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The performance of the limited-information statistic M2 for diagnostic classification

models (DCMs) is under-investigated in the current literature. Specifically, the

investigations of M2 for specific DCMs rather than general modeling frameworks are

needed. This article aims to demonstrate the usefulness of M2 in hierarchical diagnostic

classification models (HDCMs). The performance of M2 in evaluating the fit of HDCMs

was investigated in the presence of four types of attribute hierarchies. Two simulation

studies were conducted to examine Type I error rates and statistical power of M2 under

different simulation conditions, respectively. The findings suggest acceptable Type I error

rates control of M2 as well as high statistical power under the conditions of a Q-matrix

misspecification and the DINA model misspecification. The data of Examination for the

Certificate of Proficiency in English (ECPE) were used to empirically illustrate the suitability

of M2 in practice.

Keywords: diagnostic classification models, attribute hierarchies, absolute fit test, limited-information test

statistics, goodness-of-fit

INTRODUCTION

Diagnostic classification models (DCMs) (Rupp et al., 2010) have demonstrated great potential for
evaluating respondents with fine-grained information to support targeted interventions. Previous
studies have applied DCMs to address some practical issues in education (e.g., Jang, 2009) and
psychology (e.g., Templin and Henson, 2006). However, the area of research in DCMs is still
relatively new.More research onmodel data fit statistics are needed for evaluating DCMs. Although
relative fit statistics (e.g., de la Torre and Douglas, 2008) are available for determining the most
suitable of several alternative models, they cannot be used for evaluating test- or item-level
goodness-of-fit. As such, some authors have proposed and developed methods to evaluate the
absolute fit of DCMs (e.g., Jurich, 2014; Wang et al., 2015). Specifically, the limited-information
test statistics, e.g., theM2 statistic, was recommended by researchers (e.g., Liu et al., 2016) because
of its ability to address sparseness in the contingency table. In the study by Liu et al. (2016), the
performance ofM2 was evaluated under the log-linear cognitive diagnosis model (LCDM; Henson
et al., 2009). They found that M2 has reasonable Type I error rates control when models were
correctly specified and good statistical power when models or Q-matrix were misspecified, under
the conditions of different sample sizes, test lengths, and attribute correlations. More importantly,
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their study has identified the cutoff values of the root mean
square error of approximation (RMSEA) fit index for M2

(RMSEA2). Similarly, the study by Henson et al. (2009)
validated the usefulness of M2 in DCMs by a series simulation
studies. Specifically, their study showed that M2 is of good
performance across different diagnostic model structures and
is sensitive to the model misspecifications, the Q-matrix
misspecifications, the misspecifications in the distribution of
higher-order latent dimensions, and violations of local item
independence. Generally, their findings were based on the
general frameworks (e.g., LCDM) or the most common DCMs
(e.g., DINA; de la Torre, 2009), which assume extremely
complicated relationships among items but simple relationships
among attributes. However, the more specific models are more
suitable for practical use (Rojas et al., 2012; Ma et al., 2016), the
results will be more convincing if M2 can be applied in more
specific and practical conditions.

In education, students are often required to master certain
requisite skills before they move on to learn new knowledge
and skills. This indicates that hierarchical relationships often
exist among the cognitive skills. To address the presence
of hierarchical relationship among attributes, Templin and
Bradshaw (2014) developed the hierarchical diagnostic
classification models (HDCMs) to model the attribute
hierarchies. Hence, applying M2 to evaluate the fit of the
DCMs in the presence of attribute hierarchies can help further
testify to the utility of limited-information tests for DCMs. In
this study, we use M2 and examine its Type I error rates and
its power to evaluate the overall fit of HDCMs under different
simulation conditions. Specifically, five types of DCMs are
considered in our research: LCDM and HDCMs with linear,
convergent, divergent and unstructured attribute hierarchies. In
addition, the performance ofM2 is examined with real data.

HIERARCHICAL DIAGNOSTIC
CLASSIFICATION MODELS

Over the past several decades, numerous DCMs have been
developed and presented in the psychometric literature. Some
of these models are general modeling frameworks, under which
other specific DCMs can be subsumed through statistical
constraints on model parameters. Hence, the general DCMs
can flexibly model the probabilities of examinee’s differently
structured responses at the sacrifice of model simplicity. In this
study, we use as the fitting model the HDCM, which is developed
based upon the LCDM framework (Henson et al., 2009). The
LCDM defines the probability of a correct response of the ith
examinee for item j as

P(Xij = 1
∣

∣α i) =
exp( λ j,0 + λ′

jh(αi, qj))

1+ exp( λ j,0 + λ′
jh(αi, qj))

, (1)

where α i = (αi1, . . . ,αiK)′ represents the attribute mastery
pattern of examinee i, λ j,0 represents the intercept parameter
for item j, and λ j represents the main and the interaction effect

parameters for item j. qj =
(

qj1, . . . , qjk, . . . , qjK
)′
is the Q-matrix

entries for the item j, where qjk denotes whether attribute k is
required by item j. h is a mapping function and is used to indicate
the linear combination of α i and qj:

λ ′
jh(α i, qj) =

K
∑

k=1

λj,1,(k)αikqjk

+
K−1
∑

k=1

∑

k′>k

λj,2,(k,k′)αikαik′qjkqjk′ + · · · . (2)

In the above equation, for item j, all main and interaction
effects are included. Specifically, λ j,1,(k) refers to the main
effect of attribute k for item j, and λj,2,(k,k′) refers to the two-
way interaction effect of attributes k and k′ for item j. Hence,
the subscript following the first comma in λj,1,(k) or λ j,2,(k,k′)
indicates the effect level, and the subscript(s) in parentheses
refers to the involved attribute(s) for the effect. For example,
if qj = (0, 1, 1)′ andα i = (1, 1, 0)′, namely the second and
third attributes, are required by item j and the examinee has
mastered the first two attributes, thenλ ′

jh(α i, qj) = λj,1,(2).
Forα i = (0, 1, 1)′, namely the examinee has mastered all
attributes required by item j, then λ T

j h(α i, qj) = λ j,1,(2) +
λ j,1,(3) + λ j,2,(2,3), indicating that two main effects and one
two-way interaction effect of attributes 2 and 3 are included in
item j. Further, a statistical constraint is defined to ensure the
monotonicity of the LCDM (see Henson et al., 2009).

