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Growth mixture models are regularly applied in the behavioral and social sciences
to identify unknown heterogeneous subpopulations that follow distinct developmental
trajectories. Marcoulides and Trinchera (2019) recently proposed a mixture modeling
approach that examines the presence of multiple latent classes by algorithmically
grouping or clustering individuals who follow the same estimated growth trajectory
based on an evaluation of individual case residuals. The purpose of this article was
to conduct a simulation study that examines the performance of this new approach
for determining the number of classes in growth mixture models. The performance of
the approach to correctly identify the number of classes is examined under a variety of
longitudinal data design conditions. The findings demonstrated that the new approach
was a very dependable indicator of classes across all the design conditions considered.

Keywords: simulation study, growth mixture modeling, latent growth curve models, individual case residuals,
unobserved heterogeneity

INTRODUCTION

Growth mixture models are frequently used in the behavioral and social sciences to identify
unknown heterogeneous subpopulations in longitudinal data that may each have their own
individual growth trajectory. These trajectories can be specified to represent both linear and
nonlinear patterns of growth in order to better capture group differences in development and
change over time that may be present in the studied processes (Muthén and Shedden, 1999: Grimm
and Marcoulides, 2016). For example, an application of growth mixture modeling to longitudinal
data on freshman college drinking behaviors detected five different drinking trajectories that
markedly fluctuated in their average number of drinks per week and their change over the course of
the semester (Greenbaum et al., 2005). By identifying the different drinking growth trajectories, the
researchers were subsequently able to classify individuals that were more likely to develop future
drinking habits that were problematic.

Recently, Marcoulides and Trinchera (2019) introduced a new modeling method designed to
identify groups or classes of individuals that follow similar longitudinal growth trajectories. The
method assumes the existence of a fixed but unknown number of latent classes, each of which
has a different growth trajectory that is algorithmically determined from the data by clustering
individuals with similar patterns of growth based on the individual case residuals (ICRs) (Bollen
and Arminger, 1991; Raykov and Penev, 2001). The identified classes essentially represent latent
longitudinal segments or strata in which variability is characterized by differences across individuals
in the level (intercept) and shape (slope) of their growth trajectories and their corresponding ICRs
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(Raykov and Penev, 2001, 2002; Haviland et al., 2008;
Marcoulides and Trinchera, 2019). Aligned with Wood et al.’s
(2015) recommendations that, while there is no truly correct
model, we can determine which models are informative, the
newly proposed mixture modeling approach was demonstrated
as a viable alternative for detecting both the number of
classes and the shape of their individual growth trajectories
(Marcoulides and Trinchera, 2019).

Traditional growth modeling approaches have been criticized
because the determination of the best number of classes
must be inferred by the researcher on the basis of their
subjective assessment of various model fit criteria (Nagin,
2005). Specifically, traditional growth mixture modeling
approaches begin with a fundamental assumption that
observed growth trajectories may be comprised of two or
more subpopulations, and then use criteria such as the
Akaike Information Criterion (AIC) index, the Bayesian
Information Criterion (BIC) index, the Vuong-Lo-Mendell-
Rubin test, or the bootstrapped parametric likelihood ratio
test, and apply relative fit comparisons between fitted models
with k versus k + 1 groupings in order to select the best
number of latent classes (Muthén and Muthén, 2014). Unlike
traditional growth mixture modeling approaches, in the
new modeling approach introduced by Marcoulides and
Trinchera (2019) the number of classes are algorithmically
determined directly from the data on the basis ICRs (see
additional details below).

Although Marcoulides and Trinchera (2019) demonstrated
the valuable capabilities of their algorithmic approach and
of automating growth mixture model fitting processes with
empirical longitudinal data, to date the performance of their
approach has not been systematically evaluated. Thus, it remains
unclear how well the new approach performs under different
growth mixture modeling design conditions, and this ambiguity
may ultimately hinder its future use in finite mixture modeling
analyses. As model selection in growth mixture modeling is a
major concern and has become a highly debated challenge for
its effective implementation (Kim, 2014; Liu and Hancock, 2014;
He and Fan, 2019), additional work on this topic is clearly
needed. To fill this gap, the current research systematically
evaluates the performance of the newly proposed Marcoulides
and Trinchera (2019) approach to accurately select the correct
model (also known as class enumeration) in growth mixture
modeling situations. Using Monte Carlo simulation techniques,
the current study examines to what extent the newly proposed
approach can successfully select the correct latent class model
under a variety of longitudinal data design conditions with
varying class characteristics and sample sizes. We focus on
a number of different growth trajectories with specific model
structures and restrict our generalizations of results to the specific
conditions we considered.

