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Recent research on working memory (WM) identified the contribution of several large-
scale brain networks operating during WM tasks, such as the frontoparietal attention
network (AN), the default mode network (DMN), and the salience network (SN).
To date, however, the dynamical interplay among these networks is largely unexplored
during successful or unsuccessful WM performance, especially with complex and
ecological stimuli. Here we systematically characterized the selective contribution of
these networks during a visuospatial WM task requiring the encoding, maintenance and
retrieval of real-life scenes. While undergoing fMRI scans, participants were presented
with everyday life visual scenes for 4 s (encoding phase). After a delay of 8 s
(maintenance phase), participants were presented with a target-object extracted from
the previous scene. Participants had to judge whether the target-object was presented
at the same or in a different location compared to the original scene (retrieval phase) and
then provide a confidence judgment. Using the independent component analysis (ICA),
we found that subsequent remembering was associated with the activity of the AN at
encoding, the attention and SN at maintenance, plus the visual network at retrieval.
Conversely, subsequent forgetting was associated with the activity of the DMN at
maintenance, and the SN at retrieval. Overall, these findings reveal a dynamical interplay
between large-scale brain networks during visuospatial WM performance related to
complex, real-life stimuli.

Keywords: working memory, everyday life scenes, frontoparietal, default mode, salience, network, Independent
Component Analysis (ICA)

INTRODUCTION

Research on working memory (WM) processes has recently benefit from the chance to use a
multivariate − data-driven − approach to investigate whole brain activity co-variation (e.g.,
Golland et al., 2008; Cohen and D’Esposito, 2016; see, for reviews, Calhoun et al., 2009; Raichle,
2016). This approach allowed identifying the contribution of several large-scale brain networks
that operate during WM tasks, such as the frontoparietal attention network (also called Attention
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network, AN; Duncan, 2013), the default mode network (DMN;
Raichle, 2015), and the salience network (SN; Uddin, 2015).
However, these networks were typically identified by means
of the classical n-back task (see, for a meta-analysis, Owen
et al., 2005), which is a “continuous” WM task that involves
an overlap between the different WM phases, namely, encoding,
maintenance and retrieval. As such, the n-back task did not allow
disentangling the contribution of large-scale brain networks
during each WM phase. Recently, this issue has partially been
addressed by Piccoli et al. (2015). They used a delayed visuo-
spatial WM task to assess the interplay between two specific
large-scale brain networks, the AN and the DMN, across the
three memory phases. In this study, participants were presented
at encoding with a sample memory set consisting of one, three,
or five colored circles (i.e., at different WM load conditions) for
2 s. The circles were randomly presented at 12 possible locations
along a circumference and in three different colors: blue, yellow,
or red. After a delay period ranging between 9 and 12 s, a white
target circle was presented, randomly located in one of the 12
positions. Participants had to decide whether the target stimulus
was or was not included in the previous sample. Piccoli and
colleagues analyzed the functional connectivity during each WM
phase between the AN and DMN, showing that the two networks
were negatively correlated during the maintenance phase, but
not during the encoding and the retrieval phase. Conversely, the
activity of the AN and the DMN was positively correlated.

While providing important insights into the dynamical
relationship of the AN and DMN according to WM phase,
this previous literature leaves open the question of whether the
increased activity in the DMN (together with the decreased
activity in the AN) is explicitly associated with erroneous
WM performance during the maintenance phase. This previous
literature also neglected to investigate the dynamical contribution
of other networks that are known to play a major role in WM
processes, such as the SN (e.g., Menon and Uddin, 2010), and,
subsequently, its dynamical relationship with the AN and DMN
during WM performance. Previous literature demonstrated
that − at rest − both the AN and the SN concurrently coordinate
information processing by regulating activity within the DMN
(Chen et al., 2013). However, how the dynamical interplay
between these networks is related to the different WM phases
and performance outcomes (i.e., successful vs. unsuccessful)
is entirely unexplored to date. Finally, the previous literature
typically investigated large-scale brain networks supporting WM
processes using very simple and repetitive stimuli (such as
geometrical shapes; e.g., Piccoli et al., 2015), while it would be
critical nowadays to investigate cognitive processes using more
realistic stimuli, thus to mimic the involvement of cognition
in complex and real-life situations (e.g., Felsen and Dan, 2005;
Peelen and Kastner, 2014).

Here we used a delayed match-to-sample WM task based
on everyday life scenes. Our main aim was to systematically
characterize the contribution of large-scale brain networks
during successful or unsuccessful encoding, maintenance or
retrieval of everyday scenes. Following a common approach in
memory research (see, for a review, Kim, 2011), we distinguished
WM trials according to participants’ performance, thus

to investigate large-scale brain networks supporting either
subsequent remembering or subsequent forgetting during each
WM phase. At encoding, participants were presented with
everyday life scenes. After a delay period, participants were
presented with a target object extracted from the previous
scene. The target object could be either highly “salient” from a
perceptual point of view (in terms of local discontinuities in line
orientation, intensity contrast, and color opponency; Itti and
Koch, 2001) or not. Participants had to judge whether the target
object was presented at the same or in a different location as
compared to the original scene (i.e., a visuo-spatial WM task).
To truly tap into WM retrieval and to rule out any response
based on a mere sense of familiarity (Epstein and Kanwisher,
1998; Davachi, 2006; Diana et al., 2007), we asked participants
to provide a confidence judgment after the localization task,
indicating whether they were sure or not about their “spatial”
response. Only correct spatial localizations followed by “sure”
confidence judgments were classified as remembered trials, while
wrong localizations or correct localizations followed by “unsure”
responses were classified as forgotten trials.