Attribute hierarchies representing student knowledge
structures often exist in education. However, how to model the
attribute hierarchies had not been resolved until the HDCMs
were developed by Templin and Bradshaw (2014). As previously
mentioned, the LCDM is a general modeling framework under
which other specific models can be obtained through statistical
constraints. The parameterization of the HDCM, which is
based on the LCDM, is no exception. Moreover, because the
different types of attribute hierarches correspond to different
parameterizations, the linear hierarchies are used for illustration.

With respect to the LCDM, K attributes correspond to 2K

attribute mastery patterns. However, for a linear hierarchy with
K attributes, the number of attribute mastery patterns is sharply
reduced from 2K toK + 1. This change is reflected byα ∗

i ,
which refers to the possible attribute mastery patterns under the

constraints of the linear hierarchy. Allowing qj =
(

a, b, c, . . .
)′

to denote the attributes required by item j, the linear hierarchy
defines attribute a to be the most fundamental attribute such that
any other one attribute is nested within its former attribute. Thus,
the matrix product in Equation (2) is modified toλ ′

jh(α
∗
i , qj):

λ ′
jh(α

∗
i , qj) = λj,1,(a)αiaqja + λj,2,(b(a))αiaαibqjaqjb +

λj,3,(c(b,a))αiaαibαicqjaqjbqjc + · · · . (3)

As such, if item j measures attributes 1 and 2 and attribute 2 is
nested within attribute 1, the HDCM defines the probability of a
correct response of the ith examinee for item j as

P(Xij = 1
∣

∣α ∗
i )

=
exp(λj,0 + λj,1,(1)αi1qj1 + λj,2,(2(1))αi1αi2qj1qj2)

1+ exp(λj,0 + λj,1,(1)αi1qj1 + λj,2,(2(1))αi1αi2qj1qj2)
. (4)

Frontiers in Psychology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 1875

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Chen et al. M2 in Hierarchical DCMs

Under the HDCM, the item parameters include only one
intercept, onemain effect for attribute 1 and one interaction effect
for attribute 2 nested within attribute 1. Obviously, regardless of
the number of attributes, there will be only one main effect in
the item response function owing to the constraints of the linear
hierarchies; accordingly, the number of item parameters for items
measuring several attributes is also greatly reduced.

In this study, four fundamental hierarchical structures (see
Figure 1) by Leighton et al. (2004) were modeled by HDCMs.
All attribute hierarchies involve five attributes. Specifically, linear
hierarchy defines linear relationships between attributes: the
mastery of an attribute is dependent on the mastery of its former
attribute. As such, attribute 1 is the most fundamental attribute
given that it is required for the mastery of any other attributes
in the hierarchical structure. In other words, for example, it is
unlikely that an examinee have mastery of attributes 3 and 4
without the mastery of attributes 1 and 2. The linear hierarchy
would largely reduce the item parameters of LCDM. As an
example, assume item jmeasures attributes 1, 2, and 4, the linear
HDCM defines the matrix product of item j as

λj,1,(1)αi1qj1 + λj,2,(2(1))αi1αi2qj1qj2

+ λj,3,(1,2,4)αi1αi2αi4qj1qj2qj4. (5)

It can be found that only the main effect of attribute 1, the
two-way interaction effect of attributes 1 and 2, and the three-
way interaction effect of attributes 1, 2, and 4 are modeled
in HDCM under the constraints of the linear hierarchy. In
the convergent hierarchy, the mastery of attributes 3 or 4 are
dependent on the mastery of attributes 1 and 2, and both
attributes 3 and 4 are prerequisite attributes of attribute 5. As
such, the same item measuring attributes 1, 2, and 4 is modeled
by the same way as equation (5) under the convergent HDCM.
In the divergent hierarchy, attribute 1 is the prerequisite attribute
of both attributes 2 and 4, which in turn are the prerequisite
attributes of attributes 3 and 5 respectively. Under the divergent
HDCM, the same item would be modeled as

λj,1,(1)αi1qj1 + λj,2,(2(1))αi1αi2qj1qj2 + λj,2,(4(1))αi1αi4qj1qj4

+ λj,3,(1,2,4)αi1αi2αi4qj1qj2qj4. (6)

In the unstructured hierarchy, attribute 1 is the prerequisite
attribute of all other attributes, which are independent from each
other. Under the unstructured HDCM, the same item would be
modeled by the same way of divergent HDCM. It should be noted
that for items measuring four or five attributes, different attribute
hierarchies would model the same item in more distinct ways,
since more attributes lead to more main and interaction effects.

THE M2 TEST STATISTIC

Regarding the issue of fit tests for DCMs, several recent
studies have focused on item-level fit statistics for DCMs (e.g.,
Kunina-Habenicht et al., 2012; Wang et al., 2015). Despite
the feasibility of the proposed item-level fit statistics, a way
to assess the absolute model-data fit in the test level remains
undeveloped because the traditional full-information statistics,

such as χ2 and G2, cannot be practically feasible in DCMs.
Specifically, the computations of χ2 and G2 should be based
on all possible response patterns, namely, the full contingency
table. However, it is required that the expected frequency in
each cell should be large, i.e., usually exceeding 5, for χ2 and
G2 to be effective. This indicates that only a few items and a
large number of examinees are required for a test using DCMs
because even a small number of items can contribute to a large
number of response patterns, a situation that easily leads to the
sparseness of the contingency table. As such, some approaches
have been proposed to address the issue of sparseness. For
instance, although the Monte Carlo resampling technique can
be used to produce empirical p-values (Tollenaar and Mooijaart,
2003), it is too time-consuming in practice. Another approach,
the posterior predictive model checking method (Sinharay
and Almond, 2007), is conservative and requires intensive
computations due to the Markov chain Monte Carlo (MCMC)
algorithm.

