPCiX = 0.937 and the magnitude of the
deflation-corrected rho (Eq. 39) is ρMAX_RPCiX = 0.963. Then,
the deflation would be reduced from 11 to 2.6% (=(0.963–
0.937)/0.963). This (around) 3% seems to refer strictly to a more
effective estimation of reliability by using the form of estimator
based on maximal reliability than by the formula used in the
traditional coefficient alpha. Obviously, more studies are needed
to confirm the results.

Finally, eighth, by comparing the estimates of different
weighting factors wi, it is possible to evaluate roughly
what the magnitude of the deflation (ewiθ_MEC) in different
estimators of correlation in the dataset is. Assuming that
the estimates by RPC do not overestimate the correlation
between the items and the score, the difference between
the estimates based on RPC and PMC gives a hint of the
magnitude of the deflation in PMC. On average in the
given dataset, the deflation in PMC with different types
of score variable is ēRiθX_MEC = 0.156 units of correlation
with raw score (ranging 0.0279–0.3268 depending on the
item), ēRiθFA_MEC = 0.157 (–0.0064–0.3121) with the factor
score, ēRiθIRT _MEC = 0.166 (0.0315–0.3702) with the theta score
by IRT modeling, and ēRiθPI _MEC = 0.153(0.0061–0.3433) with
the non-linearly weighted score. The systematic negative
bias of this size has a notable effect in deflation in the
estimate of reliability.

CONCLUSION AND LIMITATIONS

An obvious conclusion of the theoretical and empirical parts of
the study is that the magnitude of the deflation of reliability
depends not only on the unidimensionality, violations in the
measurement model and latent normality, estimator of reliability,
and uncorrelated errors as traditionally suggested with coefficient
alpha but also on the estimators of correlation used as the linking
factor between the latent trait θ and the test items gi. Some
linking factors like PMC are more prone to deflation than some
other estimators like RPC, G and D as examples and, hence, the
estimates by PMC are more deflated than those by RPC, G and
D. Because PMC is embedded in the traditional estimators of
reliability, the deflation in correlation is inherited to the estimates

of reliability. Systematic studies comparing different estimators of
correlation and reliability could be beneficial to understand the
phenomenon better.

Options for Correcting the Deflation in
Estimators of Reliability
The root challenge related to deflation in the traditional
estimators of reliability seems to be the classical definition of
reliability based on variances (σ2

X , σ2
T , and σ2

E) leading to use
PMC in the practical solutions of estimating reliability. If we
would start to create a theory concerning reliability by knowing
all the deficiencies of PMC we know today, we may be trying
to avoid PMC and, consequently, the variances in the process.
To rectify this root challenge, it may be beneficial to rethink the
definition of reliability from this perspective. Alternative bases
to consider for rethinking reliability may be related to, among
other, “sufficiency of information” by Smith (2005), or several
options within IRT modeling such as “person separation” by
Andrich and Douglas (1977), Andrich (1982), and Wright and
Masters (1982), or “information function” discussed by, e.g.,
McDonald (1999), Cheng et al. (2012), and Milanzi et al. (2015).
One alternative for defining reliability is discussed briefly here
based on Metsämuuronen (2020b) related to the definition of
“ultimately discriminating test score.”

Metsämuuronen (2020b) proposes an operational definition
of the ultimate item discrimination as a condition where the score
can predict response pattern of the test-takers in a single item in a
deterministic manner. This could be generalized as a theoretical
condition for ultimate reliability as being a condition where the
score can predict the order (or item response pattern) of the test
takers in a deterministic manner in all items. This operational
definition alone is not very practical when it comes to estimation
of the reliability because the deterministic patterns cannot be
estimated by using maximum likelihood method, for example.
However, this could be a starting point to develop estimators
where different types of estimators of item discrimination as well
as a-parameter in IRT-modeling could be a visible part of the
estimator as in Eqs. (21) to (32). Theoretical and empirical work
in this area would be beneficial.

