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Over the last few years, automatic facial micro-expression analysis has garnered

increasing attention from experts across different disciplines because of its potential

applications in various fields such as clinical diagnosis, forensic investigation and security

systems. Advances in computer algorithms and video acquisition technology have

rendered machine analysis of facial micro-expressions possible today, in contrast to

decades ago when it was primarily the domain of psychiatrists where analysis was largely

manual. Indeed, although the study of facial micro-expressions is a well-established

field in psychology, it is still relatively new from the computational perspective with

many interesting problems. In this survey, we present a comprehensive review of

state-of-the-art databases and methods for micro-expressions spotting and recognition.

Individual stages involved in the automation of these tasks are also described and

reviewed at length. In addition, we also deliberate on the challenges and future directions

in this growing field of automatic facial micro-expression analysis.

Keywords: facial micro-expressions, subtle emotions, survey, spotting, recognition, databases, spontaneous,

expressions

1. INTRODUCTION

In 1969, Ekman and Friesen (1969) spotted a quick full-face emotional expression in a filmed
interview which revealed a strong negative feeling a psychiatric patient was trying to hide from
her psychiatrist in order to convince that she was no longer suicidal. When the interview video
was played in slow motion, it was found that the patient was showing a very brief sad face that
lasted only for two frames (1/12s) followed by a longer-duration false smile. This type of facial
expressions is called micro-expressions (MEs) and they were actually first discovered by Haggard
and Isaacs (1966) 3 years before the event happened. In their study, Haggard and Isaacs discovered
these micromomentary expressions while scanning motion picture films of psychotherapy hours,
searching for indications of non-verbal communication between patient and therapist.

MEs are very brief, subtle, and involuntary facial expressions which normally occur when a
person either deliberately or unconsciously conceals his or her genuine emotions (Ekman and
Friesen, 1969; Ekman, 2009b). Compared to ordinary facial expressions or macro-expressions, MEs
usually last for a very short duration which is between 1/25 and 1/5 of a second (Ekman, 2009b).
Recent research by Yan et al. (2013a) suggest that the generally accepted upper limit duration
of a micro-expression is within 0.5s. Besides short duration, MEs also have other significant
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characteristics such as low intensity and fragmental facial action
units where only part of the action units of full-stretched facial
expressions are presented (Porter and Ten Brinke, 2008; Yan
et al., 2013a). Due to these three characteristics of the MEs, it is
difficult for human beings to perceive micro-expressions with the
naked eye.

In spite of these challenges, new psychological studies of MEs
and computationalmethods to spot and recognizeMEs have been
gaining more attention lately because of its potential applications
in many fields, i.e., clinical diagnosis, business negotiation,
forensic investigation, and security systems (Ekman, 2009a;
Frank et al., 2009a;Weinberger, 2010). One of the very first efforts
to improve the human ability at recognizing MEs was conducted
by Ekman where he developed the Micro-Expression Training
Tool (METT) to train people to recognize seven categories of
MEs (Ekman, 2002). However, it was found in Frank et al.
(2009b) that the performance of detectingMEs by undergraduate
students only reached at most 40% with the help of METT while
unaided U.S. coast guards performed not more than 50% at best.
Thus, an automatic ME recognition system is in great need in
order to help detect MEs such as those exhibited in lies and
dangerous behaviors, especially with the modern advancements
in computational power and parallel multi-core functionalities.
These have enabled researchers to perform video processing
operations that used to be infeasible decades ago, increasing
the capability of computer-based understanding of videos in
solving different real-life vision problems. Correspondingly, in
recent years researchers have moved beyond psychology to using
computer vision and video processing techniques to automate the
task of recognizing MEs.

Although normal facial expression recognition is now
considered a well-established and popular research topic with
many good algorithms developed (Zeng et al., 2009; Bettadapura,
2012; Sariyanidi et al., 2015) with accuracies exceeding 90%, in
contrast the automatic recognition of MEs from videos is still a
relatively new research field with many challenges. One of the
challenges faced by this field is spotting the ME of a person
accurately from a video sequence. As a ME is subtle and short,
spotting of MEs is not an easy task. Furthermore, spotting of MEs
becomes harder if the video clip consists of spontaneous facial
expressions and unrelated facial movements, i.e., eye-blinking,
opening and closing of mouth, etc. On the other hand, other
challenges of ME recognition include inadequate features for
recognizing MEs due to its low change in intensity and lack of
complete, spontaneous and dynamic ME databases.

In the past few years, there have been some noteworthy
advances in the field of automatic ME spotting and recognition.
However, there is currently no comprehensive review to chart
the emergence of this field and summarize the development of
techniques introduced to solve these tasks. In this survey paper,
we first discuss the existing ME corpora. In our perspective,
automatic ME analysis involves two major tasks, namely, ME
spotting and ME recognition. ME spotting focuses on finding
the occurrence of MEs in a video sequence while ME recognition
involves assigning an emotion class label to an ME sequence. For
both tasks, we look into the range of methods that have been
proposed and applied to various stages of these tasks. Lastly,

we discuss the challenges in ME recognition and suggest some
potential future directions.

2. MICRO-EXPRESSION DATABASES

The prerequisite of developing any automatic ME recognition
system is having enough labeled affective data. As ME research in
computer vision has only gained attention in the past few years,
the number of publicly available spontaneous ME databases is
still relatively low. Table 1 gives the summary of all available ME
databases to date, including both posed and spontaneous ME
databases. The key difference between posed and spontaneous
MEs is in the relevance between expressed facial movement and
underlying emotional state. For posed MEs, facial expressions
are deliberately shown and irrelevant to the present emotion
of senders, therefore not really helpful for the recognition of
real subtle emotions. Meanwhile, spontaneous MEs are the
unmodulated facial expressions that are congruent with an
underlying emotional state (Hess and Kleck, 1990). Due to
the nature of the posed and spontaneous MEs, the techniques
for inducing facial expressions (for purpose of constructing a
database) are contrasting. For the case of posed MEs, subjects
are usually asked to relive an emotional experience (or even
watching example videos containing MEs prior to the recording
session) and perform the expression as well as possible. However,
eliciting spontaneous MEs is more challenging as the subjects
have to be involved emotionally. Usually, emotionally evocative
video episodes are used to induce the genuine emotional state of
subjects, and the subjects have to attempt to suppress their true
emotions or risk getting penalized.

According to Ekman and Friesen (1969) and Ekman (2009a),
MEs are involuntary which could not be created intentionally.
Thus, posed MEs usually do not exhibit the characteristics (i.e.,
the appearance and timing) of spontaneously occurring MEs
(Porter and Ten Brinke, 2008; Yan et al., 2013a). The early USD-
HD (Shreve et al., 2011) and Polikovsky’s (Polikovsky et al.,
2009) databases consist of posed MEs rather than spontaneous
ones; hence they do not present likely scenarios encountered in
real life. In addition, the occurrence duration of their micro-
expressions (i.e., 2/3 s) exceeds the generally acceptable duration
of MEs (i.e., 1/2 s). To have a more ecological validity, research
interest then shifted to spontaneous ME databases. Several
groups have developed a few spontaneous MEs databases to
aid researchers in the development of automatic ME spotting
and recognition algorithms. To elicit MEs spontaneously,
participants are induced by watching emotional video clips to
experience a high arousal, aided by an incentive (or penalty)
to motivate the disguise of emotions. However, due to the
challenging process of eliciting these spontaneous MEs, the
number of samples collected for these ME databases is still
limited.

