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Transcranial magnetic stimulation (TMS) was developed 30 years ago, in part to decrease the
peripheral side-effects associated with transcranial electrical stimulation (Barker, 1991). TMS has
been effective in that aim, and great advances have been made over the past 30 years. TMS can
still be uncomfortable and painful, however, as it stimulates excitable superficial tissue including
scalp muscles and peripheral nerves (Maizey et al., 2013). This causes annoyance, pain, and muscle
twitches (i.e., discomfort) that vary systematically across the scalp (Meteyard and Holmes, 2018).
While superior and posterior scalp locations are associated with almost no discomfort, inferior
frontal and temporal locations are associated with significant discomfort. This discomfort can
include sharp pain and strong contractions of scalp, head, and neck muscles. In protocols where
TMS and a behavioral task are separated by time (“off-line”), these peripheral side-effects of brain
stimulation may not affect subsequent task performance. But, in protocols where TMS is applied
simultaneously with the behavioral task (“on-line”), these side-effects of TMS might interfere
significantly with performance.

Meteyard and Holmes (2018) found that participants’ subjective ratings of the annoyance, pain,
and muscle twitches caused by single pulse TMS was significantly and strongly correlated with
changes in reaction time (RT) on two simple stimulus-response congruency tasks. Ratings of
muscle twitches accounted for 43% of the variance in RT. TMS over parietal areas (e.g., P3/P4
electrode locations) resulted in a 9ms decrease in RT. TMS over inferior locations (e.g., anterior
temporal lobe) led to RT increases as large as 81ms. Thus, TMS-related peripheral side effects must
be taken into account when studying the effects of on-line TMS. In particular, when effects of
TMS are compared with a no TMS or sham condition, or when two TMS locations are compared,
researchers need to control for differences in TMS-related discomfort.

For this Opinion, we investigated whether the TMS-related discomfortmeasured in our previous
work could predict the reported differences in RT in studies published in the last 10 years.
We searched for studies using on-line single-pulse TMS over the least uncomfortable (superior
parietal) and most uncomfortable (anterior temporal, inferior frontal) brain areas. PubMed was
searched with the query “(((TMS OR (transcranial magnetic stimulation)) AND parietal)) AND
(“2008/01/01” [Date-Publication]:“3000” [Date-Publication]) AND (reaction OR response).” A
second and third search replaced the term “parietal” with “anterior temporal” and “inferior frontal.”
Three hundred and seven results were returned for parietal, 14 for anterior temporal (1 more after
extending the search to 20 years) and 65 for inferior frontal. Studies were included if we could
access the full text, they were in English, studied healthy participants, and used on-line single-pulse
TMS.We excluded studies using repetitive TMS, reporting only clinical data, or not containing RTs
from a behavioral task. The parietal search focused on superior parietal or intraparietal locations;
excluding more inferior supramarginal or angular gyri targets. Seventeen studies met the inclusion
criteria (15 parietal, 2 inferior frontal). To increase the sample size, we relaxed the inclusion criteria
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FIGURE 1 | Subjective ratings of muscle twitches and TMS-related RT increases (x-axes, from Meteyard and Holmes, 2018) predict RT differences in published

studies (y-axes, multiple studies). (A–D) Show different measures. Black symbols and lines: single-pulse TMS data; Gray symbols: Double- (dp) and triple-pulse (tp)

TMS data. Gray lines: Linear fit across all available data. Data for the x-coordinates were taken from Meteyard and Holmes (2018). Data for the y-coordinates were

taken from Baldassarre et al. (2016), Busan et al. (2009a,b,c); Busan et al. (2012), Cattaneo et al. (2009, 2014), Chica et al. (2011), Fautrelle et al. (2013), Jackson

et al. (2015), Johnson et al. (2012), Kehrer et al. (2015), Koch et al. (2008), Ku et al. (2015), Machizawa et al. (2010), Newman-Norlund et al. (2010), Oshio et al.

(2010), Pasalar et al. (2010), Renzi et al. (2011), Ricci et al. (2012), Salillas et al. (2009, 2012), Schuhmann et al. (2009), Shinshi et al. (2015), Teige et al. (2018), Tunik

et al. (2008), Vernet et al. (2008), Wheat et al. (2013), and Yan et al. (2016). (A) Median twitch ratings (x-axis) predict raw RT differences (y-axis). (B) Mean TMS effect

on RT predicts raw RT differences. (C) Median twitch ratings (x-axis) predict standardized RT differences (y-axis). (D) Mean TMS effect on RT predicts standardized

RT differences.

to include double-, and triple-pulse on-line TMS studies (total:
22 parietal, 6 inferior frontal, 2 anterior temporal).

