
fpsyg-11-574366 December 14, 2020 Time: 19:25 # 1

ORIGINAL RESEARCH
published: 18 December 2020

doi: 10.3389/fpsyg.2020.574366

Edited by:
Laura Macchi,

University of Milan-Bicocca, Italy

Reviewed by:
Morris Siu Yung Jong,

The Chinese University of Hong Kong,
China

Dan Cai,
Shanghai Normal University, China

*Correspondence:
Bert Jonsson

bert.jonsson@.umu.se

Specialty section:
This article was submitted to

Educational Psychology,
a section of the journal
Frontiers in Psychology

Received: 19 June 2020
Accepted: 30 November 2020
Published: 18 December 2020

Citation:
Jonsson B, Granberg C and

Lithner J (2020) Gaining Mathematical
Understanding: The Effects

of Creative Mathematical Reasoning
and Cognitive Proficiency.

Front. Psychol. 11:574366.
doi: 10.3389/fpsyg.2020.574366

Gaining Mathematical
Understanding: The Effects of
Creative Mathematical Reasoning
and Cognitive Proficiency
Bert Jonsson1,2* , Carina Granberg1,2 and Johan Lithner2,3

1 Department of Applied Educational Science, Umeå University, Umeå, Sweden, 2 Umeå Mathematics Education Research
Center, Umeå, Sweden, 3 Department of Science and Mathematics Education, Umeå University, Umeå, Sweden

In the field of mathematics education, one of the main questions remaining under
debate is whether students’ development of mathematical reasoning and problem-
solving is aided more by solving tasks with given instructions or by solving them without
instructions. It has been argued, that providing little or no instruction for a mathematical
task generates a mathematical struggle, which can facilitate learning. This view in
contrast, tasks in which routine procedures can be applied can lead to mechanical
repetition with little or no conceptual understanding. This study contrasts Creative
Mathematical Reasoning (CMR), in which students must construct the mathematical
method, with Algorithmic Reasoning (AR), in which predetermined methods and
procedures on how to solve the task are given. Moreover, measures of fluid intelligence
and working memory capacity are included in the analyses alongside the students’ math
tracks. The results show that practicing with CMR tasks was superior to practicing with
AR tasks in terms of students’ performance on practiced test tasks and transfer test
tasks. Cognitive proficiency was shown to have an effect on students’ learning for both
CMR and AR learning conditions. However, math tracks (advanced versus a more basic
level) showed no significant effect. It is argued that going beyond step-by-step textbook
solutions is essential and that students need to be presented with mathematical
activities involving a struggle. In the CMR approach, students must focus on the relevant
information in order to solve the task, and the characteristics of CMR tasks can guide
students to the structural features that are critical for aiding comprehension.

Keywords: creative mathematical reasoning, cognitive proficiency, working memory, fluid intelligence, rote
learning

INTRODUCTION

Supporting students’ mathematical reasoning and problem-solving has been pointed out as
important by the National Council of Teachers of Mathematics (NCTM; 26T1). This philosophy
is reflected in the wide range of mathematics education research focusing on the impact different
teaching designs might have on students’ reasoning, problem-solving ability, and conceptual

1https://www.nctm.org/26T
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understanding (e.g., Coles and Brown, 2016; Lithner,
2017). One of the recurrent questions in this field is
whether students learn more by solving tasks with given
instructions or without them: “The contrast between the
two positions is best understood as a continuum, and both
ends appear to have their own strengths and weaknesses”
(Lee and Anderson, 2013, p. 446).

It has been argued that providing students with instructions
for solving tasks lowers the cognitive demand and frees up
resources that students can use to develop a conceptual
understanding (e.g., worked example design; Sweller et al.,
2011). In contrast, other approaches argue that students
should not be given instructions for solving tasks; one example
is Kapur (2008, 2010) suggestion of “ill-structured” task
design. With respect to the latter approach, Hiebert and
Grouws (2007) and Niss (2007) emphasize that providing
students with little or no instruction generates a struggle
(in a positive sense) with important mathematics, which in
turn facilitates learning. According to Hiebert (2003) and
Lithner (2008, 2017), one of the most challenging aspects
of mathematical education is that the teaching models used
in schools are commonly based on mechanical repetition,
following step-by-step methods, and using predefined
algorithms—methods that are commonly viewed as rote
learning. Rote learning (i.e., learning facts and procedures)
can be positive, as it can reduce the load on the working
memory and free up cognitive resources, which can be used
for more cognitively demanding activities (Wirebring et al.,
2015). A typical example of rote learning is knowledge
of the multiplication table, which involves the ability to
immediately retrieve “7 × 9 = 63” from the long-term memory;
this is much less cognitively demanding than calculating
7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7. However, if teaching
and/or learning strategies are solely based on rote learning,
students will be prevented from developing their ability to
struggle with important mathematics, forming an interest in
such struggles, gaining conceptual understanding, and finding
their own solution methods.

Indeed, several studies have shown that students are mainly
given tasks that promote the use of predetermined algorithms,
procedures, and/or examples of how to solve the task rather
than opportunities to engage in a problem-solving struggle
without instruction (Stacey and Vincent, 2009; Denisse et al.,
2012; Boesen et al., 2014; Jäder et al., 2019). For example,
Jäder et al. (2019) examined mathematics textbooks from 12
countries and found that 79% of the textbook tasks could
be solved by merely following provided procedures, 13%
could be solved by minor adjustments of the procedure,
and only 9% required students to create (parts of) their
own methods (for similar findings, also see Pointon and
Sangwin, 2003; Bergqvist, 2007; Mac an Bhaird et al., 2017).
In response to these findings, Lithner (2008, 2017) developed
a framework arguing that the use of instructions in terms
of predefined algorithms has negative long-term consequences
for the development of students’ conceptual understanding. To
develop their conceptual understanding, students must instead
engage in creating (parts of) the methods by themselves. This

framework, which addresses algorithmic and creative reasoning,
guides the present study.

Research Framework: Algorithmic and
Creative Mathematical Reasoning
In the Lithner (2008) framework, task design, students’
reasoning, and students’ learning opportunities are related. When
students solve tasks using provided methods/algorithms, their
reasoning is likely to become imitative (i.e., using the provided
method/algorithm without any reflection). Lithner (2008) defines
this kind of reasoning as Algorithmic Reasoning (AR), and argues
that AR is likely to lead to rote learning. In contrast, when
students solve tasks without a provided method or algorithm,
they are “forced” to struggle, and their reasoning needs to
be—and will become—more creative. Lithner denotes this way
of reasoning as Creative Mathematical Reasoning (CMR) and
suggests that CMR is beneficial for the development of conceptual
understanding. It is important to note that creativity in this
context is neither “genius” nor “exceptional novelty;” rather,
creativity is defined as “the creation of mathematical task
solutions that are original to the individual who creates them,
though the solutions can be modest” (Jonsson et al., 2014,
p. 22; see also Silver, 1997; Lithner, 2008; for similar reasoning).
Lithner (2008) argues that the reasoning inherent in CMR
must fulfill three criteria: (i) creativity, as the learner creates
a previously unexperienced reasoning sequence or recreates a
forgotten one; (ii) plausibility, as there are predictive arguments
supporting strategy choice and verification arguments explaining
why the strategy implementation and conclusions are true
or plausible; and (iii) anchoring, as the learner’s arguments
are anchored in the intrinsic mathematical properties of the
reasoning components.