The limited-information tests are promising for model-data
fit testing in DCMs. Unlike the full-information statistics, such

as χ2 and G2, which use the entire contingency table, limited-
information statistics use only some subset of lower-order

marginal tables. M2 is a commonly used limited-information

statistic that demonstrates good performance for model-data
fit tests (Maydeu-Olivares and Joe, 2005; Cai et al., 2006).
Specifically, because M2 uses only the univariate and bivariate

marginal information, it can be better calibrated for the

sparseness in the contingency table (Maydeu-Olivares and Joe,
2006). The performance of M2 has been sufficiently investigated

under the structural equation model (SEM) and item response
theory (IRT) framework in previous studies (e.g., Maydeu-
Olivares and Joe, 2005; Maydeu-Olivares et al., 2011). However,
the application of M2 in DCMs has emerged only in recent
years (e.g., Jurich, 2014; Hansen et al., 2016; Liu et al., 2016),
through which the usefulness of M2 in DCMs has been
validated.

M2 is the most popular statistic of one family of limited-
information test statistics, Mr , where r denotes the marginal
order (Maydeu-Olivares and Joe, 2006). Even though M2
uses only the univariate and bivariate marginal information,
it is adequately powerful and can be computed efficiently
(Maydeu-Olivares and Joe, 2005). Similar to traditional full-
information statistics, the limited-information statistics are
constructed using the residuals between observed and expected
marginal probabilities. Hence, the residuals of the univariate
and bivariate marginal probabilities should calculate first prior
to the computation of M2. Let π̇1 = (π̇ 1, . . . , π̇ j, . . . , π̇ J)

′

denotes the first-order marginal probabilities, specifically, the
marginal probabilities of correctly responding to each single test
item, where π̇ j denotes the marginal probability of correctly
responding to the jth item. Accordingly, π̇2 denotes the second-
order marginal probabilities of correctly responding to each item
pair. Then, let π2 = (π̇1

′, π̇2
′)′ denote the up-to-order 2 joint

marginal probabilities and π denote the true response pattern
probabilities, which is a 2J × 1 vector. Thus, the univariate
and bivariate marginal probabilities can be calculated as follows:
π2 = L2 × π where L2 is a d × 2J operator matrix of 1 and
0 s. The row-dimension, d = J + J(J − 1)/2, is the number
of first- and second-order residuals. Using a test of 3 items
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as an example, the up-to-order 2 marginal probabilities should
be

π2=
(

π̇1

π̇2

)

=























π̇1

π̇2

π̇3

π̇1,2

π̇1,3

π̇2,3























=L2 × π=

















0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1















































π (0,0,0)

π (1,0,0)

π (0,1,0)

π (0,0,1)

π (1,1,0)

π (1,0,1)

π (0,1,1)































,

(7)
where π ( # , # , # ) refers to the probability of the corresponding
item response pattern.

Then, let p2 = L2 × p and π̂2 = L2 × π
(

γ̂
)

indicate
the observed and model-predicted marginal probabilities,
respectively, where p refers to the observed response pattern
probabilities and π

(

γ̂
)

refers to the model-predicted response
pattern probabilities evaluated using the maximum likelihood
estimateγ̂ . Thus, the univariate and bivariate residuals are
computed asr2 = p2 − π̂2. Thereafter, theM2 statistic is derived
using r2 and a weight matrix,W2, as follows:

M2 = N(r2)
′W2(r2) (8)

whereW2 = 4−1
2 − 4−1

2 1 2(1 2
′ 4−1

2 1 2)
−1

1 2
′ 4−1

2 . The
vector of the first- and second-order residuals r2 is asymptotically
normally distributed with means of zero and a covariance matrix
42 − 1 2I

−1 1 ′
2 (Reiser, 1996; Maydeu-Olivares and Joe,

2005):

√
N(r2) → N(0, 4 2 − 1 2I

−1 1 ′
2) (9)

where 4 2 = L2 4 L′2 and4 = diag
[

π
(

γ̂
)]

− π
(

γ̂
)

π
(

γ̂
)′
.

Another component in W2, 1 2, is the first-order partial
derivative of the expected marginal probabilities with respect to
the maximum likelihood estimate of item parameters:

1 2 = L2
∂π

(

γ̂
)

∂ γ̂
. (10)

The statistic is asymptotically distributed chi-squared with d − k
degrees of freedom (Maydeu-Olivares and Joe, 2005), where k
refers to the number of free parameters in the model. For a more
elaborate description ofM2, please refer to Hansen et al. (2016).

Similar to the traditional fit test statistics, the RMSEA2 can be
calculated for M2 (Maydeu-Olivares and Joe, 2014). RMSEA2 is
recommended to assess the approximate goodness-of-fit when
M2 indicates the model does not fit exactly in the population.
RMSEA2 can be obtained based on the observed M̂2 and the df :

RMSEA2 =

√

√

√

√Max

(

M̂2 − df

N × df
, 0

)

. (11)

TABLE 1 | Q-matrix with 5 attributes and 20 items.