Table 1 summarizes the knownME databases in the literature,
which were elicited through both posed and spontaneous means.
The YorkDDT (Warren et al., 2009) is the smallest and oldest
database, with spontaneousMEs that also include other irrelevant
head and face movements. The Silesian Deception database
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TABLE 1 | Micro-expression databases.

Databases Subset Subjects Samples Frames Type* FACS Emotion Expression Frame

per sec coded classes annotations

USF-HD – 100 30 P No 6 Macro/micro –

Polikovsky’s 10 42 200 P No 6 Micro –

YorkDDT 9 18 25 S No 2 Micro –

Silesian deception† 101 101 100 S No – Macro/micro Eye closures,

gaze aversion,

micro-tensions

SMIC-sub 6 77 100 S No 3 Micro –

SMIC HS 16 164 100 S No 3 Micro –

VIS 8 71 25 S No 3

NIR 8 71 25 S No 3

E-HS 16 157 100 S No 3 Micro Onset,offset

E-VIS 8 71 25 S No 3

E-NIR 8 71 25 S No 3

CASME 19 195 60 S Yes 7 Micro Onset,offset,apex

CASME II 26 247 200 S Yes 5 Micro Onset,offset,apex

CAS(ME)2 Part A 22 87 30 S Yes 4 Macro/Micro Onset,offset,apex

Part B 22 57 30 S Yes 4

SAMM 32 159 200 S Yes 7‡ Macro/micro Onset,offset,apex

MEVIEW 16 31 25 S Yes 5§ macro/micro onset,offset

*P/S, Posed/Spontaneous.
†
Not all samples contain micro-expressions and only a total of 183 occurrences of “micro-tensions” were annotated. No emotion classes were available.

‡
Seven objective classes are also provided (Davison et al., 2017).

§Set of emotions are atypical (contempt, surprise, fear, anger, happy), likely in the context of environment. Some sample clips involve person speaking, or only have AUs marked with

no emotions observed.

(Radlak et al., 2015) was created for the purpose of recognizing
deception through facial cues. This database is annotated with
eye closures, gaze aversion, and micro-expression, or “micro-
tensions,” a phrase used by the authors to indicate the occurrence
of rapid facial muscle contraction as opposed to having an
emotion category. This dataset is not commonly used in spotting
and recognition literature as it does not involve expressions per
se; its inception primarily for the purpose of automatic deception
recognition.

The SMIC-sub (Pfister et al., 2011) database presents a better
set of spontaneous ME samples in terms of frame rate and
database size. Nevertheless, it was further extended to the SMIC
database (Li et al., 2013) with the inclusion of more ME samples
andmultiple recordings using different cameras types: high speed
(HS), normal visual (VIS), and near-infrared (NIS). However, the
SMIC-sub and SMIC databases do not provide Action Unit (AU)
(i.e., facial components that are defined by FACS to taxonomize
facial expressions) labels and the emotion classes were only
based on participants’ self-reports. Sample frames from SMIC are
shown in Figure 1.

The CASME dataset (Yan et al., 2013b) provides a more
comprehensive spontaneous ME database with a larger amount
of MEs as compared to SMIC. However, some videos are
extremely short, i.e., <0.2 s, hence poses some difficulty for ME
spotting. Besides, CASME samples were captured only at 60 fps.
An improved version of it, known as CASME II was established to
address these inadequacies. The CASME II database (Yan et al.,

2014a) is the largest and most widely used database to date (247
videos, sample frames in Figure 2) with samples recorded using
high frame-rate cameras (200 fps).

To facilitate the development of algorithms for ME spotting,
extended versions of SMIC (SMIC-E-HS, SMIC-E-VIS, SMIC-
E-NIR), CAS(ME)2 (Qu et al., 2017), and SAMM (Davison
et al., 2016a) databases were developed. In SMIC-E databases,
long video clips that contain some additional non-micro frames
before and after the labeled micro frames were included as
well. The CAS(ME)2 database (with samples given in Figure 3)
is separated into two parts: Part A contains both spontaneous
macro-expressions and MEs in long videos; and Part B includes
cropped expression samples with frame from onset to offset.
However, CAS(ME)2 is recorded using a low frame-rate (25 fps)
camera due to the need to capture both macro- and micro-
expressions.

In the SAMM database (with samples shown in Figure 4),
all micro-movements are treated objectively, without inferring
the emotional context after each experimental stimulus. Emotion
classes are then labeled by trained experts later. In addition, about
200 neutral frames are included before and after the occurrence
of the micro-movement, which makes spotting feasible. The
SAMM is arguably the most culturally diverse database among
all of them. In short, the SMIC, CASME II, CAS(ME)2, and
SAMM are considered the state-of-the-art databases for ME
spotting and recognition that should be widely adopted for
research.
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FIGURE 1 | Sample frames from a “Surprise” sequence (Subject 1) in SMIC. Images reproduced from the database with permission from Li et al. (2013).

FIGURE 2 | Sample frames from a “Happiness” sequence (Subject 6) in CASME II. Images reproduced from the database with permission from Yan et al. (2014a).

FIGURE 3 | Sample frames from a “Disgust” sequence (Subject 15) in CAS(ME)2. Images reproduced from the database (©Xiaolan Fu) with permission from Qu et al.

(2017).

FIGURE 4 | Sample frames from a sequence (Subject 6) in SAMM that contains micro-movements. Images reproduced from the database with permission from

Davison et al. (2016a).

The need for data acquired from more unconstrained “in-
the-wild” situations have compelled further efforts to provide
more naturalistic high-stake scenarios. The MEVIEW dataset
(Husak et al., 2017) was constructed by collecting mostly poker
game videos downloaded from YouTube with a close-up of the
player’s face (samples frames in Figure 5). Poker games are highly
competitive with players often try to conceal or fake their true
emotions, which facilitates likely occurrences of MEs. With the
camera view switching often, the entire shot with a single face
in video (averaging 3s in duration) was taken. An METT-trained
annotator labeled the onset and offset frames of the ME with

FACS coding and emotion types. A total of 31 videos with 16
individuals were collected.

3. SPOTTING OF FACIAL
MICRO-EXPRESSIONS

Automatic ME analysis involves two tasks: ME spotting and
ME recognition. Facial ME spotting refers to the problem
of automatically detecting the temporal interval of a micro-
movement in a sequence of video frames; and ME recognition
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is the classification task to identify the ME involved in the
video samples. In a complete facial ME recognition system,
accurately and precisely identifying frames containing facial
micro-movements (which contribute to facial MEs) in a video
is a prerequisite for high-level facial analysis (i.e., facial ME
recognition). Thus, the automatic facial expression spotting
frameworks are developed to automatically search the temporal
dynamics of MEs in streaming videos. Temporal dynamics
refer to the motions of facial MEs that involve onset(start),
apex(peak), offset(end), and neutral phases. Figure 6 shows
a sample sequence depicting these phases. According to the
work by Valstar and Pantic (2012), the onset phase is the
moment where muscles are contracting and appearance of facial
changes grows stronger; the apex phase is the moment where
the expression peaks (the most obvious); and the offset phase
is the instance where the muscles are relaxing and the face
returns to its neutral appearance (little or no activation of facial
muscles). Typically a facial motion shifts through the sequence of
neutral-onset-apex-offset-neutral, but other combinations such
as multiple apices are also possible.

In general, a facial ME spotting framework consists of a few
stages: the pre-processing, feature description, and lastly the
detection of the facial micro-expressions. The details of each of
the stages will be further discussed in the following sections.

3.1. Pre-processing
In facial ME spotting, the general pre-processing steps include
facial landmark detection, facial landmark tracking, face
registration, face masking, and face region retrieval. Table 2
shows a summary of existing pre-processing techniques that are
applied in facial ME spotting.