We used the analysis of the independent components
(ICs; see Beckmann, 2012) to highlight large-scale brain
networks operating during our visuo-spatial WM task.
To show the specific contribution of these networks in
sustaining successful or unsuccessful encoding, maintenance
and retrieval, we used a hierarchical approach: first, we assessed
which ICs were recruited during our task, irrespective of
WM phase (encoding, maintenance or retrieval) and WM
performance (remembered or forgotten trials). Next we
looked for networks sensitive to memory phase by testing the
fitting of the IC time course on “encoding > maintenance
and encoding > retrieval,” “maintenance > encoding and
maintenance > retrieval,” and “retrieval > encoding and
retrieval > maintenance”; finally, we tested the fitting of
phase-specific ICs on “remembered > forgotten events”
(subsequent remembering) or on “forgotten > remembered
events” (subsequent forgetting), and whether phase-specific ICs
were influenced by the type of the to-be-remember stimulus,
salient vs. not salient. Based on the existent literature, we would
expect that − irrespective of the stimulus type − the AN is
positively associated with successful WM performance, across
the three WM phases. A similar prediction might be extended
to the SN that is thought to coordinate − along with the AN −

other neural resources for processing stimuli that might be
potentially relevant for goal-directed behavior (Menon and
Uddin, 2010; Chen et al., 2013). Conversely, we would expect
that the recruitment of the DMN during WM maintenance is
associated with erroneous WM performance (Piccoli et al., 2015).

MATERIALS AND METHODS

Participants
A total of 16 healthy volunteers took part in the fMRI experiment
(all right-handed; seven males; mean age, 24.3 ± 3.5 years; range,
19–32 years). All participants were naïve university students,
who gave informed and written consent to the study, which was
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FIGURE 1 | Schematic diagram illustrating the sequence of events in one example trial. Participants were presented with a scene for 4 s. After a maintenance
interval of 8 s, they were presented with a target object extracted from the previous scene. They had to judge whether the target object was placed in the same or in
a different location with respect to the original scene (3 s), and then provide a confidence judgment about the previous response (3 s).

approved by the independent Ethics Committee of the Santa
Lucia Foundation. Participants had no history of head injury or
physical, neurological, or psychiatric illness. The experiment was
conducted in accordance with the ethical standards of the 1964
Declaration of Helsinki (last update: Seoul, 2008).

Stimuli and Task
Stimuli and task were fully described in Santangelo and Macaluso
(2013), wherein we reported standard univariate analyses of this
data set. Briefly, the WM task consisted in an encoding phase
(4 s), a maintenance phase (8 s), a retrieval phase (3 s), and,
finally, in a memory confidence judgment (3 s; Figure 1). At
encoding, subjects were presented with pictures depicting scenes
of everyday life. The picture set consisted in one hundred images
collected on the World Wide Web, including either internal
(e.g., a kitchen, a bathroom, etc.) or external scenarios (e.g.,
a garden, a street, etc.), but no single-object photo or living
things such as people or animals. Each picture was analyzed with
the Saliency Toolbox 2.21 that computed saliency maps using
local discontinuities in line orientation, intensity contrast, and
color opponency (Itti et al., 1998). For half of the pictures, we
designated as “target object,” the object located at the point of
maximal salience (i.e., high-saliency targets), while for the other
half we designated the object located at the point of minimal
salience (i.e., low-saliency targets).

Participants were required to memorize as many details as
possible for later retrieval. The identity of the target object was
unknown until retrieval (i.e., a delayed match-to-sample task).
Following a 8 s delay consisting of a blank screen, participants
were shown a single target object cut out from the original picture
and presented on a gray background (retrieval phase). In half of
the trials, the target object was presented at the same location
as in the original image, while in the other half of the trials
the target object was presented at the mirror location in the
opposite hemifield. Participants had to report whether the target
object was in the “same” versus “different” location with respect
to the position at encoding by pressing one of two response
buttons. Participants were then required to express a confidence
judgment concerning their response. For this, a display with the

1http://www.saliencytoolbox.net/

question “Are you sure? (y/n)” was presented, and participants
pressed again one of the two response buttons. This was followed
by a variable intertrial interval (1–3 s, uniformly distributed).
Participants underwent two fMRI runs including 50 trials and
lasting 16.5 min each.

fMRI Methods
Image Acquisition
A Siemens Allegra (Siemens Medical Systems, Erlangen,
Germany) operating at 3T and equipped for echo-planar imaging
(EPI) was used to acquire the functional magnetic resonance
images. A quadrature volume head coil was used for radio
frequency transmission and reception. Head movement was
minimized by mild restraint and cushioning. Thirty-two slices
of functional MR images were acquired using blood oxygenation
level-dependent imaging (3 × 3 mm, 2.5 mm thick, 50% distance
factor, repetition time = 2.08 s, time echo = 30 ms), covering
the entirety of the cortex. Eye-movements were also recorded
during fMRI scanning (see Santangelo and Macaluso, 2013, for
the analysis of eye-movements data).