Item V1 V2 V3 V4 V5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1

6 1 1 0 0 0

7 0 0 0 1 1

8 0 1 1 0 0

9 0 0 1 1 0

10 0 0 0 1 1

11 1 1 1 0 0

12 1 1 0 0 1

13 1 0 0 1 1

14 1 0 1 1 0

15 0 0 1 0 1

16 1 0 1 0 0

17 0 1 0 1 0

18 0 1 0 1 0

19 0 1 0 0 1

20 1 0 1 0 1

FIGURE 1 | Four hierarchical structures using five attributes.
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In this study, the information matrix, I, is the expected (Fisher)
information matrix, which is described in a recent study in detail
(Liu et al., 2018).

SIMULATION STUDY 1: THE TYPE I ERROR
RATES OF M2

Simulation 1 was conducted to examine the empirical Type I
error rates ofM2 when models were correctly specified under the
condition of different attribute hierarchies and sample sizes. For
each simulation, three sample sizes, N = 1,000, N = 2,000 and N
= 4,000, and a fixed test length, J = 20, were considered with 500
replications. All simulations were performed by R and Mplus.

In this simulation, data were generated from five models:
linear, divergent, convergent and unstructured HDCMs, and
LCDM (no attribute hierarchy). The Q-matrix (see Table 1) used
in this study involved 5 attributes and 20 items with each item
measuring one, two or three attributes. In the Q-matrix, the
number of corresponding items for each attribute was specified
to be equal. In addition, the attributes were specified to follow
a multidimensional normal distribution, with the mean vectors
randomly selected from the uniform distributionµ (−.5, .5).
We used 0 as the critical value to dichotomize the attribute
vectors. With respect to the attribute correlations, as suggested
by Kunina-Habenicht et al. (2012), 0.5 and 0.8 are typical low
and high attribute correlation coefficients, respectively; therefore,
the correlation coefficients between the attributes were randomly
selected from µ (.5, .8)for each replication. To avoid the effects
of the magnitudes of item parameters on the simulation results,
the values of all main effects for each item were fixed at a value
of 2, the values of all interaction effects were fixed at a value of
1, and the intercepts were fixed at a value of −0.5 times the sum
of all main and interaction effects for each item (Templin and
Bradshaw, 2014).

Table 2 presents the results of the Type I error rates of M2

under the conditions of different attribute hierarchy types at five
significance levels. The Type I error rates of M2 matched their
expected rates well under different combinations of simulation
conditions. Specifically, there was no substantial discrepancy in
the performance of the Type I error rate control of M2 for the
five different attribute hierarchy types. The average values of
the empirical Type I error rates at the five significance levels
were 0.014, 0.057, 0.111, 0.220, and 0.271, respectively. Hence,
it is evident that the M2 statistic exhibited good Type I error
rate control for different attribute hierarchy types. However,
further examination of the empirical Type I error rates found
that M2 under the LCDM, which indicates the independent
relationships for attributes, had slightly better Type I error rate
control compared to HDCMs.

SIMULATION STUDY 2: THE STATISTICAL
POWER OF M2

Simulation 2 was conducted to examine the power of M2 under
the conditions of model and Q-matrix misspecifications. The
model and Q-matrix misspecifications were regarded as the

TABLE 3 | Random balance design of Q-matrix misspecification.

Kj Alterations Note

1 qjk = 0 → qjk = 1 Over-specification

2 qjk = 1 → qjk = 0 Under-specification

3 qjk = 0 → qjk = 1,

qjk′ = 1 → q
jk
′ = 0

Both

Kj is the number of required attributes for the j th item; qjk is the entry in the jth row and

kth column of the Q-matrix; qjk′ is the entry in the jth row and k’th column of the Q-matrix,

k 6= k
′
[this table is excerpted from and with the permission of Liu et al. (2016)].

TABLE 2 | Type I error rates for HDCMs with five different hierarchical structures.

Hierarchy type N df Mean SD Empirical rejection rate

0.010 0.050 0.100 0.200 0.250

Linear 1,000 145 146.50 17.75 0.020 0.068 0.120 0.234 0.294

2,000 145 144.81 17.22 0.014 0.042 0.086 0.182 0.246

4,000 145 145.27 16.43 0.002 0.040 0.100 0.206 0.256

Divergent 1,000 133 135.64 16.37 0.016 0.060 0.118 0.238 0.298

2,000 133 135.31 16.97 0.018 0.074 0.140 0.252 0.292

4,000 133 135.25 17.47 0.018 0.074 0.136 0.260 0.308

Convergent 1,000 142 142.36 18.21 0.022 0.068 0.120 0.230 0.264

2,000 142 142.24 17.29 0.012 0.052 0.108 0.222 0.264

4,000 142 142.28 17.30 0.008 0.046 0.100 0.214 0.264

Unstructured 1,000 121 122.05 16.06 0.020 0.064 0.114 0.216 0.278

2,000 121 122.09 15.96 0.018 0.064 0.114 0.222 0.272

4,000 121 121.62 15.78 0.008 0.068 0.108 0.212 0.276

No Hierarchy 1,000 89 89.44 13.20 0.012 0.050 0.106 0.212 0.260

2,000 89 88.59 13.19 0.008 0.032 0.094 0.202 0.262

4,000 89 89.35 12.57 0.012 0.046 0.094 0.200 0.234

N, the sample size; df, the degrees of freedom; SD, Standard Deviation.
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sources of model–data misfit for DCMs in previous studies
(e.g., Kunina-Habenicht et al., 2012; de la Torre and Lee, 2013).
Especially, the Q-matrix misspecification can be a very influential
source of model-data misfit (Kunina-Habenicht et al., 2012).

The generating models and the Q-matrix in this simulation
were identical to those in Simulation 1 except that the LCDM
was no longer considered. Identical to Simulation 1, three
sample sizes, N = 1,000, N = 2,000, and N = 4,000, and a
fixed test length, J = 20, were considered, and each simulation
was performed with 500 replications. In addition, according to
previous findings (e.g., Kunina-Habenicht et al., 2012; Liu et al.,
2016), attribute correlations may affect the power of model-data

fit statistics in DCMs, we therefore considered three attribute
correlation levels, 0.3, 0.5, and 0.8, to examine the effects of
different attribute correlations on the power ofM2.