Previous studies have shown that students practicing with
CMR outperform students practicing with AR on test tasks
(Jonsson et al., 2014; Jonsson et al., 2016; Norqvist, 2017; Norqvist
et al., 2019). Jonsson et al. (2016) investigated whether the
effects of effortful struggle or overlapping processes based on
task similarity (denoted as transfer appropriate processing, or
TAP; Franks et al., 2000) underlie the effects of using CMR and
AR. The results did reveal effects of TAP for both CMR and
AR tasks, with an average effect size (Cohens d; Cohen, 1992) of
d = 0.27. While for effortful struggle, which characterizes CMR,
the average effect size was d= 1.34. It was concluded that effortful
struggle is a more likely explanation for the positive effects of
using CMR than TAP.

In sum, the use of instructions in terms of predefined
algorithms (AR) is argued to have negative long-term
consequences on students’ development of conceptual
understanding and to deteriorate students’ interest in struggling
with important mathematics (e.g., Jäder et al., 2019). In
contrast, the CMR approach requires students to engage in a
effortful and productive struggle when performing CMR (e.g.,
Lithner, 2017). However, since the students that participated
in previous studies were only given practiced test tasks (albeit
with different numbers), the results may “merely” reflect
memory consolidation without a corresponding conceptual
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understanding. If, after practice, students can apply their
acquired reasoning to tasks not previously practiced, this would
indicate a conceptual understanding.

In the present study, we investigate the effects of using AR and
CMR tasks during practice, on subsequent test tasks, including
both practiced test tasks and transfer test tasks. We are familiar
with the large amount of transfer research in the literature and
are aware that a distinction has been made between near transfer
and far transfer tasks (e.g., Barnett and Ceci, 2002; Butler et al.,
2017). In the present study, no attempt to distinguish between
transfer and near transfer is made, we define transfer tasks as tasks
that require a new reasoning sequence in order to be solved (see
Mac an Bhaird et al., 2017 for a similar argument). These tasks
are further described in the Methods section in conjunction with
examples of tasks.

Mathematics and Individual Differences in Cognition
Domain-general abilities, such as general intelligence, influence
learning across many academic domains, with mathematics
being no exception (Carroll, 1993). General intelligence, which
is commonly denoted as the ability to think logically and
systematically, was explored in a prospective study of 70,000
students. Overall, it was found that general intelligence could
explain 58.6% of the variation in performance on national tests
at 16 years of age (Deary et al., 2007). Others have found slightly
lower correlations. In a survey by Mackintosh and Mackintosh
(2011), the correlations between intelligence quotient (IQ) scores
and school grades were between 0.4 and 0.7. Fluid intelligence
is both part of and closely related to general intelligence (Primi
et al., 2010), and is recognized as a causal factor in an individual’s
response when encountering new situations (Watkins et al., 2007;
Valentin Kvist and Gustafsson, 2008) and solving mathematical
tasks (Floyd et al., 2003; Taub et al., 2008). Moreover, there is a
high degree of similarity between the mathematics problems used
in schools and those commonly administered during intelligence
tests that measure fluid cognitive skills (Blair et al., 2005).

Solving arithmetic task places demands on our working
memory because of the multiple steps that often characterize
math. When doing math, we use our working memory to
retrieve the information needed to solve the math task, keep
relevant information about the problem salient, and inhibit
irrelevant information. Baddeley (2000, 2010) multicomponent
working memory model is a common model used to describe
the working memory. This model consists of the phonological
loop and the visuospatial sketchpad, which, respectively, handle
visuospatial and phonological information. These two sub-
systems are controlled by the central executive and its executive
components, updating, shifting, and inhibition (Miyake et al.,
2000). In his model, Baddeley (2000) added the episodic
buffer, which is alleged to be responsible for the temporary
storage of information from the two sub-systems and the
long-term memory. Individual differences in the performance
of complex working memory tasks, which are commonly
defined as measures of the working memory capacity (WMC),
arise from differences in an individual’s cognitive ability to
actively store, actively process, and selectively consider the
information required to produce an output in a setting with

potentially interfering distractions (Shah and Miyake, 1996;
Wiklund-Hörnqvist et al., 2016).

There is a wealth of evidence and a general consensus in the
field that working memory directly influences math performance
(Passolunghi et al., 2008; De Smedt et al., 2009; Raghubar
et al., 2010; Passolunghi and Costa, 2019). In addition, many
studies have shown that children with low WMC have more
difficulty doing math (Adam and Hitch, 1997; McLean and Hitch,
1999; Andersson and Lyxell, 2007; Szücs et al., 2014). Moreover,
children with low WMC are overrepresented among students
with various other problems, including problems with reading
and writing (Adam and Hitch, 1997; Gathercole et al., 2003;
Alloway, 2009). Raghubar et al. (2010) concluded that “Research
on working memory and math across experimental, disability,
and cross-sectional and longitudinal developmental studies
reveal that working memory is indeed related to mathematical
performance in adults and in typically developing children and in
children with difficulties in math” (p. 119; for similar reasoning,
also see Geary et al., 2017).

Math Tracks
A math track is a specific series of courses students follow in their
mathematics studies. Examples might include a basic or low-
level math track in comparison with an advanced math track. In
Sweden, there are five levels of math, each of which is subdivided
into parts a–c, ranging from basic (a) to advanced (c). That is,
course 1c is more advanced than course 1b, and course 1b is
more advanced than course 1a. In comparison with social science
students, natural science students study math on a higher level
and move through the curriculum at a faster pace. At the end
of year one, natural science students have gone through courses
1c and 2c, while social science students have gone through
course 1b. Moreover, natural science students that are starting
upper secondary school typically have higher grades from lower
secondary school than social science students2. Therefore, in the
present study, it is reasonable to assume that natural science
students as a group have better, more advanced mathematical
pre-knowledge than social science students.

In the present study, we acknowledge the importance of
both fluid intelligence and working memory and thus include
a complex working task and a general fluid intelligence task as
measures of cognitive proficiency. Furthermore, based on their
curriculum, the students in this study were divided according to
their mathematical tracks (basic and advanced), with the aim of
capturing differences in mathematical skills.

This study’s hypotheses were guided by previous theoretical
arguments (Lithner, 2008, 2017) and empirical findings (Jonsson
et al., 2014, 2016; Norqvist et al., 2019). On this basis, we
hypothesized that:

1. Practicing with CMR tasks would to a greater extent
facilitate performance on practiced tests tasks than
practicing with AR tasks.

2. Practice with CMR tasks would to a greater extent
facilitate performance on transfer test tasks than
practice with AR tasks.

2www.skolverket.se

Frontiers in Psychology | www.frontiersin.org 3 December 2020 | Volume 11 | Article 574366

http://www.skolverket.se
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-574366 December 14, 2020 Time: 19:25 # 4

Jonsson et al. Creative Mathematical Reasoning and Cognitive Proficiency

3. Students that are more cognitively proficient would
outperform those who are less cognitively proficient on
both practiced test tasks and transfer test tasks

4. Students enrolled in advanced math tracks are likely to
outperform those enrolled in basic math tracks on both
practiced test tasks and transfer test tasks.