While waiting for development of a sound basis for a new
way of thinking, defining, and estimating reliability, practical
options lead to a kind of new paradigm in the settings related
to measurement modeling: the extended families of deflation-
corrected estimators of reliability. One set of family, attenuation-
corrected estimators of reliability, not discussed in this article,
would be obtained if attenuation-corrected estimators of PMC
were used instead of PMC in the estimators. Another set of
family, MEC-corrected estimators of reliability focused in this
article, is obtained if PMC is replaced by a totally different
estimator of correlation that would not be deflated at all or where
the magnitude of deflation is remarkably smaller than that in
PMC. Several new estimators of deflation-corrected estimators
were proposed based on using RPC, G and D as examples instead
of PMC in some known estimators of reliability.

In the empirical part, it was demonstrated that if RPC,
G, or D would be used instead of PMC in some known
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estimators of reliability, the deflation in reliability would
be corrected to a notable extent. Further simulations with
different types of datasets, different item types, different
weighting factors, and different base of the estimators (e.g.,
alpha, theta, omega, or rho) would be beneficial in this
regard. The estimates by deflation-corrected estimators are
not, factually, “real” reliabilities as such. However, they are
closer to the deflation-free reliability than the traditional
estimates. Empirical examples show that, in specific forms of
datasets as in very easy or very difficult tests, the estimates
by traditional estimators such as coefficient alpha and rho
may be deflated 40–70% because of technical reasons. The
DCERs discussed in this article are strong with these kinds
of datasets and could be used as a benchmark to the
traditional estimators.

Practical Example of Calculating
Deflation-Corrected Estimators of
Correlations Discussed in This Article
To give a practical example of the DCERs discussed in this
article, let us re-analyze the reliability of the extremely easy
dataset (n = 7,770) by Metsämuuronen and Ukkola (2019)
discussed in section “Practical consequences of Mechanical Error
in the Estimates of Correlation in reliability.” The advance
of DCERs may be notable in these kinds of datasets where
the item difficulties are extreme leading to an ultimately non-
normal score (see Table 3). Because of ultimately easy items
with mainly binary scales combined with a non-normal score

variable, the non-parametric coefficients of correlation may be
better options than PMC.

Deflation-Corrected Alpha
The traditional coefficient alpha uses raw score (θX) as the
manifestation of the latent ability and item–score correlation
(RgX) as the weighting element in the calculation. Estimates by
alternative coefficients of item–score association are collected
in Table 4; their calculation is described in Supplementary
Appendix 1. Notably, first, the magnitudes of the estimates by
Rit (0.38 on average) are remarkably lower than those by RPC
(0.72), G (0.88), and D (0.83). This is caused by its poor behavior
with items of extreme difficulty level. Second, the magnitude
of the estimates by RPC is somewhat lower than those by G
and D. This is not a general characteristic of these coefficients.
With binary items, the estimates by G and RPC tend to be very
close each other (see, e.g., Metsämuuronen, 2021b), and when
the number of categories in the item increases up to four or
higher, the probability that two variables are in the same order
indicated by G (and D) tend to be lower than covariation between
the two variables indicated by PMC and RPC and, hence, the
estimates would signal that the true correlation is underestimated
(see Metsämuuronen, 2021b). Third, that the magnitude of the
estimates by D are lower than those by G is expected because the
estimates by D are more conservative in comparison with G (e.g.,
Metsämuuronen, 2021a,b).

Because of Eq. (1), the traditional coefficient alpha gives
the estimate: ρα =

8
8−1

(
1− 0.600

0.8742

)
= 0.245. The deflation-

corrected alpha using RPC as the weighting element (Eq. 21)

TABLE 3 | Descriptive statistics of the dataset from Metsämuuronen and Ukkola (2019).