MODEL NOTATION AND SPECIFICATION

A common growth model assumes change in a set of consecutive
observations on a variable y, with either equally or unequally

spaced assessments at times t (Raykov and Penev, 2014)1. If we
assume a mean vector µ and the covariance matrix 6 of the
observed variables y are a function of the 3 factor loadings, the
η latent variable means, the latent 9 variance-covariance matrix,
and a 2 residual variance-covariance matrix (e.g., Raykov and
Marcoulides, 2006), the model can be specified as:

6 = 393′ + 2 (1)

µ = 3η (2)

Then assuming uncorrelated residuals and homoscedasticity, we
can define

3 =


1 t1
1 t2

1
...

1 tT

 (3)

9 =

[
σ2

η0
ση0η1

ση0η1 σ2
η1

]
(4)
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 σ2
e 0 0

0
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0 0 σ2
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where the number of measurement occasions T at times t1 to
tT , residual variance σ2

e , mean η0 and variance σ2
η0

of the latent
intercept, mean η1 and variance of the latent slope σ2

η1
, and

covariance of the latent intercept-slope ση0η1 . One approach that
is frequently used to estimate this growth model is via the latent
basis growth model (also commonly referred to as the level and
shape model). This approach is frequently used because it often
results in more optimal functional forms of the observed data
(Raykov and Marcoulides, 2006; Kwok et al., 2010). To apply a
latent basis growth model, the value of t1 is fixed to 0 so that
the initial status of y is the reference point and the last occasion
tT is fixed to 1, while all other values are freely estimated so as
to capture the change between the first and last measurement
occasions (McArdle, 1988; Raykov and Marcoulides, 2006).

A variety of other choices are also possible for the values of
t1 through tT all of which may be accomplished by changing the
matrix of factor loadings 3 (Marcoulides and Khojasteh, 2018).
For example, the linear intercept-slope model would fix the value
of t1 to 0, the value of t2 to 1, t3 to 2, and so on in increasing
order, up to the last measurement occasion T. In addition to
decisions about the structure of the factor matrix 3, choices
about the residual matrix 2 can also be made when fitting latent
growth models; although the convention of assuming a single
fixed residual variance (σ2

e ) over time and fixed zero covariances

1For simplicity in model specification, we assume that there are not any necessary
covariates to be included, although we could of course extend the model to include
covariates.
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between measurement occasions is the most commonly adopted
(Marcoulides, 2019).

If in the population there are K number latent classes with
unknown sizes (where each class is assumed to be mutually
exclusive and collectively exhaustive), then the model in Eqs 1–
6 can be subsequently specified for k = 1,. . ., K latent classes. The
traditional growth model is thereby extended and allows latent
classes with potentially differing developmental trajectories to
be considered (for additional technical details see, Nagin, 2005;
Muthén and Muthén, 2014; Marcoulides and Trinchera, 2019).
These models examine how the classes differ and whether there
is also individual intercept and slope variability in the growth
trajectory within each class.

Marcoulides and Trinchera (2019) proposed an iterative
approach for algorithmically detecting unobserved heterogeneity
in latent growth models as given in Eqs 1–6 using ICRs that
represented the differences between a person’s observed score
and their predicted score, which is determined via the Bartlett
factor score method (Bollen and Arminger, 1991; Coffman
and Millsap, 2006; Raykov and Penev, 2014). The algorithm
utilized a closeness measure to determine the distance between
observations and the global and each of their corresponding local
models. This approach assumes if a latent class exists, then all
the observed scores in within the same latent class would follow
similar growth trajectories and have similar ICRs based on the
global model. Thus, if an observed score was correctly assigned
to the appropriate latent class, the ICR with respect to the local
model that was determined for that particular latent class would
be minimized compared to any of the other possible local models.

Marcoulides and Trinchera (2019) applied a closeness measure
(CMik) for individual i in local latent growth model for class k that
was defined as:

CMik =

√√√√√√
∑J

j=1
∑T

t=1

[
ε2
itjk/com(ηjk,ytj)

]
∑N

i=1
∑J

j=1
∑T

t=1

[
ε2
itjk/com(ηjk,ytj)

]
N − 2

(7)

where T is the number of y measured variables for individual
i, J is the number of factors in the growth model (e.g., the
intercept-slope model estimates the intercept and the slope
factors, therefore J is equal to 2), N is the total number of
observations, ε2

itjk is the ICR for observation i for the t-th variable
in the modeled factors in the local growth model k. Finally,
com(ηjk, ytj) is the communality estimate which can be computed
as, for each latent class k, the mean of the squared correlation
between the measured variable y and its corresponding estimated
latent variable score.