Regarding the model misspecification, we used the DINA
model as the misspecified fitting model. The DINA model
classifies the examinees into two groups: the examinees who
have mastered all measured attributes and those who have not
mastered at least one of the measured attributes. With respect
to the Q-matrix misspecification, we used the random balance
design (Chen et al., 2013) to misspecify 20% of the Q-matrix
elements. This means that some attributes that were originally
measured by the items are no longer required in the misspecified

TABLE 4 | The empirical rejection rates of M2 when DINA as the misspecified model.

Hierarchy type r N df Mean SD Empirical rejection rate

0.010 0.050 0.100 0.200 0.250

Linear 0.3 1,000 139 145.38 17.96 0.036 0.108 0.192 0.318 0.398

2,000 139 151.38 18.91 0.058 0.184 0.288 0.468 0.530

4,000 139 168.80 22.82 0.290 0.522 0.626 0.758 0.800

0.5 1,000 139 144.63 17.98 0.036 0.110 0.182 0.328 0.368

2,000 139 151.84 18.79 0.076 0.198 0.306 0.468 0.532

4,000 139 168.28 22.77 0.264 0.490 0.626 0.756 0.804

0.8 1,000 139 144.32 17.20 0.024 0.088 0.166 0.308 0.360

2,000 139 149.42 19.90 0.072 0.172 0.266 0.418 0.480

4,000 139 167.11 23.32 0.266 0.476 0.586 0.710 0.748

Divergent 0.3 1,000 139 149.67 17.75 0.050 0.154 0.250 0.412 0.480

2,000 139 166.32 21.12 0.220 0.466 0.604 0.732 0.776

4,000 139 197.93 23.20 0.778 0.906 0.958 0.986 0.992

0.5 1,000 139 149.22 17.84 0.040 0.156 0.244 0.420 0.472

2,000 139 167.34 20.60 0.238 0.490 0.598 0.746 0.786

4,000 139 197.40 24.08 0.746 0.892 0.946 0.968 0.980

0.8 1,000 139 151.04 17.88 0.048 0.204 0.294 0.450 0.498

2,000 139 166.49 21.36 0.246 0.464 0.584 0.730 0.784

4,000 139 198.51 22.56 0.788 0.932 0.958 0.982 0.984

Convergent 0.3 1,000 139 189.44 19.51 0.144 0.320 0.466 0.608 0.676

2,000 139 180.96 23.07 0.486 0.696 0.798 0.890 0.912

4,000 139 229.92 28.10 0.968 0.991 0.996 0.998 0.998

0.5 1,000 139 157.22 20.34 0.128 0.280 0.396 0.564 0.628

2,000 139 182.73 23.27 0.526 0.738 0.832 0.898 0.924

4,000 139 227.27 28.05 0.962 0.992 1.00 1.00 1.00

0.8 1,000 139 159.87 21.02 0.152 0.342 0.464 0.606 0.664

2,000 139 182.15 21.81 0.530 0.748 0.838 0.906 0.924

4,000 139 230.07 27.73 0.962 0.994 1.00 1.00 1.00

Unstructured 0.3 1,000 139 133.57 16.32 0.006 0.018 0.052 0.110 0.166

2,000 139 135.12 15.96 0.000 0.026 0.068 0.124 0.178

4,000 139 141.53 16.91 0.012 0.064 0.130 0.248 0.304

0.5 1,000 139 133.94 15.99 0.002 0.028 0.056 0.130 0.162

2,000 139 136.63 16.26 0.000 0.036 0.088 0.180 0.216

4,000 139 139.11 16.96 0.014 0.050 0.100 0.202 0.256

0.8 1,000 139 133.75 16.60 0.004 0.030 0.056 0.116 0.150

2,000 139 135.51 15.33 0.004 0.030 0.056 0.138 0.184

4,000 139 139.59 16.68 0.008 0.060 0.112 0.212 0.256

r refers to the attribute correlations.
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Q-matrix, and vice versa (see Table 3). The other technical
settings are presented in the previous simulation study.

Table 4 presents the results of the empirical rejection rates
of M2 when the DINA model is used as the misspecified
model. According to the table, for each attribute hierarchy,
the statistical power increased with the increase of the sample
size. This trend existed across different attribute correlations
and significance levels. Specifically, when the sample size was
4,000, M2 had good performance in detecting the misspecified
model. However, when the sample sizes were 2,000 and 1,000,
the statistical power of M2 was unsatisfactory. In addition, the
statistical power of M2 for the unstructured HDCM was rather
poor in this simulation. Table 5 presents the results under the
Q-matrix misspecification. According to Table 5, it is noted that
the statistical power of M2 was extremely high for each type

of attribute hierarchy. Specifically, the power for the divergent
and unstructured HDCMs reached 100%, and the power for the
linear and convergent HDCMswas slightly<100% only when the
sample size was 1,000. Generally, the attribute correlations had no
effects on the statistical power ofM2 for each type of misfit.

EMPIRICAL ILLUSTRATION

We used the Examination for the Certificate of Proficiency
in English (ECPE) data (Templin and Bradshaw, 2014) to
investigate the usefulness of M2 in real settings. The ECPE
data is publicly available in the CDM package in R (Robitzsch
et al., 2014). The ECPE data embrace three attributes (knowledge
of morphosyntactic rules, cohesive rules and lexical rules), 28
multiple-choice items and 2,922 examinees (Buck and Tatsuoka,

TABLE 5 | The empirical rejection rates of M2 for the Q-matrix misspecification.