Item (g) N Maximum Mean p SD Score Freq. %

g1 7,770 1 0.96 0.96 0.186 3 4 0.1

g2 7,770 1 0.98 0.98 0.126 4 7 0.1

g3 7,770 1 0.99 0.99 0.088 5 6 0.1

g4 7,770 1 0.91 0.91 0.287 6 20 0.3

g5 7,770 2 1.78 0.89 0.610 7 40 0.5

g6 7,770 1 0.98 0.98 0.122 8 141 1.8

g7 7,770 2 1.97 0.985 0.211 9 809 10.4

g8 7,770 2 1.98 0.99 0.169 10 903 11.6

11 5,840 75.2

7,770 100.0

TABLE 4 | Item–score correlations and related statistics needed in estimating reliability.

Item (gi ) RgX
a DgX

a GgX
a RPCgX

a σ2
g = VAR(g) RgX × σg DgX × σg GgX × σg RPCgX × σg

g1 0.351 0.791 0.857 0.677 0.035 0.065 0.147 0.160 0.126

g2 0.268 0.779 0.846 0.618 0.016 0.034 0.098 0.107 0.078

g3 0.283 0.858 0.911 0.696 0.008 0.025 0.076 0.080 0.061

g4 0.458 0.789 0.834 0.736 0.082 0.131 0.226 0.239 0.211

g5 0.746 0.952 0.979 0.931 0.372 0.455 0.580 0.597 0.568

g6 0.260 0.766 0.831 0.602 0.015 0.032 0.094 0.102 0.074

g7 0.327 0.832 0.897 0.702 0.045 0.069 0.176 0.189 0.148

g8 0.373 0.877 0.924 0.760 0.028 0.063 0.148 0.156 0.128

SUM 0.600 0.874 1.546 1.630 1.395

aR, Pearson correlation; D, Somers delta “X dependent”; G, Goodman–Kruskal gamma; RPC, polychoric correlation coefficient.
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TABLE 5 | Principal component loadings and related alternative statistics for estimating reliability.

Item (g) λiPC (λiPC)2 DgθPC (DgθPC)2 GgθPC (GgθPC)2 RPCgθPC (RPCgθPC)2

g1 0.444 0.197 0.937 0.878 0.937 0.878 0.833 0.694

g2 0.429 0.184 0.960 0.922 0.960 0.922 0.837 0.701

g3 0.593 0.352 0.994 0.988 0.994 0.988 0.947 0.897

g4 0.478 0.228 0.892 0.796 0.892 0.796 0.818 0.669

g5 0.207 0.043 0.737 0.543 0.737 0.543 0.647 0.419

g6 0.375 0.141 0.939 0.882 0.939 0.882 0.791 0.625

g7 0.286 0.082 0.856 0.733 0.856 0.733 0.659 0.435

g8 0.628 0.394 0.984 0.968 0.984 0.968 0.926 0.858

SUM 1.621 6.709 6.709 5.297

TABLE 6A | Factor loadings and related alternative statistics for estimating omega.

Item (g) λi (λi )2 1–(λi )2 DgθML (DgθML)2 1–DgθML
2 GgθML (GgθML)2 1–G2 RPCgθML (RPCgθML)2 1–RPCgθML