Based on the size of this closeness measure CMik for each
individual relative to each local model, individuals were assigned
to a particular local growth model based on their smallest
CMik value. The individuals that comprise the latent classes
was then updated and a set of potentially new local growth
models was estimated. This process continues iteratively until
the stopping criterion, that <5% of the individuals are changing
their class membership from one iteration to the next, was
met. Once this class enumeration process stabilizes, the final

local growth models were estimated, enabling the parameter
estimates and growth trajectories for each latent class could
be evaluated. This residual-based algorithm for identifying and
modeling unobserved heterogeneity in latent growth models
was shown to both identify groups of individuals that follow
similar growth trajectories and simultaneously determine their
class-specific parameters.

METHOD

Monte Carlo Data Simulation
In order to systematically evaluate the performance of the
Marcoulides and Trinchera (2019) approach to accurately select
the correct model in growth mixture modeling situations, we
simulated data using various longitudinal data design conditions.
We simulated data using the Monte Carlo simulation techniques
available in Mplus (Muthén and Muthén, 2014). The Marcoulides
and Trinchera (2019) approach was implemented using the
software program R (R Development Core Team, 2011) using the
lavaan package (Rosseel, 2012) to fit the growth models2.

Based on a detailed review of the literature on past growth
mixture modeling simulation studies, we fixed a number of
factors across all data design conditions while others were varied
(e.g., Lubke and Muthén, 2005, 2007; Nylund et al., 2007; Wang
and Bodner, 2007; Peugh and Fan, 2012; He and Fan, 2019).
Parameters that were fixed in the simulations included the
number of measurement occasions, the degree of class separation,
the mixing ratio, the variance and covariance for the intercept and
slope, and the residuals for the repeated measurement occasions.
These fixed design conditions were set up in accordance with
those most commonly adopted in previous simulation studies.
Specifically, treating the studies by Nylund et al. (2007) and He
and Fan (2019) as a general guide, four repeated measurement
occasions were used, the mixing ratio was set at N/k so that
each class had the same number of observations, the variance
and covariance among the growth factors were set at σ2

η0i
0.25,

σ2
η1i

0.04, and ση0iη1i 0, the residual structure was specified at
σ2

1 0.15, σ2
2 = 0.20, σ2

3 = 0.20, and σ2
4 = 0.35, while the degree of

class separation was set at a Mahalanobis Distance (MD) value
of 1. Although many growth models are frequently fit following
the convention of assuming that there is a single residual variance
over time, imposing such a constraint on residual variance is quite
arbitrary. The fixed values of the residual variances selected in this
study were based on residual structures commonly encountered
in empirical longitudinal data (as suggested by Peugh and Fan,
2012 and He and Fan, 2019). In terms of the selected class
separation, it is important to note that although past research
has suggested that the degree of class separation quantified using
MD should generally be larger than 2, to accurately identify latent
classes in growth mixture models even when there is a relatively
large sample size (e.g., Lubke and Muthén, 2007; Tolvanen, 2007;
Tofighi and Enders, 2008; Peugh and Fan, 2012; Liu et al., 2014),

2The complete R source code and the description of the various steps necessary
to implement the proposed iterative algorithm are available in Marcoulides and
Trinchera (2019).
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in this study we elected to use a fixed class separation level of
MD = 1, a value that is not expected to provide well-separated
classes. This small separation level was therefore selected in order
to examine the performance of the new approach under what
were considered by Tofighi and Enders (2008) to be the most
severe low class separation conditions.

Parameters that were varied in the simulations included the
number of true classes in the population, the sample size,
and the shapes of the latent growth trajectories. These design
elements were also selected based on previous simulation studies
that had identified each element as potentially impacting class
enumeration in growth mixture modeling (Nylund et al., 2007;
Peugh and Fan, 2012). Specifically, the number of true classes for
the population were stipulated to range from two to four classes,
the sample sizes were set at N = 180, N = 540, and N = 1080
observations (to reflect small, medium, and large samples), and
the shapes of the latent trajectories were specified to reflect
different-intercept-same-slope and different-intercept-different-
slope growth trajectory conditions.

A total of 100 replications were drawn for each population
model and design condition3. Although the number of
replications is generally selected arbitrarily, we followed the
recommendations provided by He and Fan (2019) and Kim
(2014) who indicated that 100 replications are adequate to
provide sufficient reliability in the summary information
calculated in growth mixture modeling studies, especially
those expected to have high convergence rates. Similar
recommendations with respect to the number of replications
were also given by Nylund et al. (2007), particularly when the
algorithmic burden that might be required to calculate the
residuals and perform the class enumerations is extensive4.