3.1.1. Facial Landmark Detection and Tracking
Facial landmark detection is the first most important step
in the spotting framework to locate the facial points on the
facial images. In the field of MEs, two ways of locating the
facial points are applied: the manual method and automatic facial
landmark detection method. In an early work on facial micro-
movement spotting (Polikovsky et al., 2009), facial landmarks
are manually selected only at the first frame, and fixed in the
consecutive frames as they assumed that the examined frontal
faces are located relatively in the same location. In their later
work (Polikovsky and Kameda, 2013), a tracking algorithm
is applied to track the facial points that had been manually
detected at the first frame throughout the whole sequence.
To prevent the hassle of manually detecting the facial points,
majority of the recent works (Davison et al., 2015, 2016a,b;
Liong et al., 2015, 2016b,c; Wang et al., 2016a; Xia et al.,
2016) opt to apply automatic facial landmark detection. Instead
of running the detection for the whole sequence of facial
images, the facial points are only detected at the first frame
and fixed in the consecutive frames with the assumption that
these points will only change minimally due to the subtleness of
MEs.

To the best of our knowledge, the facial landmark detection
techniques that are commonly employed for facial ME spotting
are promoted Active Shape Model (ASM) (Milborrow and
Nicolls, 2014), Discriminative Response Maps Fitting (DRMF)
(Asthana et al., 2013), Subspace Constrained Mean-Shifts
(SCMS) (Saragih et al., 2009), Face++ automatic facial point
detector (Megvii, 2013), and Constraint Local Model (CLM)
(Cristinacce and Cootes, 2006). In fact, the promoted ASM,
DRMF, and CLM are the notable examples of part based

FIGURE 5 | Sample frames from a “Contempt” sequence in MEVIEW that contains micro-movements marked with AU L12. Images reproduced from the database

(Husak et al., 2017) under Fair Use.

FIGURE 6 | A video sequence depicting the order in which onset, apex and offset frames occur. Sample frames are from a “Happiness” sequence (Subject 2) in

CASME II. Images reproduced from the database with permission from Yan et al. (2014a).
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TABLE 2 | A survey of pre-processing techniques applied in facial micro-expression spotting.

Work Landmark Landmark Face Masking Face

detection tracking registration regions

Polikovsky et al., 2009 Manual – – – 12 ROIs

Shreve et al., 2009 – – – – 3 ROIs

Wu et al., 2011 – – – – Whole face

Shreve et al., 2011 – – Face alignment Eyes, nose 8 ROIs

and mouth

Polikovsky and Kameda, 2013 Manual APF – – 12 ROIs

Shreve et al., 2014 SCMS – – Eyes and 4 Parts

mouth

Moilanen et al., 2014 Manual KLT Face alignment – 6 × 6 blocks

Davison et al., 2015 Face++ – Affine transform – 5 × 5 blocks

Patel et al., 2015 DRMF OF – – 49 ROIs

Liong et al., 2015 DRMF – – 3 ROIs

Wang et al., 2016a DRMF – Non-reflective – 6 × 6 blocks

similarity transformation

Liong et al., 2016c DRMF – – Eyes 3 ROIs

Xia et al., 2016 ASM – Procrutes analysis – Whole face

Liong et al., 2016b DRMF – – – 3 ROIs

Davison et al., 2016a Face++ – Affine transform – 4 × 4, 5 × 5 blocks

Davison et al., 2016b Face++ – 2D-DFT and Binary masking 26 ROIs

Piecewise affine warping

Yan and Chen, 2017 CLM – – – 16 ROIs

Li et al., 2017 Manual KLT – – 6 × 6 blocks

Ma et al., 2017 CLNF KLT – – 5 ROIs

from OpenFace

Qu et al., 2017 ASM – LWM – Various block sizes

Duque et al., 2018 AAM KLT – – 5 ROIs

facial deformable models. Facial deformable models can be
roughly separated into two main categories: holistic (generative)
models and part based (discriminative) models. The former
applies holistic texture-based facial representation for the
generic face fitting scenario; and the latter uses the local
image patches around the landmark points for the face fitting
scenario. Although the holistic-based approaches are able to
achieve impressive registration quality, these representations
unfaithfully locate facial landmarks in unseen images, when
target individuals are not included in the training set. As a
result, part based models which circumvent several drawbacks
of holistic-based methods, are more frequently employed in
locating facial landmarks in recent years (Asthana et al., 2013).
The promoted ASM, DRMF, and CLM are from part based
deformable models, however their mechanisms are different.
The ASM applies shape constraints and searches locally for
each feature point’s best location; whereas DRMF learns the
variation in appearance on a set of template regions surrounding
individual features and updates the shape model accordingly;
as for CLM, it learns a model of shape and texture variation
from a template (similar to active appearance models), but
the texture is sampled in patches around individual feature
points. In short, the DRMF is computationally lighter than its
counterparts.

Part based approaches mainly rely on optimization strategies
to approximate the responses map through simple parametric
representations. However, some ambiguities still result due to
the landmark’s small support region and imperfect detectors.
In order to address these ambiguities, SCMS which employs
Kernel Density Estimator (KDE) to form a non-parametric
representation of response maps was proposed. To maximize
over the KDE, the mean-shift algorithm was applied. Despite
the progress in automatic facial landmark detection, these
approaches are still not considerably robust toward “in-the-wild”
scenarios, where large out-of-plane tilting and occlusion might
exist. The Face++ automatic facial point detector was developed
by Megvii (2013) to address such challenges. It employs a coarse-
to-fine pipeline with neural network and sequential regression,
and it claims to be robust against influences such as partial
occlusions and improper head pose up to 90◦ tilt angle. The
efficacy of the method (Zhang et al., 2014) has been tested on
the 300-W dataset (Sagonas et al., 2013) (which focuses on
facial landmark detection in real-world facial images captured
in-the-wild), yielding the highest accuracy among the several
recent state-of-the-arts including DRMF.

In ME spotting research, very few works applied tracking to
the landmark points. This could be due to the sufficiency of
landmark detection algorithms used (since MEs movements are
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very minute) or that general assumptions have been made to fix
the location of the detected landmarks points. The two tracking
algorithms that were reportedly used in a few facial ME spotting
works (Polikovsky and Kameda, 2013; Moilanen et al., 2014; Li
et al., 2017) are Auxiliary Particle Filtering (APF) (Pitt and
Shephard, 1999) and Kanade-Lucas-Tomasi (KTL) algorithm
(Tomasi and Kanade, 1991).

3.1.2. Face Registration
Image registration is the process of aligning two images—the
reference and sensed images, geometrically. In the facial ME
spotting pipeline, registration techniques are applied onto the
faces to remove large head translations and rotations that might
affect the spotting task. Generally, registration techniques can
be separated into two major categories: area-based and feature-
based approaches. In each of the approaches, either global
mapping functions or local mapping functions are applied to
transform the the sensed image to be as close as the reference
image.

For area-based (a.k.a. template matching or correlation-like)
methods, windows of predefined size or even entire images
are utilized for the correspondence estimation during the
registration. This approach bypasses the need for landmark
points, albeit some restriction to only shift and small rotations
between the images (Zitova and Flusser, 2003). In the work
by Davison et al. (2016b), a 2D-Discrete Fourier Transform
(2D-DFT) was used to achieve face registration. This method
calculates the cross-correlation of the sensed and reference
images before finding the peak, which in turn is used to find the
translation between the sensed and reference images. Then, the
process of warping to a new image is performed by piece-wise
affine (PWA) warping.