2

g1 0.276 0.076 0.924 0.940 0.884 0.116 0.940 0.884 0.116 0.831 0.691 0.309

g2 0.260 0.068 0.932 0.957 0.916 0.084 0.957 0.916 0.084 0.829 0.688 0.312

g3 0.471 0.222 0.778 0.995 0.990 0.010 0.995 0.990 0.010 0.962 0.926 0.074

g4 0.291 0.085 0.915 0.892 0.796 0.204 0.892 0.796 0.204 0.814 0.663 0.337

g5 0.111 0.012 0.988 0.736 0.542 0.458 0.736 0.542 0.458 0.645 0.415 0.585

g6 0.213 0.045 0.955 0.934 0.872 0.128 0.934 0.872 0.128 0.774 0.599 0.401

g7 0.160 0.026 0.974 0.844 0.712 0.288 0.844 0.712 0.288 0.660 0.435 0.565

g8 0.512 0.262 0.738 0.993 0.986 0.014 0.993 0.986 0.014 0.960 0.922 0.078

SUM 2.294 7.204 7.291 1.302 7.291 1.302 6.475 2.661

leads to an estimate ρα_RPCiX =
8

8−1

(
1− 0.600

1.3952

)
= 0.790,

gamma (Eq. 22) to ρα_GiX =
8

8−1

(
1− 0.600

1.6302

)
= 0.885, and

delta (Eq. 23) to ρα_DiX =
8

8−1

(
1− 0.600

1.5462

)
= 0.856. The

estimate by the traditional coefficient alpha is radically deflated,
72%, when comparing it to the DCER using G as the weighting
element ((0.885− 0.245)

/
0.885 = 0.723) and 69% if using RPC.

We also note that the magnitude of the estimates of reliability
follows strictly the general tendency of the magnitudes of the
coefficients of correlation: In comparison with the estimate
byρα_GiX the estimate by ρα_DiX is conservative.

Deflation-Corrected Theta
The traditional coefficient theta uses principal component
score (θPC) as the manifestation of the latent ability and
principal component loadings (λi) as the weighting element in
the calculation. Loadings and corresponding statistics related
to alternative estimators are collected in Table 5. Notably,
because there appeared to be no tied pairs between the
principal component score and items, the estimates by G and
D are identical.

The traditional coefficient theta can be calculated by Eq.
(2): ρTH = ρTH_λiθPC =

8
8−1

(
1− 1

1.621
)
= 0.438. The deflation-

corrected theta using RPC as the weight factor and the principal
component score (θPC) as the manifestation of the latent ability
(Eq. 24) leads us to an estimate ρTH _RPCiθPC =

8
8−1

(
1− 1

5.297
)
=

0.927, gamma (Eq. 25) leads to ρTH _GiθPC =
8

8−1
(
1− 1

6.709
)
=

0.973, and delta (Eq. 26) to ρα_DiθPC =
8

8−1
(
1− 1

6.709
)
= 0.973.

If the estimates based on G or D are used as a reference value,

the traditional coefficient theta is deflated by 54%, and, if RPC is
used, 52%. If the raw score (θX) would be used as a manifestation
of the latent ability instead of θPC, based on the estimates of
correlation in Table 4, the magnitudes of the latter estimates
would be ρTH_RPCiX = 0.869, ρTH_GiX = 0.961, and ρTH _Di X =

0.937.

Deflation-Corrected Omega and Rho
The traditional coefficients omega and rho use maximum
likelihood estimates of factor score (θML) as the manifestation
of the latent ability and factor loadings (λi) as the weighting
element in the calculation. Loadings and corresponding statistics
related to alternative estimators are collected in Tables 6A,B.
As with principal component analysis, because there are no tied

TABLE 6B | Statistics for calculating rho based on Table 6A.

Item (g) (λi )2/(1–(λi )2) (DgθML)2/
(1–(DgθML)2)

(GgθML)2/
(1–(GgθML)2)

(RPCgθML)2/
(1–(RPCgθML

2)

g1 0.082 7.591 7.591 2.232

g2 0.073 10.883 10.883 2.202

g3 0.285 99.251 99.251 12.545

g4 0.093 3.894 3.894 1.971

g5 0.012 1.182 1.182 0.711

g6 0.048 6.834 6.834 1.494

g7 0.026 2.476 2.476 0.771

g8 0.355 70.679 70.679 11.776

SUM 0.974 202.791 202.791 33.701
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TABLE 7 | Summary of estimates of reliability.