To evaluate the accuracy of the Marcoulides and Trinchera
(2019) approach, a performance rate measure was defined as
the percentage of the total replications where the true number
of latent classes was correctly identified. High percentage values
would indicate that the approach was able to correctly identify the
true class growth model that generated the data. The percentage
rate measure can be considered similar to ones that have been
used in other simulation studies that were also trying to detect
the true number of classes (e.g., Nylund et al., 2007; Tofighi
and Enders, 2008). As indicated by Nylund et al. (2007), because
classes are habitually used as a key characteristic for interpreting
results and making inferences, the accurate determination of
the number of classes in mixture modeling is considered
the most critical issue in the application of these models.

3The programming code for the simulated data is available on the first author’s
website: https://sites.google.com/umn.edu/marcoulides-data-analytics/data-code.
4We note that effectively measuring algorithmic efficiency is surprisingly difficult
(Kreiberg et al., 2020). For example, one can count the number of iterations and/or
evaluate estimation time until a solution is reached. However, the specific hardware
processor used and allocated resources assigned at any time the processor is busy
with ongoing processes are key components that ultimately lead to variation in
the number of iterations and estimation time. Thus, different hardware processors
may be expected to provide diverse iteration and timing results. In this study, using
the 64-bit operating system on an Intel Core i7-8700 CPU at 4.6 Ghz the iteration
and estimation timing results ranged from a low of 92 iterations in 23 s to a high
of 671 iterations in 2820 s. The iteration and timing results were longer for more
complex models with larger samples.

Accordingly, the goal of this simulation study is to investigate
the performance of the new approach to correctly identify the
number of classes examined using the above described design
conditions. We also note that because the new approach is
entirely automated, we do not compare its performance to
traditional growth mixture modeling approaches. This is because
in traditional approaches the determination of the number of
classes is based on subjectively applying various fit criteria that
regularly provide divergent results (e.g., Nylund et al., 2007; He
and Fan, 2019). Thus there is to date no generally accepted
fit criteria for determining the correct number of classes in
traditional approaches, and oftentimes the best fit criteria may
highly depend on the specific design conditions (Grimm et al.,
2017). Given that model selection in traditional growth mixture
modeling remains a major concern and the most prominent
and disputed challenge for its application (He and Fan, 2019),
in this simulation study we only investigate the performance of
the proposed new approach to correctly identify the number of
classes examined without any comparison to other methods. Such
a comparison between methods would ultimately be problematic
and akin to comparing the performance of an unsupervised data
mining technique to a supervised technique – one approach
is entirely algorithmically driven and the other involves a user
interfacing with the approach.

RESULTS

Table 1 provides the proportion of replications where the true
latent class model was correctly identified in the simulated
longitudinal data designs. The corresponding standard errors for
the proportion of replications where the latent class model was
correctly identified are also provided5. An examination of the

5As indicated by Nylund et al. (2007) and Muthén and Muthén (2002), the
ability to recover population parameters that generated the simulated data can
additionally be evaluated by examining coverage estimates (with the general rule
of thumb that good coverage estimates should be between 0.91 and 0.98). While
coverage values are not reported in the results presented here, they were all found
to be very good.

TABLE 1 | Percentage rate where the true number of latent classes was
correctly identified.

Sample size (N) 180 540 1080

Model 1 Number of classes (K)

2 80 (0.029) 95 (0.009) 98 (0.004)

3 75 (0.032) 92 (0.010) 96 (0.006)

4 60 (0.036) 90 (0.012) 95 (0.006)

Model 2 Number of classes (K)

2 85 (0.026) 96 (0.008) 99 (0.003)

3 81 (0.029) 94 (0.010) 96 (0.006)

4 72 (0.033) 93 (0.011) 96 (0.006)

Model 1, different-intercept-same-slope growth trajectories.
Model 2, different-intercept-different-slope growth trajectories.
Values in parentheses correspond to the standard errors of the percentage rates
where the true model was correctly identified.
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various percentage rates and their standard errors displayed in
Table 1 indicates multiple important findings. First, it is clear
that this proposed approach generally performed consistently
well across all the examined conditions. Also noteworthy to
mention is the fact that although we elected to examine the
approach using what is generally considered a severe low class
separation condition, class separation did not appear to impact
the detection of latent classes. Indeed, given the obtained results
under the examined low class separation condition, we would
expect the approach to perform even better in situations with
well-separated classes.