Image Processing
We used SPM12 (Wellcome Department of Cognitive Neuro-
logy) implemented in MATLAB R2012b (The MathWorks Inc.,
Natick, MA, United States) for data preprocessing and GLM.
Each participant underwent two fMRI-runs, each comprising
477 volumes. After having discarded the first four volumes
of each run, all images were corrected for head movements.
Slice-acquisition delays were corrected using the middle slice as
reference. All images were normalized to the standard SPM12 EPI
template, resampled to 2 mm isotropic voxel size, and spatially
smoothed using an isotropic Gaussian kernel of 8 mm FWHM.
Time series at each voxel for each participant were high-pass
filtered at 220 s and pre-whitened by means of autoregressive
model AR(1).

Independent Component Analysis
The main aim of the current study was to highlight the
brain networks involved with subsequent remembering and
subsequent forgetting during the encoding, maintenance and
retrieval of everyday life scenes. These brain networks were
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identified by means of the independent component analysis
(ICA) as implemented in the Group ICA of fMRI Toolbox
(GIFT; Calhoun et al., 2001). This method involves performing
ICA on functional data concatenated over every participant,
creating a series of spatial maps and associated time courses
for the group. The number of components was automatically
estimated using a data driven approach, namely the “minimum
description length” criteria, developed by Li et al. (2007). A total
of 28 components were extracted. The infomax algorithm was
repeated twenty times with randomly initialized decomposition
matrices and the same convergence threshold using ICASSO
approach in GIFT (Himberg et al., 2004). ICASSO allows for
the estimation of small changes in the dataset as a result
of changes in data stability. In fact, as a finite set of data
never follows exactly the same ICA model, introducing ICASSO
allows for estimating the reliability of the generated components.
Back reconstruction was then used to create individual time
courses and spatial maps from each participant’s functional
data. All the ICs that involved the majority of activation falling
outside the cerebral cortex, for instance in the spinal cord, eyes,
borders of the skull, ventricles, etc., were considered as noisy
components and excluded from further analyses. After careful
visual inspection of the spatio-temporal characteristics of each IC,
twelve components were categorized as noisy components (see
Supplementary Figure S1), leaving 16 components for further
analyses. These latter components were labeled according to the
percentage of overlap with previously defined brain networks
(see Supplementary Table S1 and Supplementary Figure S2),
computed using the template provided by BrainMap IC2 (Fox
and Lancaster, 2002; Laird et al., 2011). It is important noting
that while the networks provided by BrainMap IC database
refer to “resting state,” our dataset was acquired during a visuo-
spatial WM task. Furthermore, our sample of subjects is relatively
modest as compared to the resting state studies that defined the
“standard” networks, such as those included in the BrainMap
IC database. It is therefore not surprising that, despite a general
overlap with previous-established brain networks, many of our
unnoisy ICs include extra cortical regions (see Supplementary
Table S1 for details).

Task-Related Component Identification
Components with time courses related to the experimental design
were identified with a multiple regressions analysis using the
temporal sorting feature of the GIFT toolbox. Individual WM
performance was modeled with SPM12. Single subject models
included two regressors for each memory phase (i.e., encoding,
E; maintenance, M; and retrieval, R), namely, “remembered”
trials (rem, followed by confident judgment, i.e., “yes, I’m sure”)
and “forgotten trials” (for, including also missed responses or
unsure judgments), resulting in six conditions: E_rem, E_for,
M_rem, M_for, R_rem, R_for. Events at encoding, maintenance
and retrieval were modeled as miniblocks, time locked at the
onset of the pictures with duration of 4, 8, and 6 s, respectively.
All predictors were convolved with the SPM12 hemodynamic
response function.

2http://www.brainmap.org/icns/fig2.html

We tested the significance of the component time courses
by doing statistics on beta weights obtained after the temporal
sorting, using the “Stats on Beta Weights” GIFT utility
(see, for a similar approach, Santangelo, 2018). Specifically,
this utility allowed us to assess the fitting of a given IC
time course with the events modeled in the SPM design
matrix. Our first step was to identify which components were
involved with the entire task, irrespective of the different
experimental conditions. For this, we performed an omnibus
F-test among the six regressors (E_rem, E_for, M_rem, M_for,
R_rem, R_for), ultimately revealing components that were
overall sensitive to our task manipulation. It is important
to note that the omnibus F statistic is not biased toward
any specific activation pattern (main effects or interactions)
and therefore constitutes a valid approach to functionally
localize eloquent voxels in the current study (see, for a similar
approach, Santangelo et al., 2010).

These latter components were further analyzed to highlight
their selective involvement at encoding [(E > M) and (E > R)],
maintenance [(M > E) and (M > R)])], and retrieval [(R > E)
and (R > M)], irrespective of WM performance (see Table 1).
These contrasts allowed us to assess the time course of which
component − if any − fitted significantly better with the
onsets of a specific WM phase modeled with the SPM design
matrix (e.g., encoding) over and above the onsets of the
other WM phases (e.g., maintenance and retrieval). Holm–
Bonferroni’s correction was applied to account for the risk of
increased false positives as a function of an increased number
of ICs tested (Gaetano, 2013). Finally, for the components
resulted significantly involved with WM encoding, maintenance,
and/or retrieval, we compared “remembered” vs. “forgotten”
trials by means of two-tailed paired t-tests (again corrected by
Holm–Bonferroni’s procedure to account for the risk of false
positives), thus highlighting networks involved with subsequent
remembering (remembered > forgotten trials) or subsequent
forgetting (forgotten > remembered trials). More specifically,
these contrasts allowed us to highlight whether the time
course of a given IC was significantly related to the onsets
of, e.g., remembered vs. forgotten trials, which also means
that the time course of the same IC was negatively correlated
with the onsets of the opposite condition, e.g., forgotten vs.
remembered trials. This procedure enabled us to highlight
an overall amount of seven brain networks, operating during
one or more memory phases and associated with memory
performance (i.e., subsequent remembering or subsequent
forgetting; see Table 2.