Traditional estimate DCERs with the traditional score DCERs with the raw score

Form Score type (θ) R D G RPC D G RPC

Alfa Raw score (θX ) 0.245 0.856 0.885 0.790 0.856 0.885 0.790

Theta Principal component score (θPC) 0.444 0.973 0.973 0.927 0.937 0.961 0.869

Omega Factor score (θML) 0.422 0.976 0.976 0.940 0.947 0.967 0.895

Rho Factor score (θML) 0.493 0.995 0.995 0.971 0.961 0.979 0.929

pairs between the factor score and items, the estimates by G and
D are identical.

By Eq. (3), the traditional coefficient omega total is calculated
as follows: ρω = ρω_λiθML =

(2.294)2

(2.294)2+7.204
= 0.422 and rho

by Eq. (4): ρMAX = ρMAX_λiθML =
1

1+1/0.974 = 0.493. The
deflation-corrected omega using RPC as the weight factor
(Eq. 27) and the factor score (θML) as the manifestation
of the latent ability leads us to an estimate ρω_RPCiθML =

(6.475)2

(6.475)2+2.661
= 0.940 and the corresponding deflation-

corrected rho (Eq. 30) is ρMAX_RPCiθML =
1

1+1/33.701 = 0.971.
Similarly, deflation-corrected omega using gamma
(Eq. 28) leads to ρω_GiθML =

(7.291)2

(7.291)2+1.302
= 0.976 and

the corresponding deflation-corrected rho (Eq. 31) is
ρMAX_GiθML =

1
1+1/202.791 = 0.995. Deflation-corrected omega

using delta (Eqs. 29) leads to identical estimates in comparison
with the estimates by gamma:ρω_DiθML =

(7.291)2

(7.291)2+1.302
= 0.976

and the corresponding deflation-corrected rho (Eq. 32) is
ρMAX_DiθML =

1
1+1/202.791 = 0.995.

The magnitude of the estimates based on the form of maximal
reliability and G and D as the weighting factor (0.995), feel
intuitively overestimates. This is reasoned by the fact that the
formula of maximal reliability is sensitive for high values of
loadings. With very high values of loading—as here G = D = 0.995
for item g3 referring to a fact that after the test takers are ordered
by the factor score variable, 99.5% of the test takers are in the
same order in both item and score—the statistic λ2

i
/
(1− λ2

i )
may give an artificially high value leading to artificially high
estimate of reliability. However, if the estimates based on G or D
are used as a reference value, the traditional coefficient omega and
rho are deflated by 57 and 50%, and, if RPC is used, 55 and 49%,
respectively. If the raw score (X) would be used as a manifestation
of the latent ability instead of θML, the magnitudes of the DCERs
based on omega would be ρω_RPCiX = 0.895, ρω_GiX = 0.967,
and ρω_DiX = 0.947 and DCERs based on rho ρMAX_RPCiX =

0.929, ρMAX_GiX = 0.979, and ρω_Di X = 0.961.
The estimates of reliability above are summarized in Table 7.

Different interpretations of the varying estimators are discussed
in the next section. Anyhow, just by comparing the overall level
of magnitudes of the traditional estimates and the estimates by
different DCERs we may conclude that all the DCERs seem
to refer to a reliability which is notably higher than the ones
indicated by the traditional estimators. If one uses the raw
scores, instead of ρα = 0.245, the true reliability seems to be
around 0.914 (on average), varying between 0.790 and 0.979

depending on which form is used as the base and which deflation-
corrected estimator of correlation is used as the weighting
element. Knowing the interpretation of RPC, G and D, the high
magnitude of reliability by DCERs refer to the fact that the score
is highly capable of ordering the test takers in a logical order by
their latent ability. Of the estimators, the ones based on coefficient
alpha are the most conservative and the ones based on rho the
most liberal. In this case, the estimators of correlation based on
probability (G and D) tend to lead somewhat higher estimates
than the one based on covariance (RPC). This is not a general
characteristic though.