Hierarchy type r N df Mean SD Empirical rejection rate

0.010 0.050 0.100 0.200 0.250

Linear 0.3 1,000 145 202.01 23.83 0.722 0.884 0.938 0.968 0.976

2,000 145 262.38 28.27 1.00 1.00 1.00 1.00 1.00

4,000 145 384.27 37.32 1.00 1.00 1.00 1.00 1.00

0.5 1,000 145 205.84 22.33 0.780 0.930 0.972 0.990 0.994

2,000 145 261.91 28.80 0.998 1.00 1.00 1.00 1.00

4,000 145 380.55 36.98 1.00 1.00 1.00 1.00 1.00

0.8 1,000 145 204.77 24.25 0.758 0.902 0.950 0.972 0.984

2,000 145 261.99 26.38 0.998 1.00 1.00 1.00 1.00

4,000 145 379.51 34.44 1.00 1.00 1.00 1.00 1.00

Divergent 0.3 1,000 134 345.94 40.64 1.00 1.00 1.00 1.00 1.00

2,000 134 561.30 54.83 1.00 1.00 1.00 1.00 1.00

4,000 134 990.87 76.28 1.00 1.00 1.00 1.00 1.00

0.5 1,000 134 348.45 38.43 1.00 1.00 1.00 1.00 1.00

2,000 134 562.48 57.23 1.00 1.00 1.00 1.00 1.00

4,000 134 995.40 73.00 1.00 1.00 1.00 1.00 1.00

0.8 1,000 134 346.82 39.92 1.00 1.00 1.00 1.00 1.00

2,000 134 561.81 56.06 1.00 1.00 1.00 1.00 1.00

4,000 134 1001.17 76.38 1.00 1.00 1.00 1.00 1.00

Convergent 0.3 1,000 141 213.81 27.01 0.874 0.966 0.988 0.996 0.996

2,000 141 283.18 32.61 1.00 1.00 1.00 1.00 1.00

4,000 141 418.32 42.50 1.00 1.00 1.00 1.00 1.00

0.5 1,000 141 212.96 26.70 0.876 0.978 0.996 1.00 1.00

2,000 141 283.52 32.27 1.00 1.00 1.00 1.00 1.00

4,000 141 427.45 42.58 1.00 1.00 1.00 1.00 1.00

0.8 1,000 141 211.03 26.10 0.854 0.940 0.970 0.988 0.994

2,000 141 283.28 32.45 1.00 1.00 1.00 1.00 1.00

4,000 141 424.18 40.05 1.00 1.00 1.00 1.00 1.00

Unstructured 0.3 1,000 122 381.89 53.07 1.00 1.00 1.00 1.00 1.00

2,000 122 635.09 83.75 1.00 1.00 1.00 1.00 1.00

4,000 122 1157.21 125.80 1.00 1.00 1.00 1.00 1.00

0.5 1,000 122 382.36 54.08 1.00 1.00 1.00 1.00 1.00

2,000 122 639.16 81.81 1.00 1.00 1.00 1.00 1.00

4,000 122 1167.02 133.01 1.00 1.00 1.00 1.00 1.00

0.8 1,000 122 384.04 53.74 1.00 1.00 1.00 1.00 1.00

2,000 122 638.19 82.66 1.00 1.00 1.00 1.00 1.00

4,000 122 1161.45 136.10 1.00 1.00 1.00 1.00 1.00

r refers to the attribute correlations.
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1998). The Q-matrix of the ECPE data is presented in Table 6.
There exists a linear hierarchy underlying the three attributes:
“lexical rules” is the prerequisite attribute of “cohesive rules,”
which in turn is the prerequisite attribute of “morphosyntactic
rules.” For illustration purposes, we used the linear HDCM,
LCDM, DINA, and C-RUM to fit the data and applied M2 and
RMSEA2 to evaluate the test-level model-data fit. As mentioned
previously, The LCDM is the saturated model which involves
the largest number of item parameters. The DINA model is a
parsimonious model which includes two parameters for each
item (the guessing and slip parameters). The C-RUM (Hartz,
2002) can be obtained from LCDM by retaining all main effects
and removing all interaction effects of attributes. Modeling
of LCDM, DINA, and C-RUM can be fulfilled by the gdina
function in the CDM package in R. For the linear HDCM,
because there is no available function in the CDM package,
Mplus was used for the modeling according to the work by
Templin andHoffman (2013).We provided an abbreviatedMplus
Syntax for the estimation of ECPE data and the R function for
calculating M2 in the online Supplementary Material. The full
Mplus Syntax can be accessed at the personal website of the
developer of HDCM (https://jonathantemplin.com/hierarchical-
attribute-structures/).

Table 7 presents the item parameter estimates of the ECPE
data using the LCDM, DINA, and C-RUMmodels. In this study,
we used the same estimation procedure programmed with Mplus
as Templin and Bradshaw (2014) for the HDCM estimation.
Thus, the item parameter estimates of the HDCM are available in
Templin and Bradshaw (2014). The values of M2 and RMSEA2

for these models are presented in Table 8. Unfortunately, the
M2 statistic rejected all models for the ECPE data. However, the
values of RMSEA2 were small. In addition, the relative model-
data fit statistics, AIC and BIC, showed that HDCM was the best
fitting model for the ECPE data.

DISCUSSION

This article aims to investigate the performance of a widely
used limited-information fit test statistic, M2, in the hierarchical

TABLE 6 | Q-matrix of the ECPE data.

Item V1 V2 V3 Item V1 V2 V3

1 1 1 0 15 0 0 1

2 0 1 0 16 1 0 1

3 1 0 1 17 0 1 1

4 0 0 1 18 0 0 1

5 0 0 1 19 0 0 1

6 0 0 1 20 1 0 1

7 1 0 1 21 1 0 1

8 0 1 0 22 0 0 1

9 0 0 1 23 0 1 0

10 1 0 0 24 0 1 0

11 1 0 1 25 1 0 0

12 1 0 1 26 0 0 1

13 1 0 0 27 1 0 0

14 1 0 0 28 0 0 1

DCMs. We used the HDCMs to model the four fundamental
attribute hierarchies and conducted two simulation studies and
one empirical study to testify to the usefulness ofM2.