For feature-based approach to face registration, salient
structures which include region features, line features and
point features are exploited to find the pairwise correspondence
between the sensed and reference images. Thus, feature-based
approach are usually applied when the local structures are more
significant than the information carried by the image intensities.
In some ME works (Shreve et al., 2011; Moilanen et al., 2014; Li
et al., 2017), the centroid of the two detected eyes are selected
as the distinctive point (also called control points) and exploited
for face registration by using affine transform or non-reflective
similarity transform. The consequence of such simplicity entails
their inability to handle deformations locally. A number of
works (Li et al., 2017; Xu et al., 2017) employed Local Weighted
Mean (LWM) (Goshtasby, 1988) which seeks to find a 2-D
transformationmatrix using 68 facial landmark points of a model
face (typically from the first frame). In another work by Xia
et al. (2016), Procrustes analysis is applied to align the detected
landmark points in frames. It determines a linear transformation
(such as translation, reflection, orthogonal rotation, and scaling)
of the points in sensed images to best conform them to points in
the reference image. Procrustes analysis has several advantages:
low complexity for easy implementation and it is practical for
similar object alignment (Ross, 2004). However, it requires a one-
to-one landmark correspondence and the convergence of means
is not guaranteed.

Instead of using mapping functions to map the sensed images
to the reference images, a few studies (Shreve et al., 2011;
Moilanen et al., 2014; Li et al., 2017) correct the mis-alignment by
rotating the faces according to the angle between the pair of lines
that join the centroids of the two detected eyes to the horizontal
line. In this mechanism, errors can creep in if the face contours
of the sensed and reference face images are not consistent with
one another, or that the subject’s face is not entirely symmetrical
to begin with.

Due to the diversity of face images with various types of
degradations to be registered, it is challenging to fix a standard
method that is applicable to all conditions. Thus, the choice of
registrationmethod should correspond to the assumed geometric
deformation of the sensed face image.

3.1.3. Masking
In the facial ME spotting task, a masking step can be applied
onto the face images to remove noise caused by undesired
facial motions that might affect the performance of the spotting
task. In the work by Shreve et al. (2011), a static mask (“T”-
shaped) was applied on the face images to remove the middle
part of the face that includes the eyes, nose, and mouth regions.
Eye regions were removed to avoid the noise caused by eye
cascades and blinking (which is not considered a facial micro-
expression); the nose region is masked as it is typically rigid,
which might not reveal much significant information even with
it; and mouth region is excluded since opening and closing of
the mouth introduces undesired large motion. It is arguable
if too much meaningful information may have been removed
from the face area in the masking steps introduced in Shreve
et al. (2011) and Shreve et al. (2014), as the two most expressive
facial parts (in the context of MEs) are actually located near
the corner of the eyebrow and mouth areas. Hence, some
control is required to prevent excluding too much meaningful
information. Typically, specific landmark points around these
two areas are used as reference or boundary points in themasking
process.

In the work by Liong et al. (2016c), the eye regions
are masked to reduce false spotting of the apex frame from
long videos. They observed that eye blinking motion is
significantly more intense than that of micro-expression motion,
thus masking is necessary. To overcome potential inaccurate
landmark detection, a 15-pixel margin was added to extend
the masked region. Meanwhile, Davison et al. (2016b) applied
a binary mask to obtain 26 FACS-based facial regions that
include the eyebrows, forehead, cheeks, corners around eyes,
mouth, regions around mouth, and etc. The regions are useful
for the spotting task as each of these regions contain a single
or a group of AUs, which will be triggered when the ME
occurs. It is also worth mentioning that a majority of works
in the literature still do not include a masking pre-processing
step.

3.1.4. Face Region Retrieval
From psychological findings on concealed emotions (Porter and
Ten Brinke, 2008), it was revealed that facial micro-expression
analysis should be done on the upper and lower halves of the
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face separately instead of considering the entire face. This finding
substantiated an earlier work (Rothwell et al., 2006), whereby
ME recognition was also performed on the segmented upper
and lower parts of the face. Duan et al. (2016) later showed
that the eye region is much more salient than the whole face or
mouth region for recognizing micro-expressions, in particular
happy and disgust expressions. Prior knowledge from these
works encourage splitting of the face into important regions for
automatic facial micro-expression spotting.

In the pioneering work of spotting facial MEs (Shreve et al.,
2009), the face was segmented into three regions: the upper part
(which includes the forehead), middle part (which includes the
nose and cheeks), and the lower part (which include the mouth);
and each was analyzed as individual temporal sequences. In
their later work (Shreve et al., 2011), the face image is further
segmented into eight regions: forehead, left and right of the
eye, left and right of cheek, left and right of mouth and chin.
Each of the segments is analyzed separately in sequence. With
the more localized segments, tiny changes in certain temporal
segments could be observed. However, unrelated edged features
such as hair, neck, and edge of the face that are present in
the localized segments might induce noise and thus affect the
extracted features. Instead of splitting the face images into few
segments, Shreve et al. (2014) suggested to separate the face
images into four quadrants, and each of the quadrant is analyzed
individually in the temporal domain. The reason behind this is
because of the constraint on locality as facial micro-expressions
are restricted to appear in at most two bordering regions (i.e., first
and second quadrant, second and third quadrant, third and forth
quadrant, and the first and fourth quadrant) of the face (Shreve
et al., 2014).

Another popular facial segmentation method is splitting the
face into a specific number (m × n) of blocks (Moilanen et al.,
2014; Davison et al., 2015, 2016a; Wang et al., 2016a; Li et al.,
2017). In the blocking representation, the motion changes in each
block could by observed and analysis independently. However,
with the increasing in the number of blocks (i.e., m × n), the
computation load increases accordingly. Besides, features such as
hairs and edges of face that appear in the blocks will affect the
final feature vectors as these elements are not related to the facial
motions.

A unique approach to facial segmentation for ME spotting
is to split the face by Delaunay triangulation (Davison et al.,
2016b). It gives more freedom to the shape that defines the
regions of the face. Unfortunately, areas of the face that are
not useful for ME analysis such as the cheek area may still be
captured within the triangular regions. To address this problem,
more recent methods partition the face into a few region-of-
interests (ROIs) (Polikovsky et al., 2009; Polikovsky andKameda,
2013; Liong et al., 2015, 2016b,c, 2018; Davison et al., 2016b; Li
et al., 2018). The ROIs are regions that correspond to one or
more FACS action units (AUs). As such, these regions contain
rigid facial motions when the muscles (AUs) are activated.
Some studies (Liong et al., 2015, 2016b,c; Davison et al.,
2016b) show that ROIs are more effective compared to the
use of the entire face in constraining the salient locations for
spotting.

3.2. Spotting
Facial micro-expression spotting, or “micro-movement” spotting
[a term coined by Davison et al. (2016a)] refers to the problem
of automatically detecting the temporal interval of a micro-
movement in a sequence of video frames. Current approaches for
spotting facial micro-movement can be broadly categorized into
two groups: classifier-based methods (supervised/unsupervised)
and rule-based (use of thresholds or heuristics) methods. There
are many possible dichotomies; this survey discusses some early
ideas, followed by two distinct groups of works – one on
spotting ME movement or window of occurrence, another on
spotting the ME apex. A summary of the existing techniques
for spotting facial micro-expressions (or micro-movements) are
depicted in Table 3.