Finally, we conducted a targeted analysis to assess whether
the brain networks operating during successful encoding,
maintenance and retrieval were affected by the perceptual
salience (high vs. low) of the target object. For this, we created
new single subject SPM models including now four regressors
for each memory phase: remembered “high salient” targets
(rem_H), forgotten “high salient” targets (for_H), remembered
“low salient” targets (rem_L), and forgotten “lor salient” targets
(for_L). Then we assessed the fitting of the time course of the ICs
recruited by successful encoding, maintenance and retrieval by
contrasting rem_H vs. rem_L targets.
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TABLE 1 | Independent components − grouped by brain network − showing general (F-test) and specific (t-contrast) differences related to memory phase.

Omnibus F-test t-contrast

IC E, M, R (E > M) and (E > R) (M > E) and (M > R) (R > E) and (R > M)

t, p, e. s. t, p, e. s. t, p, e. s.

Attention Networks

Right executive network 6 F (5,90) = 8.0; p < 0.001 −4.1, 0.001, 1.369 −2.1, 0.163, 0.646 6.1, 0.001, 1.224

Dorsal attention network 10 F (5,90) = 22.1; p < 0.001 2.9, 0.041, 1.008 −10.1, 0.001, 3.423 7.2, 0.001, 1.686

Precuneus/Post. parietal 11 F (5,90) = 6.1; p < 0.001 −3.0, 0.036, 0.821 5.4, 0.001, 1.667 −2.4, 0.096, 0.572

Left executive network 13 F (5,90) = 1.8; p = 0.115

Default Mode Networks

Posterior cingulate/precuneus (post DMN) 18 F (5,90) = 4.1; p = 0.002 1.2, 1.000, 0.348 −1.9, 0.195, 0.684 0.6, 1.000, 0.218

Ant. cingulate/medial prefrontal (ant. DMN) 19 F (5,90) = 59.4; p < 0.001 5.0, 0.001, 1.588 11.8, 0.001, 3.938 −16.7, 0.001, 3.819

Salience Networks

Medial temporal 12 F (5, 90) = 3.6; p = 0.005 −0.9, 1.000, 0.360 3.9, 0.001, 1.134 −3.0, 0.022, 0.455

Sup. Temporal/inferior parietal (post. Salience) 22 F (5,90) = 8.4; p < 0.001 −4.0, 0.001, 1.376 −2.2, 0.143, 0.739 6.2, 0.001, 1.221

Anterior insula/ACC (ant. Salience) 28 F (5,90) = 80.1; p < 0.001 −7.9, 0.001, 2.786 −11.6, 0.001, 3.920 19.5, 0.001, 3.930

Visual Networks

Medial 2 F (5,90) = 6.9; p < 0.001 2.6, 0.082, 0.667 5.9, 0.001, 1.714 3.2, 0.012, 0.675

Primary 4 F (5,90) = 104.9; p < 0.001 4.8, 0.001, 1.489 −21.7, 0.001, 8.353 16.9, 0.001, 4.263

Lateral 16 F (5,90) = 139.1; p < 0.001 −11.8, 0.001, 4.039 −14.5, 0.001, 4.609 26.3, 0.001, 5.353

Visuo-Cerebellar Network 15 F (5,90) = 35.5; p < 0.001 −0.3, 1.000, 0.229 −11.2, 0.001, 1.946 11.5, 0.001, 2.437

Sensorimotor 14 F (5,90) = 7.4; p < 0.001 1.1, 1.000, 0.417 4.4, 0.001, 1.535 −5.5, 0.001, 1.163

Auditory 26 F (5,90) < 1; n.s.

Cerebellar 24 F (5,90) = 1.5; p = 0.195

Significant effects are marked with bold; t, t-value; p, Holm-Bonferroni corrected p-value; e. s., effect size (Cohen’s d).

TABLE 2 | The 12 task-related independent components involved either with encoding, maintenance or retrieval (see Table 1) tested during “subsequent remembering”
(remembered > forgotten trials, denoted by positive T-values) or “subsequent forgetting” (forgotten > remembered trials, denoted by negative t-values).

Encoding Maintenance Retrieval

IC t, p, e. s. t, p, e. s. t, p, e. s.

Attention Networks

Right executive network 6 1.7, 0.909, 0.420 3.5, 0.025, 0.876 −0.8, 0.867, 0.211

Dorsal attention network 10 3.6, 0.030, 0.906 3.7, 0.025, 0.915 3.1, 0.070, 0.767

Precuneus/Post. parietal 11 −0.5, 1.000, 0.122 −1.5, 0.751, 0.379 1.8, 0.620, 0.455

Default Mode Networks

Anterior cingulate/medial prefrontal (ant. DMN) 19 −3.2, 0.065, 0.801 −3.9, 0.017, 0.978 1.5, 0.726, 0.384

Salience Networks

Medial temporal 12 −1.5, 1.000, 0.384 −1.0, 1.000, 0.248 1.1, 0.867, 0.275

Superior Temporal/inferior parietal (post. Salience) 22 −0.9, 1.000, 0.214 2.4, 0.213, 0.597 −2.5, 0.180, 0.636