Rationales for the Experiments
The three separate experiments presented below were conducted
over a period of 2 years and encompassed 270 students.
The overall aim was to contrast CMR with AR with respect
to mathematical understanding. An additional aim was to
contrast more cognitively proficient students with less cognitively
proficient students and investigate potential interactions. The
experiments progressed as a function of the experimental finding
obtained in each experiment and were as such, not fully planned
ahead. Experiment 1 was designed to replicate a previous
study on practiced test tasks (Jonsson et al., 2014), and also
introduced transfer test tasks with the aim of better capturing
conceptual understanding. However, when running a between-
subject design, as in experiment 1, there is a risk of non-
equivalent group bias when compared with using a within-subject
design. It was also hypothesized that the findings (CMR > AR)
could be challenged if the students were provided with an easier
response mode. It was therefore decided that experiment 2 should
employ a within-subject design and use multiple-choice (MC)
questions as the test format. After experiment 2, it was discussed
whether the eight transfer test tasks used in experiment 2 were
too few to build appropriate statistics and whether the MC test
format did not fully capture students’ conceptual understanding
because of the possibility of students using response elimination
and/or guessing. Moreover, the total number of test tasks was 32
(24 practiced test tasks and eight transfer test tasks), and some
students complained that there were too many test tasks, which
may have affected their performance. It was therefore decided
that experiment 3 should focus solely on transfer test tasks,
thereby decreasing the total number of test tasks but increase
the number of transfer test tasks without introducing fatigue. In
experiment 3, we returned to short answers as a test format, thus
restricting the possibility of students using response elimination
and/or guessing.

MATERIALS AND METHODS

Practice Tasks
A set of 35 tasks were pilot tested by 50 upper secondary
school students. The aim was to establish a set of novel and
challenging tasks that were not so complex that the students
would have difficulty understanding what was requested. Twenty-
eight of the 35 tasks fulfilled the criteria and were selected for the
interventions. Each of the 28 tasks was then written as an AR task
and as a CMR task, respectively (Figures 1A,B). The AR tasks
were designed to resemble the design of everyday mathematical
textbook tasks. Hence, each AR task provided the student with a
method (a formula) for solving the task, an example of how to
apply the formula, and a numerical test question (Figure 1A).

The CMR tasks did not include any formulas, examples, or
explanations, and the students were only asked to solve the
numerical test questions (Figure 1B). Each of the 2× 28 task sets
(AR and CMR) included 10 subtasks, which only differed with
respect to the numerical value used for the calculation. Although
the number of task sets differed between the three experiments,
there were 10 subtasks in each task set in all three experiments.
Moreover, in each CMR task set, the third subtask asked students
to construct a formula (Figure 1C). If the students completed
all 10 subtasks, the software randomly resampled new numerical
tasks until the session ended. This resampling ensured that the
CMR and AR practice conditions lasted for the same length of
time in all three experiments.

Test Tasks
Test tasks that were the same as the practice tasks (albeit with
different numbers) are denoted as “practiced test tasks” while the
tasks that were different from the practice tasks are denoted as
“transfer test tasks.”

Practiced Test Tasks
The layout of the practiced test tasks consisting of numerical-
and formula tasks and can be seen in Figures 2A,C. The
similarities between practice tasks and practiced test tasks
may promote overlapping processing activities (Franks et al.,
2000) or, according to the encoding specificity principle,
provide contextual cues during practice that can aid later test
performance (Tulving and Thomson, 1973). Transfer test tasks
were therefore developed.

Transfer Test Tasks
The layout of the transfer test tasks consisting of numerical-
and formula tasks can be seen in Figures 2B,D. The rationale
underlying why transfer test tasks constitute a more valid measure
of exploring students’ conceptual understanding of mathematics
is that the solution algorithm (e.g., y = 3x + 1) could have
been memorized without any conceptual understanding. For a
transfer test tasks the same algorithm cannot be used again, but
the same general solution idea (e.g., multiplying the number of
squares or rectangles with the number of matches needed for each
new square/rectangle, and then adding the number of matches
needed to complete the first square/rectangle) can be employed.
We argue that knowing this idea of a general solution constitutes
a local conceptual understanding of the task.

The Supplementary Material provides more examples
of tasks.

Practice and Test Settings
In all three experiments, the practice sessions and test sessions
were conducted in the students’ classroom. Both sets of tasks
were presented to the students on their laptops. All tasks were
solved individually; hence, no teacher or peer support was
provided. The students were offered the use of a simple virtual
calculator, which was displayed on their laptop screen. After
submitting each answer during a practice session, the correct
answer was shown to the students. However, no correct answers
were provided to tasks that asked the students to construct
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A

B

C

Practice AR-task, method provided 
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

If x is the number of squares then the number of  matches y could be calculated by the function 

y = 3x +1
Example: If 4 squares are put in a row then y = 3x + 1 = 3·4+1 = 13 matches are needed 

How many matches are needed to get 100 squares in a row?

Practice CMR-task, constructing method
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

How many matches are needed to get 100 squares in a row?

Practice CMR-task, constructing formula
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

Suppose that x is the number of squares in a row and y is the number of matches needed to

build the squares.

How could you describe y as a function of x?

FIGURE 1 | (A–C) Examples of AR and CMR practice tasks and how they were presented to the students on their laptop screen. (A) AR practice task; (B) CMR
practice task; (C) CMR task asking for the formula.

formulas (i.e., the third CMR task). This was done to prevent
students from using a provided formula instead of constructing
a method/formula.

The software that was used for presenting practice and
test tasks also checked and saved the answers automatically.

All students received the same elements of the intervention,
which due to the computer presentations, were delivered in
the same manner to all the students, ensuring high fidelity
(Horner et al., 2006). The Supplementary Material provides
additional examples and descriptions of the tasks employed
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A

B

C

D

Posttest trained task
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

How many matches are needed to get 100 squares in a row?

Posttest transfer task
When rectangles are put in a row, it

looks like the figure on the right, 

16 matches are needed for three rectangles.

How many matches are needed to get 100 rectangles in a row?

Posttest formula practice task
When squares are put in a row, it

looks like the figure on the right, 

13 matches are needed for four squares.

Suppose that x is the number of squares in a row and y is the number of matches needed to 

build the squares.

How could you describe y as a function of x?

Posttest formula transfer task
When rectangles are put in a row, it

looks like the figure on the right, 

16 matches are needed for three rectangles.

Suppose that x is the number of rectangles in a row and y is the number of matches needed to 

build the rectangles.

How could you describe y as a function of x?

FIGURE 2 | (A–D) Examples of test tasks and how they were presented to the students on their laptop screen. (A,C) Practiced test tasks and (B,D) transfer test
task.

in this study. The three experiments did not include a pre-
test due to the risk of an interaction between the pre-test
and the learning conditions, making the students more or

less responsive to manipulation (for a discussion, see Pasnak,
2018). Moreover, the students were unfamiliar with the
mathematical tasks.
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Cognitive Measurement
The cognitive measures included cognitive testing of a complex
working memory task (operation span; Unsworth et al., 2005)
and general fluid intelligence (Raven’s Advanced Progressive
Matrices; Raven et al., 2003). Raven’s APM consists of 48 items,
including 12 practice items. To capture individual differences and
to prevent both ceiling and floor effects, we used the 12 practice
items as well as the 36 original test items. The 12 practice items
were validated against Raven’s Standard Progressive Matrices
(Chiesi et al., 2012). These 48 test items were divided into 24
odd-numbered and 24 even-numbered items. Half of the students
were randomly assigned to the odd-numbered items and half
were assigned the even-numbered items. The total number of
correct solutions was summed, providing a maximum score
of 24. The task was self-paced over a maximum of 25 min.
The countdown from 25 min was displayed in the upper-
right corner of the screen. Initially, the students practiced on
three items derived from Raven’s Standard Progressive Matrices.
A measure of internal consistency (Cronbach’s alpha) was
extracted from a larger pool of data, which encompassed the
data obtained from the students in experiments 1 and 2, and was
found to be 0.84.