3.2.1. Early Works
In the early works by Polikovsky et al. (2009) and Polikovsky
and Kameda (2013), 3D-HOGwas adopted to extract the features
from each of the regions in the ME videos. Then, k-means
clustering was used to cluster the features to particular AUs
within predefined facial cubes. “Spotting” was approached as
a classification task: each frame is classified to neutral, onset,
apex or offset, and compared with ground truth labels. The
classification rates achieved were satisfactory, in the range of
68–80%. Although their method could potentially contribute to
facial micro-movement spotting by locating the four standard
phases described by FACS, there are two glaring drawbacks.
First, their method was only tested on posed facial ME videos,
which are not a good representation of spontaneous (naturally
induced) facial MEs. Secondly, the experiment was run as a
classification task in which the frames were clustered into one of
the four phases; this is highly unsuitable for real-time spotting.
The work of Wu et al. (2011) also treats the spotting task as
a classification process. Their work uses Gabor filters and the
GentleSVM classifier to evaluate the frames. From the resulting
label of each frame, the duration of facial micro-expressions
were measured according to the transition points and the video
frame-rate. Subsequently, they are only considered as ME when
their durations last for 1/25–1/5s. They achieved very high
spotting performance on the METT training database (Ekman,
2003). However, this was not convincing on two counts; first,
only 48 videos were used in the experiments, and second,
the videos were synthesized by inserting a flash of micro-
expression in the middle of a sequence of neutral face images.
In real-world conditions, frame transitions would be much more
dynamic compared to the abrupt changes that were artificially
added.

Instead of treating the spotting task as frame-by-frame
classification, the works of Shreve et al. (2009, 2011) are the
first to consider the temporal relation from frame-to-frame and
employ a threshold technique to locate spontaneous facial MEs.
This follows a more objective method that does not require
machine learning. Their works are also the first in the literature
to attempt spotting both macro- (i.e., ordinary facial expressions)
and micro-expressions from videos. In their work, optical strain,
which represents the amount of deformation incurred during
motion, was computed from selected facial regions. Then, the
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TABLE 3 | Facial micro-expression (or micro-movement) spotting works in literature.

Work Feature Feature Movement (M) / Spotting technique Database

Analysis Apex (A)

Polikovsky et al., 2009 3D gradient histogram – k mean cluster High-speed ME database

(not available)

Shreve et al., 2009 Optical strain – M Threshold technique USF

Wu et al., 2011 Gabor features – M GentleSVM METT (48 videos)

Shreve et al., 2011 Optical strain – Threshold technique USF-HD

M Canal-9 (not available)

Found videos (not available)

Polikovsky and Kameda, 2013 3D gradient histogram – k mean cluster High-speed ME database

(not available)

Shreve et al., 2014 Optical strain – M Threshold technique USF

SMIC

Moilanen et al., 2014 LBP X Threshold technique CASME-A

M CASME-B

SMIC-VIS-E

Davison et al., 2015 HOG X M Threshold technique SAMM

Patel et al., 2015 Spatio-temporal integration – M Threshold technique SMIC-VIS-E

of OF vectors

Liong et al., 2015 LBP correlation – Binary search CASME II

CLM A

Optical strain

Wang et al., 2016a MDMD X M Threshold technique CAS(ME)2

Xia et al., 2016 Geometrical motion – M Random walk model CASME

deformation SMIC

Liong et al., 2016b LBP correlation – A Binary search CASME II

Liong et al., 2016c LBP correlation – A Binary search CASME II

Optical strain

Davison et al., 2016a HOG X M Threshold technique SAMM

Davison et al., 2016b 3D HOG X Threshold technique SAMM

LBP M CASME II

OF

Li et al., 2017 HOOF X Threshold technique CASME II

LBP M SMIC-E-HS

SMIC-E-VIS

SMIC-E-NIR

Yan and Chen, 2017 LBP correlation – Peak detection CASME II

CLM A

HOOF

Ma et al., 2017 RHOOF – A Threshold technique CASME

CASME II

Qu et al., 2017 LBP X M Threshold technique CAS(ME)2

Duque et al., 2018 Riesz Pyramid X M Threshold technique SMIC-E-HS

CASME II

facial MEs are spotted by tracking the strain magnitudes across
frames following these heuristics: (1) strain magnitude exceeds
the threshold (calculated from the mean of each video) and is
significantly larger than that of the surrounding frames, and
(2) the duration of the detected peak can only last at most
1/5th of a second. A 74% true positive rate and 44% false
positive rate was achieved in the spotting task. However, a

portion of data used in their experiments were posed, while
some of them (Canal-9 and Found Videos databases) were
not published or are currently defunct. In their later work
(Shreve et al., 2014), a peak detector was applied to locate
sequences containing MEs based on strain maps. However,
the details of the peak detector and threshold value were not
disclosed.
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3.2.2. Movement Spotting
Micro-expression movements can be located by identifying a
"window" of occurrence, typically marked by a starting or onset
frame, and an ending or offset frame. In the work by Moilanen
et al. (2014), the facial motion changes were modeled by feature
difference (FD) analysis of appearance-based features (i.e., LBP)
that incorporates the Chi-Square (χ2) distance to form the
FD magnitudes. Only the top 1/3 of total blocks (per frame)
with the greatest FD values were chosen and averaged to an
initial feature value representing the frame. The contrasting
difference vector is then computed to find relevant peaks from
across the sequence. Spotted peak frames (i.e., the peaks that
exceed the threshold) are compared with the provided ground
truth frames; and considered true positive if they fall within
the span of k/2 frames (where k is half of the interval frames
in the window) before the onset and after the offset. The
proposed technique was tested on CASME-A, CASME-B, and
SMIC-VIS-E, achieving a true positive rate of 52, 66, and 71%,
respectively.

The same spotting approach was adopted by Li et al. (2017)
and tested on various spontaneous facial ME databases: CASME
II, SMIC-E-HS, SMIC-E-VIS, and SMIC-E-NIR. This work also
indicated that LBP consistently outperforms HOOF in all the
datasets with higher AUC (area-under-the-ROC-curve) values
and lower false positive rates. To spot facial micro-expressions
on the new CAS(ME)2 database, the same spotting approach
(Moilanen et al., 2014) is adopted by Wang et al. (2016a). Using
their proposed main directional optical flow (MDMD) approach,
ME spotting performance on the CAS(ME)2 is 0.32, 0.35, and
0.33 for recall, precision and F1-score, respectively. For all these
works (Moilanen et al., 2014; Wang et al., 2016a; Li et al., 2017;
Qu et al., 2017), the threshold value for peak detection is set by
taking the difference between the mean and max value of the
contrasting difference vector and multiplying it by a fraction in
the range of [0,1]. Finally, this value is added with the mean
value of the contrasting difference vector to denote the threshold.
By these calculations, at least one peak will always be detected
as the threshold value will never exceed the maximum value of
the contrasting difference vector. This could potentially result
in misclassification of non-ME movements since it will always
detect a peak. Besides, pre-defining the ME window intervals
(which obtains the FD values) may not augur well with videos
captured at different frame rates. To address the potentiality of a
false peak, these works (Moilanen et al., 2014; Davison et al., 2015;
Wang et al., 2016a; Li et al., 2017; Qu et al., 2017) proposed to
compute the baseline threshold based on a neutral video sequence
from each individual subject in the datasets.

In the work of Davison et al. (2015), all detected sequences
which are less than 100 frames are denoted as true positives, in
which eye blinks and eye gaze are included; while peaks that
are detected but not coded as a movement are classed to false
positives. The approach achieved scores of 0.84, 0.70, and 0.76
for recall, precision, and F1-measure, respectively on the SAMM
database. In their later works, Davison et al. (2016a) and Davison
et al. (2016b) introduced “individualized baselines,” which are
computed by taking a neutral video sequence for the participants
and using the χ2 distance to get an initial feature for the
baseline sequence. The maximum value of this baseline feature is

identified as the threshold. This improved their previous attempt
by a good margin.