Anterior insula/ACC (ant. Salience) 28 1.7, 0.905, 0.437 3.6, 0.025, 0.899 −3.8, 0.020, 0.958

Visual Networks

Medial 2 −1.4, 1.000, 0.354 −0.6, 1.000, 0.138 −0.2, 0.869, 0.042

Primary 4 1.3, 1.000, 0,322 0.3, 1.000, 0.077 3.4, 0.037, 0.861

Lateral 16 0.1, 1.000, 0.024 3.7, 0.025, 0.920 −1.7, 0.642, 0.429

Visuo-Cerebellar Network 15 3.2, 0.065, 0.801 1.8, 0.523, 0.458 3.5, 0.037, 0.871

Sensorimotor 14 −0.7, 1.000, 0.175 0.1, 1.000, 0.036 1.5, 0.726, 0.372

Components are grouped by brain network. Significant effects are marked with bold; t, t-value; p, Holm-Bonferroni corrected p-value; e. s., effect size (Cohen’s d).

IC Covariance
Next, we investigated the covariance among ICs involved
with subsequent remembering and subsequent forgetting
across the different WM phases. As a first step, we
extracted, for each subject, the signal corresponding to

the seven ICs of interest. We then computed pairwise
Pearson correlations across individual ICs signals. Next,
a group-level correlation matrix was computed by Fisher-
transforming and averaging individual instances of the
previous matrices.
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Granger Causality Analyses
Finally, we investigated the effective connectivity among the SN,
AN and DMN using the Granger Causality Analysis (GCA). This
is based on the notion that, if a time-series ‘X’ causes a time-
series ‘Y’, then knowledge of X should improve the prediction of
Y more than information already included in the past of Y. GCA
allows computing causality by comparing the variance of the
residuals after an autoregressive (AR) application to the reference
signal Y, with the same variance obtained when autoregression
is evaluated by combining both the past values of the signal Y
and the past values of the potentially causing signal X. CGA
was already demonstrated to be a viable technique for analyzing
fMRI time-series (Barnett and Seth, 2011). We therefore modeled
directional causality among multiple time series using GCA, as
implemented in the ‘Multivariate Granger Causality Toolbox’
(MVGC; Barnett and Seth, 2014).

RESULTS

Behavioral Data
The analysis of accuracy revealed that participants performed
well above chance (t = 41.5, p < 0.001) with an overall retrieval
accuracy (“remembered” trials followed by “sure” responses)
of 77.4% (see Santangelo and Macaluso, 2013, for extended
behavioral results).

Task-Related Independent Components
Twenty-eight ICs were identified. Of these, sixteen were
determined to be task-related (i.e., not representing noise;
see Figure 2 and Supplementary Table S1). Based on their
main overlap with predefined networks from the BrainMap
IC database (see Supplementary Figure S2), each retained
component was attributed to a particular network (Damoiseaux
et al., 2006; Shirer et al., 2012). These components were further
analyzed in order to highlight which of them was involved
with successful (remembered > forgotten) or unsuccessful
(forgotten > remembered) WM performance, separately for each
memory phase, encoding, maintenance and retrieval. Significant
components are reported in Figure 3 and Table 1, and further
analyzed below.

Independent Components Related to WM Encoding
The presentation of natural scenes in our task recruited several
brain networks (see Table 1), including, IC 6, 10, and 11 (ANs),
IC 19 (DMN), IC 22 and 28 (SN), and IC 4 and 16 (visual
networks). However, the specific memory contrast (remembered
vs. forgotten) drastically reduced the number of ICs involved.

Subsequent remembering
Successful encoding of subsequently remembered scenes was
associated with the activity of IC 10 (Figure 3, top-left
panel), mainly overlapping with the dorsal AN (Duncan, 2013).
Posteriorly, this IC involved an extensive engagement of the
posterior parietal cortex, including both superior and inferior
parietal lobule, and extending to the angular gyrus, bilaterally,
plus some portions of the visual cortex, such as the fusiform

gyrus and the middle occipital gyrus, bilaterally. Anteriorly, IC
10 recruited the middle frontal gyrus, bilaterally. The recruitment
of this IC, associated with the dorsal AN, is in line with the
previous literature on WM (Piccoli et al., 2015; see also Nenert
et al., 2014, for similar results on episodic memory encoding).
Here we extended these findings using complex and unrepeated
stimuli, i.e., everyday life scenes. Interestingly, the activity of the
posterior portion of the network might be accounted for by the
spatial nature of the current WM task. Successful encoding of
the same pictures was already shown to recruit the posterior
parietal cortex using a standard − hypothesis driven − approach
(Santangelo and Macaluso, 2013). Conversely, the current data-
driven approach allowed us to highlight a wider network of
regions along the dorsal AN. These regions might reflect the need
to encode the spatial location of objects (i.e., the possible targets
at the following retrieval test) embedded in the scenes.

Despite the visual stimulation at encoding, it might be
worth noting here that the analyses failed to reveal any specific
contribution of the visual network. This is likely to be a
consequence of a similar recruitment of the visual network
irrespective of the subsequent WM performance, thus preventing
this circuit to emerge in one or the other contrast (remembered
vs. forgotten trials or vice-versa).