In the operation span task students were asked to perform
mathematical operations while retaining specific letters in their
memory. After a sequence of mathematical operations and
letters, they were asked to recall these letters in the same
order as they were presented. The mathematical operations
were self-paced (with an upper limit of 2.5 standard deviations
above each individual average response time, extracted from
an initial practice session). Each letter was presented after
each mathematical operation and displayed for 800 ms. The
letters to recall were presented in three sets of each set
size. Every set size contained three to seven letters. The
sum of all entirely recalled sets was used as the student’s
WMC score. The measure of internal consistency revealed a
Cronbach’s alpha of 0.83. Operation span was also self-paced, but
without any time limit.

The operation span task and Raven’s matrices were combined
into a composite score denoted as the cognitive proficiency (CP)
index. The CP index score was based on a z-transformation of
the operation span task performance and Raven’s matrices, thus
forming the CP composite scores. These CP composite scores
were then used to split (median split) students into lower and
higher CP groups, and were used as a factor in the subsequent
analyses across all three experiments. The students conducted the
cognitive tests in their classrooms approximately 1 week before
each of the three experiments.

Experiment 1
Participants
A priori power analysis with effect sizes (d = 0.73) from Jonsson
et al. (2014) indicated that with an alpha of 0.05 and a statistical
power of 0.80, a sample size of 61 students would obtain a
statistical group difference. The students attended a large upper
secondary school located in a municipality in a northern region
of Sweden. Recruitment of students was conducted in class by

the authors. One hundred and forty-four students were included
in the experiment. Within each math track (basic, advanced)
students were randomly assigned to engage in either the AR or
CMR3 groups. Out of those, 137 students (63 boys, 74 girls)
with a mean age of 17.13 years (SD = 0.62) were included
and subsequently analyzed according to their natural science
(advanced level), social science (basic level) math tracks and
CP. All students spoke Swedish. Written informed consent was
obtained from the students in accordance with the Helsinki
declaration. The Regional Ethics Committee at Umeå University,
Sweden, approved the study.

Cognitive Measures
The cognitive testing included measures of the working memory
task (operation span; Unsworth et al., 2005) and general fluid
intelligence (Raven’s matrices; Raven et al., 2003). The mean value
for the operation span task was 31.52 (SD = 16.35) and 12.63
(SD = 5.10) for Raven’s matrices, respectively. The correlation
between the operation span and the Raven’s matrices was found
to be significant, r = 0.42, p < 0.001. A CP composite score was
formed based on the operation span and Raven’s matrices scores,
and was used to split the students into low and high CP groups; it
was also used as a factor in the subsequent analyses.

Tasks
From the 28 designed tasks (see above), 14 practice tasks were
randomly chosen for the practice session. The corresponding 14
practiced test tasks together with seven transfer test tasks were
used during the test.

Procedure
In a between-group design, the students engaged in either the
AR practice (N = 72), which involved solving 14 AR task sets
(Figure 1A), or the CMR (N = 65) practice, which involved
solving 14 CMR task sets (Figure 1B). The students had 4 min
to conclude each of the 14 task sets.

One week later, a test was conducted in which students were
asked to solve 14 practiced test tasks, formula and numerical
tasks (Figures 2A,C) and seven transfer test tasks, formula and
numerical tasks (Figures 2B,D). The first test task for both the
practiced test tasks and the transfer test tasks was to write down
the formula corresponding to the practice task with a time limit of
30 s. The second test task for both the practiced test tasks and the
transfer test tasks was comprised of solving a numerical test task.
The students were given 4 min to solve each task. The practiced
test tasks were always presented before the transfer test tasks.

Statistical Analysis
A 2 (CP; low, high) × 2 (group; AR, CMR) × 2 (math tracks;
basic, advanced) multivariate analysis of variance (MANOVA)
was followed by univariate analyses of variance (ANOVAs).
The proportions of correct responses on numerical (practiced,
transfer) and formula (practiced, transfer) tasks were entered as
the dependent variables. Cohens d, and partial eta square (ηp

2)
were used as index of effect sizes.

3In the CMR group data from six participants were lost due to administrative error.
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RESULTS

Table 1A displays mean values, standard deviations, skewness,
kurtosis, and Cronbach’s alpha of proportion correct responses
for the test tasks for both AR and CMR learning conditions.
Separate independent t-tests revealed that there were no
significant differences between students in the AR and CMR
learning conditions for operation span, t(135) = 0.48, p = 63,
d = 0.08 and for the Raven’s matrices, t(135) = 0.12,
p = 0.90, d = 0.02, respectively, showing that these groups
were equal with respect to both complex working memory and
fluid intelligence. Moreover, a subsequent analysis (independent
t-test) of the CP composite score dividing the students
into high and low CP groups showed that they could
be considered to be cognitively separated, t(135) = 15.71,
p < 0.001, d = 2.68.

Table 1B display proportion correct responses for the
test tasks divided according to their CP level. The statistical
analyses confirmed that the students in the CMR learning
condition outperformed those in the AR learning condition,
F(4,126) = 4.42, p = 0. 002, Wilk’s 3 = 0.40, ηp

2
= 0.12.

Follow-up ANOVAs for each dependent variable were
significant, practiced test task formula, F(1,129) = 15.83,
p < 0.001, ηp

2
= 0.10; practiced test task numerical,

F(1,129) = 12.35, p = 0.001, ηp
2
= 0.09; transfer test

task formula, F(1,129) = 8.83, p = 0.04, ηp
2
= 0.06; and

transfer test task numerical, F(1,129) = 5.05, p = 0.03,
ηp

2
= 0.04. An effect of CP was also obtained, F(4,126) = 7.71,

p < 0.001, Wilk’s 3 = 0.80, ηp
2
= 0.20, showing that the

more cognitively proficient students outperformed those
who were less proficient. Follow-up ANOVAs for each
dependent variable revealed significant univariate effects of
CP for the practiced test task formula, F(1,129) = 12.35,
p < 0.001, ηp

2
= 0.09; the practiced test task numerical,

F(1,129) = 25.72, p < 0.001, ηp
2
= 0.17; the transfer test

task formula, F(1,129) = 22.63, p < 0.001, ηp
2
= 0.15; and

the transfer test task numerical, F(1,129) = 22.46, p < 0.01,
ηp

2
= 0.15. However, no multivariate main effects of math

tracks and no multivariate interactions were obtained, with
all p’s > 0.10.

TABLE 1B | Mean proportion correct response (M) and standard deviations (SD)
for AR and CMR learning conditions across low and high CP groups.

CP group (low/high) AR CMR

M SD M SD

Low CP1

Practiced test task formula 0.04 0.11 0.11 0.15

Practiced test task numerical 0.14 0.19 0.29 0.21

Transfer test task formula 0.05 0.10 0.08 0.14

Transfer test task Numerical 0.13 0.16 0.22 0.27

High CP2

Practiced test task formula 0.11 0.15 0.29 0.24

Practiced test task numerical 0.38 0.26 0.54 0.23

Transfer test task formula 0.19 0.21 0.30 0.25

Transfer test task Numerical 0.41 0.27 0.48 0.27

CP, cognitive proficiency, AR, algorithmic reasoning. CMR, creative
mathematical reasoning.
1n = 69.
2n = 68.