Second, the overall performance accuracy of the approach
was to some degree influenced by sample size. For example,
with small sample sizes (N = 180) the average percentage rates
were consistently lower (in the range of 60–85%) than when
models with medium (N = 540) and large (N = 1080) sample
sizes were analyzed (in the range of 90–99%). This same pattern
of results was observed in models where the shapes of the
latent trajectories were specified to reflect different-intercept-
same-slope and models with different-intercept-different-slope
growth trajectories, although those with different-intercept-
different-slope growth trajectories appeared to be slightly easier
to accurately detect.

Third, the number of classes was also an important factor
that influenced the overall performance rate of the approach.
Models with a larger number of latent classes were more
difficult to accurately detect, although the level of accuracy of
the approach increased considerably when the same models
were analyzed with medium and large sample sizes. This same
pattern of results concerning the influence of the number of
classes was again observed in models where the shapes of the
latent trajectories were specified to reflect different-intercept-
same-slope and models with different-intercept-different-slope
growth trajectories. We also note that there was not a single
instance in which the algorithm over-extracted the number of
classes. Overall, the examined approach showed a consistently
high percentage for correctly identifying the number of latent
classes when the sample sizes were large (ranging from a low of
90% to a high of 99%). With smaller sample sizes, the percentage
for correctly identifying the number of latent classes was much
lower, ranging from a low of 60% to a high of 85%.

DISCUSSION

This article examined the performance of a new algorithmic
approach that can be used to identify the presence of
unknown latent classes in growth mixture models. The algorithm
is particularly useful to researchers interested in studying
developmental processes where there may be unobserved
differences in development, or change over time in longitudinal
data. The approach algorithmically clusters individuals who
follow the same estimated growth trajectory by evaluating their
ICRs. Although the benefits of using the new approach had
been previously illustrated using empirical data by Marcoulides
and Trinchera (2019), its performance under a variety of data
design conditions had not been systematically evaluated. Thus,

it was uncertain how well the new approach would perform
under different growth mixture modeling design conditions. As
model selection in growth mixture modeling is one of the most
prominent and debated challenge for its effective application,
additional work on this topic was needed.

Using Monte Carlo simulation techniques, the current study
examined to what extent the newly proposed approach could
successfully select the correct latent class model under a variety
of longitudinal data design conditions with contrasting class
characteristics and sample sizes. We generated data under a
range of different modeling conditions that included both fixed
and variable parameters, all of which were set up in accordance
with those most commonly adopted in past simulation studies
on class enumeration in growth mixture modeling. Parameters
that were fixed in the simulations included the number of
measurement occasions, the degree of class separation, the
mixing ratio, the variance and covariance for the intercept and
slope, and the residuals for the repeated measurement occasions.
Parameters that were varied included the number of true classes
in the population, the sample size, and the shapes of the latent
growth trajectories.

Overall, the proposed approach was found to perform
consistently well in detecting the true latent classes across all
the examined conditions, even those involving severe low class
separation conditions, which past research has shown can be
a particularly problematic condition (Peugh and Fan, 2012).
Although the overall accuracy of the approach was to a degree
influenced by small sample sizes, its performance improved when
medium and large sample sizes were analyzed. Further studies
are still necessary to bring about a better understanding of the
sensitivity of the approach to small sample sizes, but for now it
is evident that medium to large sample sizes can be effectively
studied. This same pattern of results was observed in models
where the shapes of the growth trajectories were specified to
include different-intercept-same-slope and different-intercept-
different-slope trajectories. Thus, it would appear that in general
the shapes of the latent trajectories do not influence the detection
of heterogeneous classes. The number of classes was also found to
be a factor that impacted the precision of the approach, although
overall accuracy again increased with medium and large sample
sizes. In summary, the results of this study demonstrated the
excellent capabilities of the Marcoulides and Trinchera (2019)
approach and showed that it can be effectively used as a reliable
and accurate tool for determining the correct number of classes
in growth mixture models.

Although we have only touched the surface of the different
types of growth mixture modeling designs on which the
new approach might be applied in order to address some
developmental inquiries, the findings of this study are very
promising. As one should be with all simulation studies, we must
also be cautious about generalizing these findings to conditions
beyond those specifically examined in this study. At the very least,
we hope that researchers will contemplate using the approach in
future finite mixture modeling analyses. The potential utility of
the new approach for further understanding group differences in
developmental processes and detecting unobserved heterogeneity
is excellent and we encourage researchers to examine further the

Frontiers in Psychology | www.frontiersin.org 5 February 2021 | Volume 12 | Article 618647

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-618647 February 23, 2021 Time: 10:39 # 6

Marcoulides and Trinchera Detecting Unobserved Heterogeneity

application of this approach in their own research. An important
challenge for the foreseeable future will involve applying this new
method to diverse data conditions and models to further establish
its effectiveness as a mixture modeling tool.
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