According to Simulation 1, the observed Type I error rates of
M2 are reasonably close to the nominal levels for each attribute
hierarchy. This indicates that the M2 statistic can be safely
used for different types of attribute hierarchies in DCMs. The
attribute hierarchies are of great importance for practitioners
using DCMs because hierarchical structures often exist among
different knowledge, skills and psychological concepts. However,
researchers and practitioners often improperly assume that
the attributes involved in the cognitive diagnostic tests are
independent. Hence, by examining four fundamental types
of attribute hierarchies, in an initial step, we demonstrated
the usefulness of M2 for addressing the complex attribute
relationships in DCMs. Our findings echo previous findings on
Type I error rates of M2 in DCMs (e.g., Hansen et al., 2016; Liu
et al., 2016). In the study by Hansen et al. (2016), the Type I error
rates of M2 for higher-order DINA, DINA and their variations
were close to what would be expected. It should be noted that
the Type I error rates of M2 were examined for a fixed test
length, 20 items, which is close to that of the study by Hansen
et al. (2016), 24 items. The test length was decided to cause the
sparseness of the contingency table, based on which the limited-
information statistics can be used. However, readers who are
interested in how test length affects the Type I error rates of
M2 in DCMs, should refer to the study by Liu et al. (2016). In
their study, given both non-sparse (J = 6) and sparse contingency
tables (J = 30/50),M2 demonstrated good control of Type I error
rates.

Thereafter, we further examined the sensitivity of M2

to the specification of an incorrect DINA model and the
misspecification of the Q-matrix. According to Simulation 2,
the M2 statistic is extremely sensitive to the misspecification of
the Q-matrix regardless of sample size and attribute correlation.
This finding is consistent with previous studies (Hansen et al.,
2016; Liu et al., 2016) that emphasize the importance of the
correct specification of the Q-matrix in cognitive diagnostic
tests. It should be noted that our study adopted the same
approach for the Q-matrix misspecification generation as used
by previous studies (e.g., Chen et al., 2013; Liu et al., 2016).
The percentage of misspecified Q-matrix elements were set to
be 20% considering that the true Q-matrix may not be easily
identified by domain experts in reality. Thus 20% of misspecified
Q-matrix elements was designed to reflect a substantial Q-
matrix misspecification. In addition, due to the fact that
the parameter estimation of a single HDCM by Mplus is
extremely time-consuming (20–60min), we did not examine
the power of M2 for other levels of misspecified Q-matrix
elements considering the infeasible simulation time. However,
the study by Hansen et al. (2016) provided the evidence that
when only two elements of Q-matrix were misspecified, the
empirical rejection rates ofM2 reached 100% in most simulation
conditions, whereas omitting an existing attribute or adding
an extraneous attribute would lead to lower sensitivity of M2

to Q-matrix specification. This finding implies that M2 may
be largely sensitive to the Q-matrix misspecification given any
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TABLE 7 | Item parameters of the ECPE data by LCDM, DINA and C-RUM.

LCDM DINA C-RUM

j 0 1(1) 1(2) 1(3) 2(12) 2(13) 2(23) g s 0 1(1) 1(2) 1(3)

1 0.84 −1.39 0.56 2.76 0.71 0.21 0.69 0.11 0.12

2 1.02 1.24 0.74 0.17 0.74 0.17

3 −0.35 1.26 0.36 0.02 0.44 0.30 0.41 0.28 0.09

4 −0.14 1.68 0.48 0.36 0.46 0.36

5 1.08 2.01 0.76 0.20 0.75 0.21

6 0.86 1.69 0.72 0.22 0.70 0.22

7 −0.09 2.73 0.94 -0.82 0.54 0.37 0.49 0.24 0.22

8 1.46 1.89 0.81 0.15 0.81 0.15

9 0.11 1.20 0.53 0.27 0.53 0.26

10 0.06 2.05 0.49 0.35 0.52 0.38

11 −0.03 0.50 0.95 1.10 0.56 0.35 0.49 0.21 0.22

12 −1.74 −21.29 1.26 22.81 0.19 0.50 0.13 0.34 0.26

13 0.66 1.63 0.63 0.24 0.66 0.25

14 0.18 1.37 0.52 0.27 0.55 0.28

15 0.99 2.11 0.75 0.21 0.73 0.23

16 −0.08 1.50 0.87 -0.01 0.55 0.33 0.49 0.22 0.20

17 1.32 1.42 0.62 -0.61 0.82 0.13 0.80 0.08 0.07

18 0.92 1.38 0.73 0.19 0.71 0.20

19 −0.20 1.85 0.47 0.38 0.45 0.39

20 −1.38 −0.09 0.90 1.73 0.24 0.47 0.19 0.38 0.19

21 0.17 1.09 1.13 -0.01 0.62 0.28 0.55 0.13 0.24

22 −0.88 2.24 0.32 0.49 0.30 0.50

23 0.65 2.01 0.66 0.27 0.66 0.28

24 −0.67 1.48 0.33 0.36 0.33 037

25 0.10 1.13 0.51 0.22 0.52 0.25

26 0.16 1.11 0.55 0.23 0.54 0.24

27 −0.88 1.72 0.27 0.36 0.30 0.40

28 0.56 1.74 0.66 0.26 0.64 0.27

For the LCDM and C-RUM, 0 refers to the intercept, “1(#)” refers to the main effect, and “2(##)” refers to the two-way interaction effect; for the DINA model, “g” refers to the “guessing”

parameter and “s” refers to the “slipping” parameter.