DISCUSSION

With respect to all four dependent variables, the analyses showed
that students practicing with CMR had superior results on the
subsequent test 1 week later than students practicing with AR
(confirming hypotheses 1 and 2) and that the more cognitively
proficient students outperformed their less cognitively proficient
counterparts, independent of group (confirming hypothesis 3).
Although the natural science students performed, on average,
better than social science students on all four dependent
variables, no significant main effect was observed for math tracks
(disconfirming hypothesis 4).

Experiment 2
The same hypotheses as in experiment 1 were posed in
experiment 2. However, as pointed out above, there is a higher
risk of non-equivalent group bias when using a between-subject
design, and a simpler test format could challenge the differential
effects found in experiment 1 (CMR > AR). It was therefore

TABLE 1A | Mean proportion correct response (M) and standard deviations (SD), skewness, kurtosis and Cronbach’s alpha for the AR and CMR learning
conditions, respectively.

Learning condition (AR/CMR) M SD Skewness Kurtosis Cronbach’s alpha

AR

Practiced test task formula 0.08 0.13 2.13 3.50 0.86

Practiced test task numerical 0.26 0.26 0.95 0.25 0.83

Transfer test task formula 0.12 0.18 1.72 3.07 0.61

Transfer test task numerical 0.27 0.26 0.87 −0.11 0.71

CMR

Practiced test task formula 0.20 0.22 0.97 −0.11 0.86

Practiced test task numerical 0.42 0.25 0.06 1.06 0.88

Transfer test task formula 0.19 0.22 1.40 1.58 0.62

Transfer test task numerical 0.35 0.30 0.59 −0.68 0.76

AR, algorithmic reasoning, CMR, creative mathematical reasoning.
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decided that experiment 2 should employ a within-subject design
and use MC questions as a test format instead of short answers.

Participants
A priori power analysis based on a within-subjects pilot study
(N = 20) indicated that with an alpha of 0.05 and a statistical
power of 0.80, a sample size of 50 students would obtain a
statistical group difference. The students were from a larger
pool of students, of which 82 students were randomly allocated
to a functional Magnetic Resonance Imaging (fMRI) study,
and the remaining 51 students participated in experiment 2.
An independent t-test revealed no differences concerning age,
general fluid intelligence (Raven’s matrices), or WMC (operation
span), with p-values > 0.37. The separate fMRI experiment is not
reported here. Experiment 2 included 51 students (27 girls, 24
boys) from natural science and social science programs in three
upper secondary schools located in a municipality in a northern
region of Sweden with a mean age of 18.13 years (SD = 0.24).
Recruitment of students was conducted in class by the authors,
at each school. The natural science students were enrolled in
more advanced math track compared with the Social science
students; as in experiment 1, math tracks (basic, advanced) were
subsequently entered as a factor in the analyses.

Cognitive Measures
As in experiment 1, the cognitive testing included operation span
and Raven’s matrices. The mean values and standard deviations
of the operation span and Raven’s matrices were similar to
those in experiment 1, for the operation span task (M = 38.27,
SD = 19.10) and Ravens matrices (M = 14.47, SD = 5.34),
respectively. The correlation between operation span and Raven’s
matrices was found to be significant, with r= 0.52 and p < 0.001.
A CP composite score was formed based on the operation span
and Raven’s matrices scores. The CP score was used to split the
students into a low CP group and a high CP group, and was also
used as a factor in the subsequent analyses.

Tasks
In a within-subject design, each student practice with 12 AR task
sets and 12 CMR task sets. The corresponding 24 practice test
tasks, together with eight transfer test tasks, were used as test tasks.

Procedure
In this within-subject design, the students first practiced with
12 AR task sets. After a break of a few hours, they then

practiced with 12 CMR task sets. This order was chosen to avoid
carry-over effects from CMR tasks to AR tasks. The rationale
was that starting with CMR tasks would reveal the underlying
manipulation, which the students could then use to solve the
AR tasks. Hence, constructing the solution without using the
provided formula is the critical factor in the manipulation.
To prevent item effects in which some tasks were more
suitable to be designed as AR or CMR tasks, the tasks that
were, respectively, assigned to be CMR and AR tasks were
counterbalanced. The students were given 4 min to conclude each
of the 12 task sets.

One week later, the students were asked to solve 24 randomly
presented practiced test tasks (albeit with different numbers than
before), of which 12 had been practiced as CMR tasks and
12 as AR tasks. These tasks were followed by eight transfer
test tasks.

Statistical Analyses
A mixed-design ANOVA was conducted with learning condition
(AR and CMR) and task type (practiced and transfer) as
the within-subject factors and CP (low and high) and math
tracks (basic and advanced) as the between-subject factors. The
proportions of correct responses on practiced test tasks and
transfer test tasks were entered as the dependent variables. Cohens
d and partial eta square (ηp

2) were used as index of effect
sizes. Although a within-subject design was used, the more
cognitively proficient students, who are likely to have better
metacognitive ability (see Desoete and De Craene, 2019 for an
overview), could potentially make use of constructive matching
by comparing a possible solution with the response alternatives,
response elimination by determining which answer is more likely,
or of guessing (Arendasy and Sommer, 2013; see also Gonthier
and Roulin, 2020). Therefore, the analysis was corrected using
the formula FS = R – W/C – 1, where FS = formula score;
R= number of items/questions answered correctly; W= number
of items/questions answered incorrectly; and C = number of
choices per item/question (e.g., Diamond and Evans, 1973;
Stenlund et al., 2014).

RESULTS

Table 2A displays the mean values of proportion correct response
(not corrected for guessing), standard errors, and psychometric

TABLE 2A | Mean proportion correct response (M) and standard deviations (SD), skewness, kurtosis and Cronbach’s alpha for the AR and CMR learning
conditions, respectively.

Learning condition (AR/CMR) M SD Skewness Kurtosis Cronbach’s alpha

AR

Practiced test task 0.48 0.25 0.27 −0.84 0.80

Transfer test task 0.46 0.33 0.35 −0.99 0.69

CMR

Practiced test task 0.55 0.27 0.00 −1.40 0.82

Transfer test task 0.53 0.35 0.00 1.40 0.63

AR, algorithmic reasoning, CMR, creative mathematical reasoning.
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properties of skewness, kurtosis, and Cronbach’s alpha for the
test tasks. An independent t-test of the CP composite score
dividing the students into high CP groups and low CP groups
showed that the students could be considered to be cognitively
separated, t(49) = 12.14, p < 0.001. d = 3.40. The table shows
that the mean values for CMR are higher than the corresponding
values for AR learning condition for both the practiced test
tasks and transfer test tasks. Table 2B display proportion correct
responses (not corrected for guessing) for the test tasks divided
according to their CP level. The statistical analysis corrected for
guessing revealed significant within-subject effects of learning
condition, with the CMR condition being superior to the AR
condition, F(1,47)= 9.36, p= 0.004, Wilk’s 3= 0.83, ηp

2
= 0.17.

However, there was no significant within-subject effect of task
type, F(1,47) = 0.77, p = 0.38, Wilk’s 3 = 0.98, ηp

2
= 0.012.