Different Interpretation of Different
Estimators of Reliability
The article did not tackle the issue of differences between
the estimators of correlation. Notably, PMC, RPC, and G
(as well as D) discussed in the article indicate different
aspects of the correlation: PMC estimates the observed
correlation between two variables, and this is radically
deflated in the measurement modeling settings. RPC
estimates the inferred correlation of two unobservable
continuous variables by their ordinal manifestations. G and
D estimate the probability that the test takers are in the
same order both in an item and a score. The outcome of
different estimators of reliability may, then, indicate different
viewpoints of reliability.

Chalmers (2017) is skeptical of the usefulness of coefficients
using RPC in practical settings because RPC refers to correlation
between unobservable and unreachable variables and, therefore,
the outcome may be useless in the factual interpretation of
the observed score. He proposes that using RPC leads to
infer something about theoretical reliability. However, some
estimators of reliability such as ordinal alpha and theta
by Zumbo et al. (2007; see also Gadermann et al., 2012),
factually, use RPC in the estimation. Comparing the estimators
related to RPC in Eqs. (21), (24), and (27) and (39) to
(43) with ordinal alpha or ordinal theta based on the
matrix of inter-item RPCs instead of matrix of PMCs may
be worth studying.

Estimators based on G and D refer to observed variables
and, therefore, the outcome may be more useful than those
by RPC in the factual analysis of the observed score. Knowing
the interpretation of G and D in the measurement settings (see
Metsämuuronen, 2021a,b), estimators (22) and (23), (25) and
(26), (31) and (32), and (44) to (48) reflect the average proportion
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TABLE 8 | General typological characteristics of selected options of DCERs.

Weight wi

RPC G and D

Base General characteristics • Reflects latent reliability; not strictly
related to the observed score nor
observed items
• Leads to theoretical interpretation of

reliability
• Based on covariance
• Suitable for binary and polytomous

items
• Not simple to calculate

• Reflects reliability of the observed score
• Leads to practical interpretation of

reliability
• Based on probability
• D is more conservative than G
• Suitable for binary items and

polytomous items with < 4 categories
(D) or with < 5 categories (G)
• Simple to calculate even manually

Alpha • Always underestimates population reliability
• Very conservative nature
• Gives estimates even with small sample sizes
• Reaches the perfect reliability (REL = 1) when

wi = 1, and σi = σj

k
k−1

1−

k∑
i=1

σ2
i(

k∑
i=1

σi×RPCiθ

)2

 k
k−1

1−

k∑
i=1

σ2
i(

k∑
i=1

σi×Giθ

)2


Theta • Maximizes alpha

• Conservative nature
• Gives estimates even with small sample sizes
• Reaches the perfect reliability (REL = 1) when wi = 1

k
k−1

1− 1
k∑

i=1
RPC2

iθ

 k
k−1

1− 1
k∑

i=1
G2

iθ


Omega • Estimates always higher than alpha

• Least conservative nature
• Gives estimates even with small sample sizes
• Reaches the perfect reliability (REL = 1) when wi = 1

(
k∑

i=1
RPCiθ

)2

(
k∑

i=1
RPCiθ

)2

+

k∑
g=1

(
1−RPC2

iθ

)
(

k∑
i=1

Giθ

)2

(
k∑

i=1
Giθ

)2

+

k∑
g=1

(
1−G2

iθ

)

Rho (maximal reliability) • Maximizes omega
• Liberal nature; may overestimate reliability with

small sample sizes
• Cannot be calculated if deterministic patterns

(λ = 1) even in one item
• Cannot reach the perfect reliability (REL = 1)
• Not the best option for small samples

1

1+ 1
k∑

i=1

(
RPC2

iθ

/(
1−RPC2

iθ

))
1

1+ 1
k∑

i=1

(
G2

iθ

/(
1−G2

iθ

))

of logically ordered test takers in all items as a whole. In this,
the estimators based on D are more conservative than the ones
based on G.