A number of innovative approaches were proposed. Patel et al.
(2015) computed optical flow vectors over small local regions
and integrated them into spatiotemporal regions to find the
onset and offset times. In another approach, Xia et al. (2016)
applied randomwalk model to compute the probability of frames
containing MEs by considering the geometrical deformation
correlation between frames in a temporal window. Duque et al.
(2018) designed a system that is able to differentiate betweenMEs
and eye movements by analyzing the phase variations between
frames based on the Riesz Pyramid.

3.2.3. Apex Spotting
Besides spotting facial micro-movements, a few other works
focused on spotting a specific type of ME phase, particularly
the apex frame (Liong et al., 2015, 2016b,c; Yan and Chen,
2017). The apex frame, which is the instant indicating the most
expressive emotional state in an ME sequence, is believed to be
able to effectively reveal the true expression for the particular
video. In the work by Yan and Chen (2017), the frame that
has the largest feature magnitude was selected as the apex
frame. A few interesting findings were revealed: CLM (which
provides geometric features) is especially sensitive to contour-
based changes such as eyebrow movement, and LBP (which
produces appearance features) is more suitable for detecting
changes in appearance such as pressing of lips; however, OF
is the most all-rounded feature as it is able to spot the apex
based on the resultant direction and movement of facial motions.
A binary search method was proposed by Liong et al. (2015)
to automatically locate the apex frame in a video sequence. By
observing that the apex frames are more likely to appear in areas
concentrated with peaks, the proposed binary search method
iteratively partitions the sequence into two halves, by selecting the
half that contains a higher sum of feature difference values. This is
repeated until a single peak is left. The proposedmethod reported
a mean absolute error (MAE) of 13.55 frames and standard error
(SE) of 0.79 on CASME II using LBP difference features. A recent
work by Ma et al. (2017) used Region HOOF (RHOOF) based on
5 regions of interests (ROIs) for apex detection, which resulted in
more robust results.

3.3. Performance Metrics
The ME spotting task is akin to a binary detection task (ME is
present/not present), hence typical performance metrics can be
used. Moilanen et al. (2014) encouraged the use of a Receiver
Operating Characteristic (ROC) curve, which was adopted in
most subsequent works (Patel et al., 2015; Xia et al., 2016; Li et al.,
2017). In essence, the spotted peaks, which are obtained based on
a threshold level, will be compared against ground truth labels to
determine whether they are true or false spots. If one spotted peak
is located within the frame range of [onset - N−1

4 , offset + N−1
4 ]

of a labeled ME clip, the spotted sequence (N frames centered
at the peak) will be considered as a true positive ME; otherwise
the N frames of spotted sequence will be counted as false positive
frames. The specified range considers a tolerance interval of 0.5 s,
which corresponds to the presumed maximum duration of MEs.
To obtain the ROC curve, true positive rate (TPR), and false
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positive rate (FPR) are computed as follows:

TPR =
Number of frames of correctly spotted MEs

Total number of ground truth ME frames from all samples

(1)

FPR =
Number of incorrectly spotted frames

Total number of non-ME frames from all samples
(2)

Recently, Tran et al. (2017) proposed a micro-expression spotting

benchmark (MESB) to standardize the performance evaluation of the

spotting task. Using a sliding window based multi-scale evaluation

and a series of protocols, they recognize the need for a fairer and

more comprehensive method of assessment. Taking a leaf out of

object detection, the Intersection over Union (IoU) of the detection

set and ground truth set was proposed to determine if a sampled

sub-sequence window is positive or negative for ME (threshold set

at 0.5).

Several works that focused on the spotting of the apex frame (Yan

et al., 2014b; Liong et al., 2015, 2016b,c) used Mean Absolute Error

(MAE) to compute how close are the estimated apex frames to the

ground-truth apex frames:

MAE =
1

N

N
∑

i = 1

|ei| (3)

When spotting is performed on the raw long videos, Liong et al.

(2016c) introduced another measure called Apex Spotting Rate

(ASR), which calculates the success rate in spotting apex frames

within the given onset and offset range of a long video. An apex frame

is scored 1 if it is located between the onset and offset frames, and 0

otherwise:

ASR =
1

N

N
∑

i = 1

δi (4)

where δ =

{

1, if f ∗ ∈ (fi,onset, fi,offset)

0, otherwise

4. RECOGNITION OF FACIAL
MICRO-EXPRESSIONS

ME recognition is a task that classifies an ME video into one of

the universal emotion classes (e.g., Happiness, Sadness, Surprise,

Anger, Contempt, Fear, and Disgust). However, due to difficulties in

the elicitation of micro-expressions, not all classes are available in

the existing datasets. Typically, the emotion classes of the collected

samples are unevenly distributed; some are easier to elicit hence they

have more samples collected.

Technically, a recognition task involves feature extraction and

classification. However, a pre-processing stage could be involved

prior to the feature extraction to enhance the availability of

descriptive information to be captured by descriptors. In this section,

all the aforementioned steps are discussed.

4.1. Pre-processing
A number of fundamental pre-processes such as face landmark

detection and tracking, face registration and face region retrieval,

have all been discussed in section 3 for the spotting task. Most

recognition works employ similar techniques as those used for

spotting, i.e., ASM (Milborrow and Nicolls, 2014), DRMF (Asthana

et al., 2013), Face++ (Megvii, 2013) for landmark detection; LWM

(Goshtasby, 1988) for face registration. Meanwhile, division of

the facial area into regions is a step often found within various

feature representation techniques (discussed in section 4.2) to

further localize features that change subtly. Aside from these

known pre-processes, two essential pre-processing techniques have

been instrumental in conditioning ME data for the purpose of

recognition. We discuss these two steps which involve magnification

and interpolation of ME data.

The uniqueness of facial micro-expressions is in its subtleness,

which is one of reasons why recognizing them automatically is very

challenging. As the intensity levels of facial ME movements are

very low, it is extremely difficult to discriminate ME types among

themselves. One solution to this problem is to exaggerate or magnify

these facial micro-movements. In recent works (Park et al., 2015;

Zarezadeh and Rezaeian, 2016; Li et al., 2017; Wang et al., 2017),

the Eulerian Motion Magnification (EMM) (Wu et al., 2012) method

was employed to magnify the subtle motions in the ME videos. The

EMM method extracts the frequency bands of interest from the

different spatial frequency bands obtained from the decomposition

of an input video, by using band-pass filters; these extracted bandpass

signals at different spatial level are amplified by a magnification

factor α to magnify the motions. Li et al. (2017) demonstrated that

the EMM method helps to enlarge the difference between different

categories of micro-expressions (i.e., inter-class difference); thus the

recognition rate is increased. However, larger amplification factors

may cause undesirable amplified noise (i.e., motions that are not

induced by MEs), which may degrade recognition performance.

To prevent over-magnifying ME samples, Le Ngo et al. (2016a)

theoretically estimated the upper bounds of effective magnification

factors. Besides, the authors also compared the performance of

the amplitude-based Eulerian motion magnification (A-EMM) and

phase-based Eulerian motion magnification (P-EMM); with the

To deal with the distinctive temporal characteristic of different

ME classes, a magnification scheme was proposed by Park et al.

(2015) to adaptively select the most discriminative frequency band

needed for EMM to magnify subtle facial motions. A recent work

by Le Ngo et al. (2018) showed that Global Lagrangian Motion

Magnification (GLMM) can contribute toward better recognition

capability compared to local Eulerian based approaches, particularly

at higher magnification factors.