Subsequent forgetting
Our analysis did not reveal at the encoding any IC related to
subsequent forgetting. This might suggest that the absence of a
selective recruitment of the AN during WM encoding (see the
previous section) could be a sufficient condition to determine a
failure in WM performance.

Independent Components Related to Maintenance
As for the encoding phase, the maintenance phase revealed the
contribution of several brain networks when tested irrespectively
of memory performance (see Table 1). This included IC 10 and
11 (both part of the dorsal AN), IC 19 (anterior DMN), IC 12
and 28 (medial temporal and anterior part of the SNs), IC 2,
4, and 16 (medial, primary and lateral visual networks), IC 15
(visuo-cerebellar network), and IC 14 (sensorimotor network).
Except for the sensorimotor network, the other networks were
also involved with specific memory-related effects.

Subsequent remembering
At maintenance, several ICs were involved with successful
performance (Figure 3, top-center panel). First of all, we
observed again a significant contribution of IC 10, dorsal
AN − already operating during successful encoding − and
IC 6 (right executive network). Posteriorly, this latter network
included more lateral portions (as compared to IC 10) of the
superior and inferior parietal lobules, bilaterally, extending on
the right hemisphere to the supramarginal and the angular gyri.
Anteriorly, the IC 6 recruited larger portions of the frontal
lobe than the IC 10, namely the superior, medial and inferior
frontal gyri, bilaterally. Components 6 and 10 can be therefore
considered as different ICs constituting the frontoparietal AN
(Corbetta and Shulman, 2002; Duncan, 2013). This network
was already found to contribute to successful WM maintenance
(Jerde et al., 2012; Piccoli et al., 2015), aiding participants to stay
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FIGURE 2 | Task-related independent components (ICs) projected according to their functional similarity: (A) Attention networks; (B) Default mode networks; (C)
Salience networks; (D) Visual networks; (E) Sensorymotor network; (F) Auditory network. These brain projections were created thanks to BrainNet (Xia et al., 2013).
Note that the cerebellar network (IC 24) was not displayed since the cerebellum was not included in the ICBM 152 brain mesh of BrainNet (see also Table 1).

focused on those elements of the visual scenes that might be
target-objects at the following retrieval test.

Successful WM maintenance was also supported by IC 16,
lateral visual network, that included the middle and inferior
occipital gyri, extending bilaterally toward the lingual and
fusiform gyri and ventrally along the adjacent inferior and middle
temporal gyri. This IC also included the pre- and post-central gyri
in the left hemisphere. It is worth remembering here that there
was not visual stimulation at maintenance. The IC 16 might be
therefore interpreted as in line with the notion that successful
WM maintenance is supported by processes related to visual
imagery (Keogh and Pearson, 2011; Albers et al., 2013).

Finally, our analysis highlighted a significant contribution
of IC 28, mainly overlapping with the anterior SN. This
network include a set of regions that are though to play a key
role in selecting stimuli that are potentially relevant (Uddin,
2015). The SN is typically divided into roughly two main
subdivisions: the anterior cingulate cortex and the fronto-insular
cortex. Accordingly, IC 28 included the anterior cingulate cortex

(extending dorsally toward the medial portions of the middle
and superior frontal gyri and laterally to the adjacent prefrontal
cortex) and the left and right insula. This network might further
contribute − along with the AN − to WM maintenance of objects
that have been selected by participants as potential targets for the
upcoming retrieval test.

Subsequent forgetting
In line with our predictions based on the extant literature (Piccoli
et al., 2015), subsequent forgetting was marked at maintenance
by the recruitment of the IC 19, which involved regions known to
be part of the DMN (Raichle, 2015; see Figure 3, bottom-center
panel). Specifically, the IC 19 involved anteriorly the anterior
cingulate cortex extending toward the ventro- and dorso-
medial prefrontal cortex, and posteriorly the precuneus. Previous
literature found that the DMN was negatively correlated with the
AN during WM maintenance. In line with this notion, here we
found that increased activity along the DMN at maintenance was
associated with subsequent forgetting.
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FIGURE 3 | Independent components selectively involved with encoding, maintenance, and retrieval during either subsequent remembering of subsequent
forgetting. The components are projected on sagittal, coronal and axial sections of a standard MNI template.

Independent Components Related to Retrieval
As for the maintenance phase, performance-unrelated retrieval
involved IC 6 and 10 (involving different portions of the AN),
IC 19 (anterior DMN), IC 12, 22, and 28 (constituting the
SN), IC 2, 4, 15 and 16 (visual/visual-cerebellar networks), and
IC 14 (sensorimotor network) (see Table 1). The following
paragraphs highlight which of these ICs specifically contributed
to memory performance.

Subsequent remembering
At retrieval, successful performance was supported by two
components (Figure 3, top-right panel), related to the visual
and visuo-cerebellar network. The IC 4 included extended
portions of the occipital lobe, that is, the inferior, middle and
superior occipital giri, bilaterally, plus the cuneus, the lingual
and fusiform giri; the IC 15 extended more ventrally into
the visual cortex, recruiting also the cerebellum. Despite the
presentation of a visual stimulus (i.e., the to-be-judged target

object) at retrieval, we believe that the recruitment of this ICs
might be more in line with the idea that visual imagery is
an important component not only at maintenance but also at
retrieval (Keogh and Pearson, 2011; Albers et al., 2013). In fact,
these networks were not recruited for subsequent forgetting (see
next section), that is, in condition where target objects were
also presented. These networks might therefore support the
reconstruction of the target position within the visual scene by
means of visual imagery.