TABLE 8 | M2 and RMSEA2 statistics for the ECPE data.

Model M2 df p RMSEA2 90% CI AIC BIC

HDCM 514.280 338 0.000 0.013 [0.011,0.016] 85,639 86,045

LCDM 470.809 325 0.000 0.012 [0.010,0.015] 85,639 86,124

DINA 515.607 343 0.000 0.013 [0.011,0.015] 85,809 86,186

C-RUM 504.859 334 0.000 0.013 [0.011,0.016] 85,634 86,064

percentage of misspecified Q-matrix elements. Future studies are
encouraged to investigate how different types and different levels
of Q-matrix misspecification affect the statistical power of M2 in
DCMs.

With respect to model misspecification, when the DINA
model was used as the fitting model, M2 was sensitive to the
misspecification for large sample sizes. This expected finding can
be explained by different assumptions regarding the relationships
between the items and attributes underlying the DINA and
HDCMs. Specifically, the DINA model is a non-compensatory

model, which indicates that an examinee must possess mastery
of all required attributes to correctly respond to some items
and that the lack of any one of the required attributes will
contribute to an incorrect answer. In contrast, the relationships
between items and attributes of the HDCMs are compensatory,
indicating that examinees have a higher probability of correctly
responding to an item when they have mastered any one of the
additional required attributes of the item. Accordingly, M2 was
generally sensitive to the specification of the incorrect DINA
model due to the huge discrepancy regarding the natures of
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the DINA and HDCMs. In addition, it is evident that larger
sample sizes generally lead to higher statistical power, a finding
that is consistent with previous studies (Kunina-Habenicht
et al., 2012; Liu et al., 2016). Furthermore, we found that
the attribute correlations have no noticeable influence on the
sensitivity of M2 to the model and Q-matrix misspecifications.
It is possible that the attribute hierarchies already assume strong
relationships among the attributes and therefore the specified
attribute correlation levels do not affect the performance of M2.
This finding echoes previous findings that attribute correlations
would not significantly influence the classification accuracy of
DCMs (Kunina-Habenicht et al., 2012) and the statistical power
of M2 in DCMs (Liu et al., 2016). It should be noted that in the
study by Liu et al. (2016), when the sample size was small, a
lower attribute correlation would lead to slightly higher power
of M2. However, the opposite result was observed for a small
sample size in our study. This is possibly due to that small sample
sizes would lead to unstable parameter estimation which in in
turn affected the classification accuracy and the performance of
M2.

Regarding the empirical illustration, the M2 statistic rejected
all models. It was expected that M2 would reject models except
HDCM because the ECPE data involves hierarchical attribute
relationships. One possible explanation is that M2 is, in practice,
a strongly sensitive fit test statistic. Undoubtedly, the true
generating Q-matrix for the ECPE data cannot be known. Hence,
it is unavoidable that there exist some mistakes in the Q-matrix,
which is specified by the domain and measurement experts.
Moreover, the simulation study shows that M2 is extremely
sensitive to the Q-matrix misspecification. So it is not surprising
that M2 rejected all models for the ECPE data. The evidence
of this finding is also supported by the empirical illustrations
of numerous studies (e.g., Cai et al., 2006; Maydeu-Olivares
et al., 2011; Jurich, 2014). Considering the sensitivity of M2,
which provides only information about whether the models fit
the data, many researchers recommended the use of RMSEA2

to assess the goodness of approximation of DCMs and to
characterize the degree of model error (e.g., Maydeu-Olivares
and Joe, 2014). The RMSEA2 is an effect-size-like index that
can be used for the direct comparisons among the different
models. According to Liu et al. (2016)’s criteria, the values of
.030 and .045 are the thresholds for excellence and good fit,
respectively. The values of RMSEA2 for the ECPE data in this
study are significantly <0.030, indicating good model-data fit
for all models. However, it was expected that values of RMSEA2

would vary across the four models because they assume different
relationships between attributes and items. For example, LCDM
is the general modeling framework whereas DINA is one of
the most parsimonious models which defines only two item
parameters. Despite the fact that RMSEA penalizes the model
complexity and measures the degree of model-data misfit, it was
found to be influenced by sample sizes and the degree of freedom
(df ) in other modeling frameworks (e.g., structural equation
modeling). For small sample sizes and small df, the RMSEA is

often positively biased (Kenny et al., 2015). However, it was also
evident that compared with small sample sizes and small df,
the model rejection rates of RMSEA were much lower for large
sample sizes and large df given the same cutoff value (Chen et al.,
2008). Therefore, in our study, it is possible that the large sample
size and the large df s led to indistinguishable values and CIs of
RMSEA2. More empirical investigations are needed for revealing
the performance of RMSEA2 in examining the model-data fit
for DCMs.

For the real-life application of DCMs, practitioners should
carefully examine the relationships between attributes at
the test design stage or the initial stage of data analysis.
HDCMs are recommended as the modeling framework
if attribute hierarchies are identified. However, the model
selection decision should be based on both substantive
considerations and technical solutions. Despite the fact
that the model-data fit tests in DCMs are under-developed,
according to our findings, the M2 statistic is of great value for
examining the absolute model-data fit of HDCMs. However,
given the strong sensitivity of M2 to model or Q-matrix
errors, RMSEA2 is recommended to evaluate the model-data
misfit.

Some limitations exist in the present study. First, we used a
fixed test length of 20 items, which, in reality, is considered as a
reasonable test length. However, future studies are encouraged
to investigate the effects of test length on the performance of
M2 in DCMs. Second, we considered only the dichotomous
data in this study. Future studies regarding the application
of M2 should include polytomous models. Finally, although
four fundamental afttribute hierarchies were considered in our
research, it is recommended that the performances of M2 and
RMSEA2 be examined in DCMs with more complicated attribute
relationships.
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