Another concern for ME recognition is with the uneven length

(or duration) of ME video samples. In fact, it can contribute to

two contrasting scenarios: (a) the case of short duration videos,

which restricts the application of the feature extraction techniques

which require varied temporal window size (e.g., LBP-basedmethods

that can form binary patterns from varied radius); and (b) the case

of long duration videos, whereby redundant or replicated frames

(due to high frame rate capture) could deteriorate the recognition

performance. To solve the problem, the temporal interpolation

method (TIM) is applied to either up-sample (clips that are too short)

or down-sample (clips that are too long) clips to produce clips of

similar frame lengths.

Briefly, TIM takes original frames as input data to construct a

manifold of facial expressions; then it samples on the manifolds

for a particular number of output frames (refer to Zhou et al.,

2011 for detailed explanation). It is shown by Li et al. (2017)
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that modifying the frame length of ME videos can improve the

recognition performance if the number of interpolated frames

are small. However, when the interpolated frames are increased,

the recognition performance is somewhat hampered due to over-

interpolation. Therefore, the appropriate interpolation of the ME

sequence is vital in preparation for recognition. An alternative

technique Sparsity-Promoting Dynamic Mode Decomposition

(DMDSP) (Jovanović et al., 2014) was adopted by Le Ngo

et al. (2015) and Le Ngo et al. (2016b) to select only significant

dynamics inMEs to form sparse structures. From the comprehensive

experimental results shown in Le Ngo et al. (2016b), DMDSP

achieved better recognition performance compared to TIM (on

similar features and classifiers) due to its ability to keep only the

significant temporal structures while eliminating irrelevant facial

dynamics.

While the aforementioned pre-processing techniques showed

positive results in improving ME recognition, yet these methods will

notably lengthen the computation time of the overall recognition

process. For a real-time system to be feasible, this cost has to be taken

into consideration.

4.2. Representations
In the past few years, research in automatic ME analysis have been

much focused on the problem of ME recognition: given an ME video

sequence/clip, the purpose of recognition is to estimate its emotion

label (or class). Table 4 summarizes the existing ME methods

in the literature. From the perspective of feature representations,

they can be roughly divided into two main categories: single-level

approaches andmulti-level approaches. Single-level approaches refer

to frameworks that directly extract feature representations from

the video sequences; while for multi-layer approaches, the image

sequences are first transformed into another domain or subspace

prior to feature representation to exploit other kinds of information

to describe MEs.

Feature representation is a transformation of raw input data to

a succinct form; typically in face processing, representations can be

from two distinct categories: geometric-based or appearance-based

(Zeng et al., 2009). Specifically, geometric-based features describe the

face geometry such as the shapes and locations of facial landmarks;

whereas appearance-based features describe intensity and textural

information such as wrinkles, furrows, and other patterns that

are caused by emotion. However from previous studies in facial

expression recognition (Fasel and Luettin, 2003; Zeng et al., 2009), it

is observed that appearance-based features are better than geometric-

based features in coping with illumination changes and mis-

alignment error. Geometric-based features might not be as stable as

appearance-based features as they need precise landmark detection

and alignment procedures. For these similar reasons, appearance-

based feature representations have become more popular in the

literature on ME recognition

4.2.1. LBP-Based Methods
Among appearance-based feature extraction methods, local binary

pattern on three orthogonal planes (LBP-TOP) is widely applied in

many works (Li et al., 2013; Guo et al., 2014; Le Ngo et al., 2014, 2015,

2016a,b; Yan et al., 2014a; Adegun and Vadapalli, 2016; Zheng et al.,

2016; Wang et al., 2017). Most existing datasets (SMIC, CASME II,

SAMM) have all reported the LBP-TOP as their baseline evaluation

method. LBP-TOP is an extension of its low-level representation,

local binary pattern (LBP) (Ojala et al., 2002), which describes local

texture variation along a circular region with binary codes which are

then encoded into a histogram. LBP-TOP extracts features from local

spatio-temporal neighborhoods over three planes: the spatial (XY)

plane similarly to the regular LBP, the vertical spatio-temporal (YT)

plane and the horizontal spatio-temporal (XT) plane; this enables

LBP-TOP to dynamically encode temporal variations.

Subsequently, several variants of LBP-TOP were proposed

for the ME recognition task. Wang et al. (2014b) derived Local

Binary Pattern— Six Interception Points (LBP-SIP) from LBP-

TOP by considering only the 6 unique points lying on three

intersecting lines of the three orthogonal planes as neighbor

points for constructing the binary patterns. By reducing redundant

information from LBP-TOP, LBP-SIP reported better performance

than LBP-TOP in this task. A more compact variant, LBP-MOP

(Wang et al., 2015b) was constructed by concatenating the LBP

features from only three mean images, which are the temporal

pooling result of the image stacks along the three orthogonal

planes. The performance of LBP-MOP was comparable to

LBP-SIP, but with its computation time dramatically reduced.

While LBP considers only pixel intensities, spatio-temporal

completed local quantized patterns (STCLQP) (Huang et al., 2016)

exploited more information containing sign, magnitude, and

orientation components. To address the sparseness problem

(in most LBP variants), specific codebooks were designed

to reduce the number of possible codes to achieve better

compactness.

Recent works have yielded some interesting advances. Huang

and Zhao (2017) proposed a new binary pattern variant called

spatio-temporal local Radon binary pattern (STRBP) that uses

Radon transform to obtain robust shape features. Ben et al. (2017)

proposed an alternative binary descriptor called Hot Wheel Patterns

(HWP) (and its spatio-temporal extension HWP-TOP) to encode

the discriminative features of both macro- and micro-expressions

images. A coupled metric learning algorithm is then used to

model the shared features between micro- and macro-expression

information.

4.2.2. Optical Flow-Based Methods
As suggested in several studies (e.g., Li et al., 2017), the temporal

dynamics that reside along the video sequences are found to be

essential in improving the performance of ME recognition. As such,

optical flow (OF) (Horn and Schunck, 1981) based techniques,

which measure the spatio-temporal changes in intensity, came into

contention as well.

In the work by Xu et al. (2017), a proposal to extract only principal

directions of the OFmaps was purportedly to eliminate abnormal OF

vectors that resulted from noise or illumination changes. A similar

concept of exploiting OF in the main direction was employed by Liu

et al. (2016) to design main directional mean optical flow (MDMO)

features. MDMO is a ROI-based OF feature, which considers both

local statistic (i.e., the mean of OF vectors in the bin with the

maximum count in each ROI) and its spatial location (i.e., the ROI to

which it belongs). Unlike the aforementioned works which exploited

only the single dominant direction of OF in each facial region, Allaert

et al. (2017) determined the consistent facial motion, which could be

in multiple directions from a single facial region. The assumption

was made based on the fact that facial motions spread progressively

due to skin elasticity, hence only the directions that are coherent in
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TABLE 4 | Benchmarking facial micro-expression recognition works in literature.