Moreover, there was no significant between-subject effects of
CP, F(1,47) = 0.23, p = 0.64, ηp

2
= 0.004, or of math tracks,

F(1,47) = 0.84, p = 0.36, ηp
22
= 0.005, and there were no

interaction effects (p’s > 0.67).
The non-significant effect of CP was rather surprising;

therefore, it was decided to re-run the analyses without the
correction formula. The analyses again revealed a significant
within-subject effect of learning condition, with the CMR
condition being superior to the AR condition, F(1,47) = 7.80,
p = 0.008, Wilk’s 3 = 0.85, ηp

2
= 0.14. Again no significant

within-subject effects from task type, F(1,47) = 2.3, p = 0.13,
Wilk’s 3 = 0.95, ηp

2
= 0.02 or between-subject effect of

math tracks, F(1,47) = 3.45, p = 0.07, ηp
2
= 0.07 were

detected. However, the between-subject effect of CP was now
clearly significant, F(1,47) = 18.74, p < 0.001, ηp

2
= 0.28.

Moreover, a learning condition × CP interaction F(1,47) = 9.05,
p = 0.004, Wilk’s 3 = 0.83 ηp

2
= 0.16 was qualified

by a learning condition × task type × CP interaction,
F(1,47) = 8.10, p = 0.005, Wilk’s 3 = 0.84, ηp

2
= 0.16.

The three-way interaction was driven by students with a
high CP performing better in the CMR learning condition
than in the AR learning condition especially pronounced
for the transfer test tasks. No other interaction effects were
detected (p’s > 0.70).

TABLE 2B | Mean proportion correct response (M) and standard deviations (SD)
for AR and CMR learning conditions across low and high CP groups.

CP group (low/high) AR CMR

M SD M SD

Low CP1

Practiced test task 0.35 0.17 0.40 0.21

Transfer test task 0.33 0.28 0.29 0.22

High CP2

Practiced test task 0.61 0.24 0.76 0.24

Transfer test task 0.58 0.33 0.69 0.30

CP, cognitive proficiency, AR, algorithmic reasoning. CMR, creative
mathematical reasoning.
1n = 25
2n = 26

DISCUSSION

With respect to both practiced test tasks and transfer test
tasks, the analyses showed, as expected, that students who
practiced with CMR had superior results on the subsequent
tests 1 week later compared to the students who practiced
with AR (confirming hypothesis 1 and 2). In comparison with
experiment 1, experiment 2 showed notably higher performance
levels, which most likely reflected the MC test format. Viewed in
relation to previous studies of CMR (e.g., Jonsson et al., 2014)
and the significant number of studies showing that educational
attainments in math are intimately related to cognitive abilities
(e.g., Adam and Hitch, 1997; Andersson and Lyxell, 2007),
the non-significant effect of CP was unexpected. The finding
that task type was non-significant, albeit in the direction of
the practiced test task being easier than the transfer test tasks
was also somewhat unexpected. It is possible that the eight
transfer test tasks (four AR and four CMR) may have been too
few to build reliable statistics. Although no significant effect
was obtained for math tracks, the natural science students
(advanced math track) performed better than the social science
students (basic math track) on average; however, this trend
did not reach statistical significance (disconfirming hypothesis
4). After the unexpected non-significant effect of CP, the
analysis was re-run without the correction formula. The analysis
revealed a main effect of CP (confirming hypothesis 3) and a
learning condition × CP interaction that was qualified by a
learning condition × task type × CP interaction. The three-
way interaction indicates that cognitively stronger students could
utilize response elimination or successful guessing in subsequent
MC tests more effectively than their lower CP counterparts,
especially for the transfer test tasks.

This design, in which the CMR practice tasks were presented
shortly after the AR tasks, may have introduced a recency
effect and thus facilitated the test performance more for
CMR than for AR tasks. However, the CMR practice session
contained 12 different task sets, and each new task set was a
potential distractor for the previous task sets. Moreover, between
the learning session and subsequent test 1 week later, the
students attended their regular classes. These activities, viewed in
conjunction with the well-known fact that the recency effect is
rather transitory (Koppenaal and Glanzer, 1990) and that recall
is severely disrupted even by unrelated in-between cognitive
activities (Glanzer and Cunitz, 1966; Kuhn et al., 2018), probably
eliminated the risk of recency effects. In experiment 2, the total
number of test tasks was 32 (24 practiced test tasks and eight
transfer test tasks), and some students complained that there
were too many tasks, which may have affected their performance,
potentially the cognitively more proficient students were less
affected by the large number test tasks.

Experiment 3
In experiment 3, the same hypotheses were posed as in
experiments 1 and 2. However, as pointed out above, the more
cognitively proficient students were potentially less affected by
fatigue and gained more from using MC questions as a test
format. Therefore, it was decided that experiment 3 should
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retain the within-subject design but use only transfer test tasks.
Moreover, we reintroduced written answers as a response mode
to prevent processes of constructive matching and response
elimination. To reduce a potential, but unlikely, recency effect,
the presentation order for a subsample was reversed, with CMR
tasks being presented before AR tasks.

Participants
Experiment 3 included 82 students. The average age of
participants was 17.35 years (SD = 0.66), whereof 35 were
girls, and 47 boys. The participants were from two upper
secondary schools located in a municipality in a northern region
of Sweden. Recruitment of students was conducted in class by
the authors, at each school. The students were divided into two
math tracks. The first was a mathematical track that included
year 3 technical students and year 2 natural science students
(advanced math tracks); these students were regarded by their
schoolteachers as approximately equal in math skill background.
The second math track consisted of year 1 natural science
students and year 2 social science students (basic math track);
these students were also regarded as approximately equal in
math skill background. The students were subsequently analyzed
according to their math tracks.

Cognitive Measures
The cognitive tests were the same as in experiments 1 and 2.
The mean values and standard deviations of the operation span
(M = 36.78, SD = 16.07) and Raven’s matrices (M = 14.33,
SD = 4.35) were similar to those from experiments 1 and 2.
The correlation between operation span and Raven’s matrices was
found to be significant, with r = 0.40 and p < 0.001, and a CP
composite score based on operation span and Raven’s matrices
scores was again formed, used to split the students into a low
CP group and a high CP group, and used as a factor in the
subsequent analyses.

Tasks
The same practice tasks were used, as in experiment 2. In a
within-subject design, the students practiced with 12 AR task
sets and 12 CMR task sets, and 24 transfer test tasks were used
during the test.

Procedure
The students practiced with the same tasks and setup as in
experiment 2, with the exception that the order of presentation
was reversed for a subset of students, with AR tasks being
practiced before CMR tasks. The students had 4 min to conclude
each of the 12 task sets during practice. One week later, the
students were asked to solve 24 transfer test tasks. The students
were given 130 s to solve each test task.

Statistical Analyses
The initial mixed-design ANOVA analysis, with learning
condition (AR and CMR) as the within-subject factor and
order of presentation as the between-subject variable and
the proportion correct response as the dependent variable,
investigated the potential presentation order × learning
condition interaction. The analysis revealed that this interaction

was non-significant, with F(1,80) = 0.22, p = 0.88, Wilk’s
3 = 0.10, ηp

2
= 0.0004. Therefore, the presentation order was

excluded from further analyses. Considering that the students
differed in age (by approximately 1 year), we controlled for age
by conducting a mixed-design analysis of covariance (ANCOVA)
with learning condition (AR and CMR) as a within-subject
factor and with CP (low and high) and math track (basic and
advanced) as the between-subject factors. The proportion of
correct responses on the transfer test tasks was entered as the
dependent variable, and age was used as a covariate. Cohens d
and partial eta square (ηp

2) were used as index of effect sizes.