From these articles, we extracted all the locations stimulated
(including any additional non-parietal or non-frontal/temporal
areas) and the RTs associated with those locations, averaging
across other conditions. These reported locations were matched
as closely as possible with those stimulated in Meteyard and
Holmes (2018), which mostly corresponded to 10–10 EEG
electrode locations. As predictor variables, we used the mean of
median rating of muscle twitches and the mean effect of TMS
on RT (i.e., change in RT with TMS as compared to no TMS),
which were extracted from http://www.tms-smart.info. For the
outcome variable, within each study, differences between RTs for
each location and a control condition (no TMS, sham TMS, TMS
over vertex, or the average of these) were calculated. Each study
contributed at least one data point (mean ± SD = 1.6 ± 1.1
data points per study, both for the 17 single-pulse studies and
across all 30 studies). Where multiple TMS locations, groups,
or experiments were reported, each study contributed multiple
data points. RT differences and standardized RT differences
(RT difference/pooled SD) were correlated with the per-location

mean of median ratings of muscle twitches and effect of TMS
on RT from Meteyard and Holmes (2018). 95% confidence
intervals for r-values were obtained by bootstrapping over 10,000
iterations. Results are plotted in Figure 1. Full data, analysis
scripts, and supplementary figures can be found at https://osf.io/
f49vn/, in Supplementary Table 1, and at https://tms-smart.info.

For single-pulse TMS studies (28 samples), differences in
RT between TMS and control conditions were significantly
correlated with both the mean of median ratings of muscle
twitches, r26 = 0.473, 95%CI = {0.209, 0.757}, p = 0.011
(Figure 1A), and the mean effect of TMS on RT from Meteyard
and Holmes (2018), r26 = 0.497 {0.173, 0.740}, p = 0.007
(Figure 1B). For each increment in twitch rating, RT increased
by 11.5ms (cf. 15ms in Meteyard and Holmes, 2018). This
relationship strengthened when the observed RT data were
standardized, both for twitches, r24 = 0.690 {0.265, 0.872}, p <

0.001 (Figure 1C), and RTs, r24 = 0.624 {0.165, 0.846}, p= 0.001
(Figure 1D). Each increment in twitch rating was associated with

a change of 0.29SD in RT. Expanding the dataset to include
double- and triple-pulse online TMS studies (Figure 1, gray
symbols) weakened these relationships (twitches & raw RT, r47
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= 0.365 {0.141, 0.597}, p= 0.01; RT & raw RT, r47 = 0.272 {0.066,
0.530}, p = 0.06; twitches & standardized RT, r41 = 0.529 {0.245,
0.727}, p < 0.001; RT & standardized RT, r41 = 0.346 {0.138,
0.613}, p = 0.023). TMS over superior parietal cortex, and over
other scalp regions where little discomfort is felt, results in a small
decrease in RT (bottom-left of Figures 1A–D), whereas TMS at
scalp locations causing significant discomfort generally increases
RT (top-right of Figures 1A–D). In all analyses, the bootstrapped
95% confidence intervals for the correlation coefficients did
not include 0. In an additional check for robustness of the
correlations, each dataset was submitted to 10,000 iterations of
a “leave N out” analysis. On each iteration, the original dataset
was re-analyzed, each time leaving out a randomly-selected
N datapoints, where N varied between 1 and 20. The 95%
confidence interval for all 8 r-values reported above included r =
0 only when at least 13 datapoints had been left out of the analysis.
These analyses suggest that the observed correlation is positive
and does not depend on particular datapoints being included.

Subjective ratings of muscle twitch strength can predict the

effects of TMS on RT at a range of scalp locations, across a range
of tasks, and across a range of TMS protocols. Two qualifications
should be made. First, the reported correlations may be a

slight underestimation of the true effect. Across studies, the
TMS intensity used (maximum stimulator output) was inversely-
related both to predicted discomfort [r(28) = −0.507, p =

0.004], and to predicted RT changes associated with stimulation
at that site [from Meteyard and Holmes, 2018 data, r(28) =

−0.524, p = 0.003], although this was not significant for the RT
differences reported by the studies themselves [r(26) = −0.124, p
= 0.55]. This could be due to the finding that higher discomfort
is associated with lower scalp-to-cortex distances (Meteyard
and Holmes, 2018), thus requiring lower TMS intensity. Or,
it could be that researchers use lower TMS intensities when
their participants report greater discomfort. Second, the reported

correlations were weaker when the double- and triple-pulse
TMS studies’ data were included. This could be due to genuine
differences in discomfort between single-pulse and multi-pulse
TMS, or to the greater heterogeneity of study types and TMS
parameters when all TMS protocols were included.

We cannot conclude that the results of the reviewed studies
merely reflect differences in the peripheral side-effects of TMS,
since we deliberately averaged across experimental conditions
(but not scalp locations) within each study. Instead, we can
conclude that RTs under TMS differ systematically across scalp
locations (i.e., not necessarily caused by differences in, or
the effects of TMS on, the underlying brain regions). Direct
comparisons of RT between TMS at different scalp locations are
confounded by differences in these peripheral side-effects, and
must be interpreted with caution.

The data from Meteyard and Holmes (2018) has been
used to create interactive maps available at http://www.tms-
smart.info. Researchers can use these interactive maps to select
control sites that may help account for TMS-related discomfort.
In the next 30 years of studies using TMS, we recommend
systematically controlling for the side-effects associated with

magnetic stimulation of the scalp, for example by choosing
control sites with similar levels of discomfort.
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