A relevant question is, how different is the interpretation of
the estimates by G (or D) in comparison to those by PMC or
RPC? Knowing that G estimates the probability that the test takers
are in the same order in the item and in the score, the ultimate
magnitude of reliability by the estimators based on G would
indicate that all items discriminate the higher-performing test
takers from the lower-performing test takers in a deterministic
manner after the test takers are ordered by the score. The same
interpretation would be obtained when using RPC except that
RPC can reach the value RPC = 1 only approximatively. From
this viewpoint, the deflation-corrected estimators in Eqs. (24)
to (32) related to RPC, G, and D seems to refer strictly to the
discrimination power of the score. This makes sense from the
standard error of measurement viewpoint. Notably, under the
condition of deterministic item discrimination, the estimators
using PMC cannot reach the perfect reliability because the
estimates by PMC cannot detect the deterministic correlation
unless the number of categories is equal in the variables.
More studies and theoretical work in the interpretation of the
estimators would enrich us.

Some typological characteristics of different estimators of the
estimators described in the article are summarized in Table 8.
Notably, again, RPC, G, and D are not the only options for
DCERs; further studies related to such estimators as r-bireg- and
r-polyreg correlations, G2, D2, as well as attenuation-corrected Rit
and eta, as examples, would be beneficial (see footnote 6).

Known Limitations of the Treatment
The empirical section offers, obviously, just examples of what
kind of effect would be obtained if an estimator with smaller
quantity of deflation is used as the linking factor between the
latent variables and the item. Wider comparisons of different
estimators would benefit us to select most suitable estimators of
correlation as the linking factors for different variables, estimators
of reliability and different type of datasets. Systematic simulations
also in this area would enrich us.

The DCERs in the article were given just as examples—
their characteristics were not studied in-depth. Specifically, the
estimators based on omega and rho are, by far, theoretical options
in the settings related to factor analysis and structural equation
modeling because they may require new procedures where the
outcome of factor loadings would be (essentially) RPC or G
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instead of (essentially) PMC. Notably, the current procedures of
using RPC in EFA and SEM may start by using RPC in forming
the correlation matrix, but the outcome of the loadings seems to
be still, essentially, PMC. Also, Chalmers (2017) critique against
the use of RPC in estimating reliability is worth noting. More
studies in this regard would benefit us.

The study did not tackle the question of possible
overestimation of reliability when using deflation-corrected
estimators of reliability. Assuming that RPC does not
overestimate the true correlation, it may be relevant to conclude
that a deflation-corrected estimator based on RPC such as Eqs.
(21), (24), (27), and (30) would not overestimate reliability.
What would be the mechanism for overestimation? It may
be possible that the estimators based on rho overestimate
the reliability in the real-world settings; this would be a
reasonable consequence of the results by Aquirre-Urreta et al.
(2019) that rho may overestimate the true reliability with
finite samples familiar in real-world testing settings with small
or smallish number of test takers. From this viewpoint, the
estimators based on alpha, theta and omega seem to give more
conservative estimates. Theoretical and empirical studies in the
area would be beneficial.

Finally, in several places in the article a loose wording
concerning the deflation in the estimates of reliability was
described as “remarkable” or “notable.” Based on the behavior of
PMC, it is expected that the effect of changing PMC with better
behaving estimators of correlation in the estimators of reliability
is “remarkable” or maybe even “dramatical” when the test is very
easy or very demanding to the target group or with tests with
incremental difficulty levels as are usual in the educational testing
settings; PMC is severely deflated in these cases. Also, with the
tests of incremental difficulty level where part of the test items
may be very easy and part may be very demanding as is usual
in the achievement testing, we may expect remarkable difference
between the traditional estimators and deflation-corrected ones.
However, when all items are of medium difficulty level, the effect
may not be as notable. Wider empirical studies and simulations
would enrich us in this regard.
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