RESULTS

Table 3A displays the mean values, standard deviations,
skewness, kurtosis, and Cronbach’s alpha for the test tasks. An
independent t-test of the CP composite score used to divide
the students into a high CP group and a low CP group showed
that the students could be considered as cognitively separated,
t(80) = 12.88, p < 0.001, d = 2.84. The table shows that
practicing with the CMR tasks was superior to practicing with
the AR tasks. Table 3B display proportion correct responses
for the transfer test tasks divided according to their CP level.
The statistical analysis confirmed a within-subject effect of
learning condition, F(1,77) = 20.88, p < 0.001, Wilk’s 3 = 0.78,
ηp

2
= 0.21. The analysis also revealed a between-subject effect

of CP, F(1,76) = 21.50, p < 0.001, ηp
2
= 0.22. However, no

between-subject effect of math tracks and no interaction effects
were obtained, p’s > 0.15.

DISCUSSION

The findings from experiment 3 were in line with those from the
previous experiments, providing evidence that practicing with
CMR tasks was superior to practicing with AR tasks (confirming
hypotheses 1 and 2). As expected, the analyses showed that
the more cognitively proficient students outperformed those
who were less cognitively proficient (confirming hypothesis 3).
Again, no significant effect was obtained for math tracks (again
disconfirming hypothesis 4).

GENERAL DISCUSSION

This study contrasted CMR with AR across three experiments
encompassing 270 students. It was hypothesized that practicing
with CMR leads to better performances than practicing with
AR on practiced test tasks and transfer test tasks (hypotheses 1
and 2). Experiments 1 and 2 included both practiced test tasks
and transfer test tasks, while experiment 3 focused exclusively
on transfer test tasks. The practiced test tasks were identical to
the tasks that the students had practiced (albeit with different
numbers). The transfer test tasks were different from the practice
tasks, but they shared an underlying solution idea. To solve the
transfer test tasks, the students had to rely on relevant knowledge
(a solution idea) acquired during their practice, which is critical
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TABLE 3A | Mean proportion correct response (M) and standard deviations (SD), skewness, kurtosis and Cronbach’s alpha for the AR and CMR learning
conditions, respectively.

Learning condition (AR/CMR) M SD Skewness Kurtosis Cronbach’s alpha

AR
Transfer test task 0.26 0.21 0.78 −0.12 0.78

CMR
Transfer test task 0.36 0.23 0.37 −0.33 0.75

AR = Algorithmic Reasoning, CMR = Creative Mathematical Reasoning.

in mathematics. If a student has no solution idea to rely on,
the transfer test tasks required the student to construct the
method from scratch.

Moreover, this study hypothesized that the more cognitively
proficient students would outperform those who were less
cognitively proficient (hypothesis 3), independent of learning
conditions. The upper secondary students were from different
student programs with different mathematical backgrounds (i.e.,
basic and advanced math tracks), which was entered as a factor
in the analyses. It was expected that those enrolled in a more
advanced math track would outperform those enrolled in a basic
math track (hypothesis 4).

Overall, the results confirmed hypotheses 1–3. However, no
effects of math tracks were obtained, disconfirming hypothesis 4.
Below, these hypotheses are discussed in detail.

Hypotheses 1 and 2
The analysis of both the practiced test tasks in experiment
1 followed the setup of Jonsson et al. (2014), in which
the dependent variables included trying to remember specific
formulas and solving numerical practiced test tasks. Moreover,
experiment 1 also went beyond Jonsson et al. (2014) and added
transfer test tasks. The results of experiment 1 were in line with
those of Jonsson et al. (2014): Practicing with CMR tasks lead to
significantly better performance on the practiced test tasks than
practicing with AR tasks. Experiment 1 also found that practicing
with CMR lead to significantly better performance on transfer test
tasks. In experiment 2, we turned to a within-subject design, with
the aim of removing potential non-equivalent group bias, and
introduced MC questions as a test format, thereby challenging
hypotheses 1 and 2 by using an easier test format. Again,
significant CMR > AR effects were detected for both practiced

TABLE 3B | Mean proportion correct response (M) and standard deviations (SD)
for AR and CMR learning conditions across low and high CP groups.

CP group (low/high) AR CMR

M SD M SD

Low CP1

Transfer test task 0.19 0.15 0.26 0.18

High CP2

Transfer test task 0.34 0.24 0.47 0.22

CP, cognitive proficiency; AR, algorithmic reasoning; CMR, creative
mathematical reasoning.
1n = 41.
2n = 41.

test tasks and transfer test tasks. However, the fact that only four
AR and four CMR transfer test tasks were used in experiment
2, the results could be questioned in terms of building adequate
statistics. Therefore, using a within-subject design, experiment 3
focused solely on transfer test tasks, which increased the number
of transfer test tasks and reduced the total number of tasks and,
thus, the risk of fatigue. We also reintroduced written answers as a
response mode to prevent processes of response elimination and
guessing. The analysis of experiment 3 revealed that practicing
with CMR tasks had a more beneficial effect than practicing with
AR tasks on the transfer test tasks, again confirming hypothesis 2.

Hypothesis 3
When a short answer format was used, as in experiments 1 and
3, the effects of CP were clear, confirming previous studies and
hypothesis 3. The second analysis in experiment 2 also confirmed
hypothesis 3. The analysis showed that all participants improved
their performance; hence the proportion correct was higher in
experiment 2 than in experiments 1 and 3 (Tables 1–3). This
performance was most likely due to the MC response mode.
The second analysis indicates that the cognitively more proficient
students could in addition, use response elimination or successful
guessing more effective (Desoete and De Craene, 2019), thereby
outperforming the cognitively less proficient. However, when the
analysis was corrected for guessing (the first analysis), the benefits
of using response elimination or guessing were removed, but the
effects of the easier MC response mode remained, which even out
the difference between the CP groups and thereby also removed
the effect of CP.

Hypothesis 4
The non-significant effect of mathematical track was somewhat
surprising, and disconfirmed hypothesis 4. A plausible
interpretation is that the students enrolled in more advanced
math tracks, which involve (according to the curriculum) better
mathematical training, could not make use of their acquired
mathematical knowledge when solving the novel experimental
test tasks; if this interpretation is correct, it would indicate that
the assumption of task novelty was also correct.