Subsequent forgetting
Finally, our analysis revealed that unsuccessful WM
performance was marked at retrieval by the enrollment
of IC 28 (i.e., the anterior SN). Differently from WM
maintenance, the recruitment of a sub-network of the SN
at retrieval was predictive of subsequent forgetting (Figure 3,
bottom-right panel). This will be further discussed in the
Section “Discussion.”
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FIGURE 4 | Pearson correlation values between the visual, salience, default mode, and attention networks. The gray color indicates low correlation values ranging
between –0.2 and 0.2.

Target Salience
The current findings revealed the recruitment of several ICs
operating during successful WM performance, namely: IC
10 at encoding, IC 6, 10, 16, and 28 at maintenance, IC
4 and 15 at retrieval. We further assessed whether these
networks were affected by the perceptual salience (high
vs. low) of the target object. However, this analysis failed
to reveal a different contribution of these networks as a
function of target saliency, both at encoding (t = −1.289,
p = 0.217), at maintenance (all ts ranging from −0.058
to 1.971, all ps > 0.067), and retrieval (both ts < 1.586,
both ps > 0.134).

Independent Components Covariation
The ICs predicting WM performance according to the specific
WM phase involved three well-known, and previously
established, brain networks, namely the AN, the DMN, and
the SN, plus important activity of the visual network. Figure 4
illustrates the correlation matrix among these networks,
including both positive and negative correlation values. Gray
cells in the correlation matrix indicates low correlation values,
ranging between −0.2 and 0.2. The correlation matrix revealed

a positive correlation between the IC 6 and 10 with IC 28 (e.g.,
AN with SN; r = 0.33 and r = 0.20, respectively). Both the
AN and SN were positively correlated with the activity of the
visual networks (e.g., IC 10 and 4, r = 0.55 and IC 28 and 4,
r = 0.58). By contrast, and coherently with the existent literature
(Chen et al., 2013), IC 19 was negatively correlated to both
IC 10 (anterior DMN and dorsal AN, respectively; r = −0.44)
and IC 28 (anterior DMN and anterior SN, respectively;
r = −0.24), with no further correlation with the visual networks
(all rs < 0.2).

Effective Connectivity Among the AN, SN and DMN
To further investigate the inter-relationship between the three
main networks predicting either successful or unsuccessful
WM performance across the different WM phases, namely
the IC 10 (AN), the IC 19 (DMN), and the IC 28 (SN),
we analyzed their effective connectivity by means of GCA.
As showed in Table 3, the GCA revealed reciprocal causal
relationships among the three brain networks. This means
that the activity of each of these three network predicted
and it was also predicted by the activity of the other two
networks.
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TABLE 3 | Holm-Bonferroni’s corrected p-values derived from the Granger
Causality Analysis carried out among the attention (IC 10), default mode (IC 19)
and salience (IC 28) networks.

Attention net. — <0.001 <0.001

To: Default mode net. <0.001 — <0.001

Salience net. <0.001 <0.001 —

Attention net. Default mode net. Salience net.

From:

DISCUSSION

The main aim of the current study was to characterize large-
scale brain networks operating during successful or unsuccessful
encoding, maintenance and retrieval in a visual-spatial WM
task based on complex and unrepeated everyday life scenes.
As expected, together with the visual network, we observed
a dynamical interplay between sub-networks of the AN, the
DMN and the SN across the three WM phases, depending on
subsequent WM performance.

The analysis of the inter-relationship among the sub-networks
of the IC constituting the AN, SN, and DMN showed reciprocal
causality, indicating bidirectional influences among them. The
pattern of covariation among these networks is also consistent
with the previous literature. The ICs that are part of the AN and
SN are positively correlated, and showed positive correlation with
the visual network (Uddin, 2015). On the contrary, the activity
of the IC19 (included in the anterior DMN) was negatively
correlated with both the activity of the dorsal AN and the
anterior SN (Chen et al., 2013; Piccoli et al., 2015) (cf. analysis
of the independent components covariation). Importantly, our
approach based on the estimation of the fitting of the IC time
course with the GLM model allowed us to additionally assess the
involvement of these brain networks across the different WM
phases and performance. The recruitment of part of the AN
(i.e., the IC 10) during both the encoding and the maintenance
phase was associated with successful WM performance. The
involvement of the areas of the AN during successful visual-
spatial WM encoding and maintenance is in good agreement with
the previous literature (Piccoli et al., 2015). However, here we
showed that together with the recruitment of the AN, other brain
networks are necessary for successful WM performance, such as
the SN and the visual cortex at maintenance.

The SN has key nodes in the insular cortex and is thought
to be critical for detecting stimuli that are potentially relevant
from a behavioral point of view (Menon and Uddin, 2010). The
current involvement of the SN at maintenance might therefore
reflect the complexity of the stimuli used in the present study.
Everyday life scenes include a number of objects that could
be presented at retrieval as possible targets for the same vs.
different location task. Accordingly, only a limited number of
these objects can be encoded and maintained by participants, due
to intrinsic limitations of WM (Luck and Vogel, 2013). Across
several previous studies (Santangelo and Macaluso, 2013; Pedale
and Santangelo, 2015; Santangelo et al., 2015) we demonstrated
that the probability to retrieve a target-object embedded in