Overall, this study provides support for the argument that
CMR facilitates learning to a greater degree than AR and confirms
the results of previous studies (Jonsson et al., 2014, 2016; Norqvist
et al., 2019). Although the effect sizes were rather small, they must
be viewed in relation to the short interventions that the students
went through. We argue that when students are practicing with
CMR tasks, they are “forced” to pay attention to the intrinsic
and relevant mathematical components, which develops their
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conceptual understanding. The effects on transfer test tasks
indicate that practicing with CMR tasks—in comparison with
practicing with AR tasks—facilitates students’ ability to transfer
their knowledge to a greater extent; that is, they can better transfer
their solution idea from the practice task to a different task
sharing the same underlying solution idea (transfer test tasks).
This argument is in line with the findings of the Norqvist et al.
(2019) eye-tracking study: When students practiced with AR
tasks, they disregarded critical information that could be used
to build a more in-depth understanding; in contrast, students
that practiced with CMR tasks focused on critical information
more frequently. Practice with CMR is most likely associated
with more effortful struggle—an argument that shares similarities
with the framework of “ill-structured tasks” (Kapur, 2008, 2010).
In the ill-structured task approach, students are provided with
tasks for which no method or procedure on how to solve the
task is available and for which multiple solution paths may exist.
Students are required to (try to) solve the ill-structured task
by constructing their own methods before the teacher provides
instructions on the mathematics to be learned (VanLehn et al.,
2003; Kapur, 2010). Those studies showed that the struggle
of creating methods was especially beneficial for developing
a conceptual understanding of the task, as demonstrated by
significantly better performance on transfer test tasks (e.g., Kapur,
2010, 2011). It is argued that the task complexity inherent in
the ill-defined tasks was a key factor that helped students to
create structures that facilitated their conceptual understanding
of mathematics. Furthermore, studies have shown that the
more solutions students generate on their own, the better the
students’ test performance becomes, even when their methods
do not fully solve the practice task (Kapur, 2014). In the CMR
tasks used in the present study, no instructions were given.
Similar to the ill-structured approach, such tasks may identify
knowledge gaps and enable (or “force”) students to search for
and perceive in-depth structural problem features (Newman
and DeCaro, 2019). Although an excessively high cognitive load
may hamper learning, a desirable amount of cognitive load in
terms of struggle (in a positive sense) with mathematics may
be beneficial for developing conceptual understanding (Hiebert
and Grouws, 2007). In the present study, such development of
students’ conceptual understanding was seen in the form of better
performance on the later test as a function of practicing with
CMR tasks relative to AR tasks.

This study provides support for the theoretical link between
the learning process using CMR, performance, and conceptual
understanding. The results also underscore that although CP
was associated with better performance, it did not interact with
the learning condition. Hence, both cognitively stronger and
cognitively weaker students benefited from using CMR relative to
using AR. The theoretical framework (Lithner, 2008, 2017) could
potentially be updated with an individual differences perspective
with respect to cognitive prerequisites and their implication for
the learning process. With respect to the non-significant effect
of math tracks, the assumption of task novelty seems to be
correct. Moreover, the non-significant effect of math tracks also
indicates that students can gain conceptual understanding by
using CMR even with tasks for which the students lack or have

negligible pre-knowledge, and among students with “only” basic
mathematical background.

The results from this study could be discussed from a self-
explanation perspective (for an overview, see Rittle-Johnson
et al., 2017). According to Rittle-Johnson et al. (2017), the
mechanism underlying self-explanation is the integration of new
information with previous knowledge. This involves guiding
students’ attention to the structural features—rather than the
surface features—of the to-be-learned material, and can aid
comprehension and transfer. In the CMR assumption, predictive
arguments supporting strategy choice and verification arguments
explaining why the strategy implementation and conclusions are
“true or plausible” are regarded as critical features.

In sum, in the CMR/AR, ill-structured tasks, and self-
explanation approaches, the critical aspects are how tasks
are designed and how mathematical reasoning is supported.
Moreover, in order to move beyond textbooks’ step-by-step
solutions and understand the underlying ideas, students need
to face (in a positive sense) mathematical struggle activities.
Nevertheless, it is not likely that students will take on such
effort by themselves. The framework of CMR and ill-structured
tasks removes the task-solving methods and requires students
to find an underlying idea and to create solutions on their
own. Although CMR task solving is more cognitively demanding
during practice than AR task solving, it helps the learner to
focus on relevant information for solving the task. Moreover,
similar to the self-explanation approach, the CMR approach
guides students to the structural features that are critical for
aiding comprehension.

Limitations
A limitation in the present study is that experiment 3 did
not include any practiced test tasks. However, the results from
experiments 1 and 2 indicate that using practiced test tasks in
experiment 3 would have yielded the same conclusions as in
experiments 1 and 2. A further potential limitation is that the
presentation format differed in experiment 2 in comparison with
experiments 1 and 3. However, it could in fact be argued that this
is a strength of the study: Despite the different response formats
for the test tasks, the experiments yielded similar results, with
CMR consistently outperforming AR. Although the experiments
were based on convenience samples, which could potentially
narrow the external validity, the students were from four different
upper secondary schools, which provided some heterogeneity.
The results can also be discussed from the perspective of
Hawthorne effects: The awareness of knowing that they were part
of a study may have affected the students’ performance, and—
although this is unlikely—the findings may not generalize to a
regular setting when the researcher is not present.

Moreover, there were no pre-test measures in any of the
experiments, as it was argued that a pre-test could make the
students more or less responsive to the manipulation (see Pasnak,
2018, for a discussion). On the other hand, pre-tests could have
provided insight into how comprehension increased from the
pre- to a post-test. In experiment 1, pre-tests would have provided
a baseline of student performance, which could have been used to
evaluate initial group differences.
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Implications and Future Research
The results from the present and previous studies (e.g., Jonsson
et al., 2014, 2016; Norqvist et al., 2019) have implications
for school settings, as AR tasks (as opposed to CMR tasks)
are commonly used in teaching approaches and textbooks
(Stacey and Vincent, 2009; Denisse et al., 2012; Shield and
Dole, 2013; Boesen et al., 2014; Jäder et al., 2019), but
as argued do not promote optimal student learning. We
argue that an eclectic perspective in which validated methods
that emphasize mathematical struggles—such as task solving
using CMR, ill-structured tasks, and self-explanations—should
be a part of the mathematical curriculum, in conjunction
with approaches that reduce cognitive load, such as worked
examples. In future studies, it would be interesting not only
to contrast CMR with other approaches, but also to investigate
how to combine the CMR approach with, for example, self-
explanation (Rittle-Johnson et al., 2017) and, potentially, with
worked examples as well (Sweller et al., 2011). Another
potential combination could involve retrieval practice, which
is a cognitive-based learning strategy based on self-testing.
At first glance, retrieval practice is very different from using
CMR. Using CMR emphasizes the construction of solutions,
while retrieval practice strengthens memory consolidation
through the process of retrieving information from long-term
memory. For example, retrieving the definition of working
memory without the support of written text will enhance one’s
ability to remember the definition across long-term retention
intervals (Wiklund-Hörnqvist et al., 2014). The performance
difference between retrieval practice and other ways of attaining
information—most commonly re-reading—is denoted as the
“testing effect.” The testing effect is supported by both behavioral
and functional fMRI evidence (for overviews, see Dunlosky
et al., 2013; van den Broek et al., 2016; Adesope et al.,
2017; Antony et al., 2017; Moreira et al., 2019; Jonsson
et al., 2020). Research that currently underway shows that
measures of brain activity following the testing effect (retrieval
practice > study) and the “CMR effect” (CMR > AR) indicate
that the same brain areas are activated. It is possible that by
adding retrieval practice after formulas or procedures have been
established by using CMR, the memory strength of specific
formulas may be enhanced. Future studies are planned to
pursue this reasoning.

Moreover, as stated in the limitation, the experiments
in the present study were based on convenience samples.
A purely randomized sampling or a stratified sampling would
be preferable in future studies. It is also unclear whether the
CMR approach is potent among students with special needs,
although the non-significant effects of math tracks found in

the present study were encouraging; future studies should
pursue this question.
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