an everyday scene is a function of the object-related sensory
salience, that is, of low-level sensory features characterizing
the specific target-object tested at retrieval. When the number
of potential targets overcomes WM capacity, e.g., during the
encoding of everyday life scenes, highly salient objects have more
chances than lower salience objects to be successfully encoded
and then correctly remembered at retrieval (see, for a review,
Santangelo, 2015). Highly salient objects were shown to be more
attentional capturing than lower saliency objects (Itti and Koch,
2001). As a consequence, they might have a prioritized access to
perceptual and post-perceptual processes (i.e., WM maintenance
and retrieval). The posterior parietal cortex was found to play a
key role in the prioritization of salient objects (Nardo et al., 2011,
2014; see, for a review, Gottlieb, 2007). Although we did not find
a selective contribution for remembering high vs. low salience
objects (cf. target saliency analysis), the general pattern of the
IC analysis is in line the previous literature. In fact, our findings
revealed a massive engagement of the AN during the encoding,
and especially of the posterior network nodes (i.e., the posterior
parietal cortex) that might have significantly contributed to the
selection of possible targets according to their current perceptual
salience. These posterior nodes were still active at maintenance,
along with the anterior AN nodes (i.e., the prefrontal cortex) and
the SN. Together, the anterior AN and the SN might not only
play a crucial role in maintaining the selected objects potentially
relevant for the following memory test, but also in coordinating
neural resources for the following behavioral response at retrieval
(see, e.g., Lamichhane and Dhamala, 2015; Chand and Dhamala,
2016). Activity along the anterior AN and SN might be necessary
for the recruitment of the visual network, to promote visual
imagery/visual representation of the encoded scene to select the
correct response.

Moreover, these networks might play a key role in reducing
the involvement of the DMN during WM maintenance. Previous
literature showed a causal relationship between increased
activation of the AN/SN and decreased activation of the DMN
(Chen et al., 2013). This is also compatible with the findings of
Piccoli et al. (2015) reporting negative correlation between the
AN and DMN during WM maintenance. Consistently with this
literature, the current data showed mutual causal relationships
among the AN, SN and DMN, and negative correlations between
the AN/SN and the DMN. In particular, our findings appears
to emphasize the role of SN, which might also contribute −

together with the AN − to down regulate the DMN. This was
supported by the evidence that we found an enrollment of the
DMN only when the AN and SN were not involved, that is, during
the maintenance phase of subsequent forgotten trials. The DMN
was showed to be recruited by “internal” cognitive processes,
such as mind wandering (Mason et al., 2007), self-awareness
streaming (Vanhaudenhuyse et al., 2010), and autobiographic
memory (Svoboda et al., 2006). As such, the DMN might be
entirely unnecessary (and even detrimental) at maintenance,
wherein participants are trying to preserve the representation
of the external information relevant to correctly perform the
visual-spatial task. The down regulation operated by the AN/SN
on the DMN at retrieval might be therefore functional to keep
maintenance operations undisturbed. Accordingly, we found that
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the enlistment of the DMN at maintenance was associated with
unsuccessful WM performance, consistently with the previous
literature (Piccoli et al., 2015).

Finally, our findings revealed for the first time − at last in
our knowledge − that the SN might have a different impact on
WM performance according to the specific WM phase. In fact,
while the engagement of the SN at maintenance is associated
with subsequent remembering, the recruitment of the SN at
retrieval is related to subsequent forgetting. We speculate that
this late enrollment of the SN might be due to an inefficient
attempt to activate the network that coordinates internal stimulus
representation (i.e., the AN, which is not recruited in subsequent
forgotten trials) through the visual network.

CURRENT LIMITATIONS

An intrinsic problem related to the adoption of paradigms
based on the delayed-match-to-sample task is that it is not
possible to estimate a priori the amount of remembered
and forgotten trials. This typically results in an unbalanced
amount of trials used to estimate the BOLD signal in the two
conditions, just as in the current experiment, with an average
of 77 remembered and 23 forgotten out of 100 total trials.
Future research should develop new strategies to overcome this
potential flaw.

Another potential limitation is related to the fact that the
current study cannot account for the possible impact of sex
differences on the neural mechanisms highlighted here. Previous
literature suggests that there may be crucial differences between
males and females in visuospatial WM (see, e.g., Loring-Meier
and Halpern, 1999; Palmiero et al., 2016). Future research
involving larger samples of participants might address this
interesting issue.

It is also worth mentioning here that a different approach
for the ICA would have consisted in averaging signals across
voxel applying masks corresponding to well-established brain

networks, such as, e.g., the BrainMap IC database (Fox and
Lancaster, 2002; Laird et al., 2011). While this approach has the
advantage to allow a more direct comparison with previously
established brain networks, it has the disadvantage to consider
signals not necessarily related to the group of subjects under
investigation. Here we have chosen to investigate specific
ICs originating from our group of participants, despite these
networks only partially overlapped with the brain networks
highlighted by the previous literature.

CONCLUSION

This study characterized the dynamical interplay between the
large-scale brain networks operating during a visuospatial WM
task based on everyday life scenes. We found that the recruitment
of the AN at encoding, the AN and the SN at maintenance, plus
the visual network at retrieval, are associated with subsequent
remembering. Conversely, subsequent forgetting was associated
with the engagement of the DMN at maintenance, and the SN
at retrieval. Altogether, these findings highlight the importance
to investigate the dynamical interplay between large-scale brain
networks sustaining complex cognitive processes, such as WM
encoding, maintenance and retrieval of real-life scenes.
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