Papers Pre-processing Features Classifier Accuracy (%) F1-score (%)

CASME II SMIC CASME II SMIC

LOSO

Li et al., 2013 – LBP-TOP SVM – 48.78 – –

Liong et al., 2016a – OSF + OS and weighted LBP-TOP SVM – 52.44 – –

Liong et al., 2014a – OS SVM – 53.56 – –

Liong et al., 2014b – OS weighted LBP-TOP SVM 42.00 53.66 0.38 0.54

Le Ngo et al., 2014 – STM Adaboost 43.78 44.34 0.3337 0.4731

Wang et al., 2015b – LBP-MOP SVM 44.13 50.61 – –

Xu et al., 2017 – Facial Dynamics Map SVM 45.93 54.88 0.4053 0.538

Oh et al., 2016 – Monogenic + LBP-TOP SVM – – 0.41 0.44

Oh et al., 2015 – Riesz wavelet + LBP-TOP SVM – – 0.43 –

Liong et al., 2018 ROIs LBP-TOP SVM 46.00 54.00 0.32 0.52

Wang et al., 2014b – LBP-SIP SVM 46.56 44.51 0.448 0.4492

Le Ngo et al., 2016a A-EMM LBP-TOP SVM – – 0.51 –

Le Ngo et al., 2016b DMDSP LBP-TOP SVM 49.00 58.00 0.51 0.60

Park et al., 2015 Adaptive MM LBP-TOP SVM 51.91 – – –

Happy and Routray, 2017 – HFOFO SVM 56.64 51.83 0.5248 0.5243

Liong et al., 2016b – Bi-WOOF SVM – – 0.56 0.53

Huang et al., 2016 – STCLQP SVM 58.39 64.02 0.5836 0.6381

Huang et al., 2015 – STLBP-IP SVM 59.51 57.93 0.57∗ 0.58∗

Liong et al., 2016c – Bi-WOOF (apex frame) SVM – – 0.61 0.62

He et al., 2017 – MMFL SVM 59.81 63.15 – –

Kim et al., 2016 – CNN + LSTM Softmax 60.98 – – –

Liong and Wong, 2017 – Bi-WOOF + Phase SVM 62.55 68.29 0.65 0.67

Zheng et al., 2016 – LBP-TOP RK-SVD 63.25 – –

Zong et al., 2018a – Hierarchical STLBP-IP KGSL 63.83 60.78 0.6110 0.6126

Huang and Zhao, 2017 TIM STRBP SVM 64.37 60.98 – –

Huang et al., 2017 – Discriminative STLBP-IP SVM 64.78 63.41 – –

Allaert et al., 2017 – OF Maps SVM 65.35 – – –

Li et al., 2017 TIM+EVM HIGO SVM 67.21 68.29 – –

Zheng, 2017 †‡ – 2DSGR SRC – 71.19 – –

Liu et al., 2016 † – MDMO SVM 67.37 80.00 – –

Davison et al., 2017 ‡ – HOOF SVM 76.60 – 0.55 –

LOVO

Wang et al., 2015a †‡ TIM LBP-TOP on TICS SVM 62.30 – – –

Yan et al., 2014a – LBP-TOP SVM 63.41 – – –

Wang et al., 2014a TIM DLSTD SVM 63.41 68.29 – –

Happy and Routray, 2017 – HFOFO SVM 64.06 56.10 0.6025 0.5536

Liong et al., 2014b – OS weighted LBP-TOP SVM 65.59 – – –

Wang et al., 2015b – LBP-MOP SVM 66.80 60.98 – –

Wang et al., 2014b – LBP-SIP SVM 67.21 – – –

Ping et al., 2016 LBP-TOP GSLSR 67.89 70.12 – –

Park et al., 2015 Adaptive MM LBP-TOP SVM 69.63 – – –

Wang et al., 2017 EVM LBP-TOP SVM 75.30 – – –

Li et al., 2017 TIM+EVM HIGO SVM 78.14 75.00 – –

OTHER PROTOCOLS

Zhang et al., 2017 – LBP-TOP and HOOF RF 62.5 – -– –

Evenly Distributed

Jia et al., 2017 – SVD+ LBP/LBP-TOP KNN 65.5 – – –

Random Test (20 times)

Peng et al., 2017 §‡ – DTSCNN SVM 66.67 – – –

three-fold cross-validation

Adegun and Vadapalli, 2016 † – LBP-TOP ELM 96.12 – – –

five-fold cross-validation

†
Not all the samples in the dataset were used in the experiments.

‡
Different number of emotion classes were used in the experiments.

§Combined CASME I/II database was used.

*Not reported in paper, but computed from confusion table provided.

Frontiers in Psychology | www.frontiersin.org 13 July 2018 | Volume 9 | Article 1128

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Oh et al. A Survey of Automatic Facial ME Analysis

the neighboring facial regions are extracted to construct a consistent

OF map representation.

Motivated by the use of optical strain (OS) for ME spotting

(Shreve et al., 2009, 2014), Liong et al. (2014a) proposed to leverage

on its strengths for ME recognition. OS is derived from OF by

computing the normal and shear strain tensor components of theOF.

This enables the capture of small and subtle facial deformation. In

their work, the OS magnitude images are temporally pooled to form

a single pooled OS map; then the resulting map is max-normalized

and resized to a fixed smaller resolution before transforming into a

feature vector that represent the video. To emphasize the importance

of active regions, the authors (Liong et al., 2014b) proposed to

weight local LBP-TOP features with different weights which were

generated from the temporal mean-pooled OS map. This allows

regions that actively exhibit MEs to be given more significance,

hence increasing the discrimination between emotion types. In a

more recent attempt, Liong et al. (2016b) proposed a Bi-Weighted

Oriented Optical Flow (BI-WOOF) descriptor which applies two

schemes to weight the HOOF descriptor locally and globally. Locally,

the magnitude components were used to weight the orientation

bins within each ROI; the resultant locally weighted histograms are

then weighted again (globally) by multiplying with the mean optical

strain (OS) magnitude of each ROI. Intuitively, a larger change in

the pixel’s movement or deformation will contribute toward a more

discriminative histogram. Instead of considering the whole image

sequences, the authors also demonstrated promising recognition

performance using only two frames (i.e., the onset frame and the apex

frame) instead of using whole sequences. This was able to reduce the

processing time by a large margin.

Zhang et al. (2017) proposed to aggregate the histogram of the

oriented optical flow (HOOF) (Chaudhry et al., 2009) with LBP-

TOP features region-by-region to generate local statistical features.

In their work, they revealed that fusing of local features within each

ROI can capture more detailed and representative information than

globally done. In the work by Happy and Routray (2017), fuzzy

histogram of optical flow orientation (FHOFO) was proposed for

ME recognition. In HFOFO, the histograms are only the collection of

orientations without being weighted by the optical flow magnitudes;

the assumption was made that MEs are so subtle that the induced

magnitudes should be ignored. They also introduced a fuzzification

process that considers the contribution of an orientation angle to

its surrounding bins based on fuzzy membership functions; as such

smooth histograms for motion vector are created.

4.2.3. Other Methods
Aside from methods based on low-level features, there are also

numerous techniques proposed to extract other types of feature

representations. Lu et al. (2014) proposed a Delaunay-based

temporal coding model (DTCM) to encode the local temporal

variation (in grayscale values) in each subregion obtained by

Delaunay triangulation and preserve the ones with high saliency

as features. In the work of Li et al. (2017), the histogram of

image gradient orientation (HIGO), which is a degenerate variant

of HOG, was employed in the recognition task. It uses simple

vote rather than weighted vote when counting the responses of

the gradient orientations. As such, it could depress the influence

of illumination contrast by ignoring the magnitude. The use

of color space was also experimented in the work of Wang

et al. (2015a), where LBP-TOP features were extracted from

Tensor Independent Color Space (TICS). In TICS, the three

color components (R, G, and B) were transformed into three

uncorrelated components which are as independent as possible to

avoid redundancy and thus increase the recognition performance.

The Sparse Tensor Canonical Correlation Analysis (STCCA)

representation proposed by Wang et al. (2016b) offers a solution to

mitigate the sparsity of spatial and temporal information in a ME

sequence.

Signal components such as magnitude, phase and orientation can

be exploited as features forME recognition. Oh et al. (2015) proposed

a monogenic Riesz wavelet framework, where the decomposed

magnitude, phase, and orientation components (which represent

energy, structural and geometric information respectively) are

concatenated to describe MEs. In their extended work (Oh et al.,

2016), higher-order Riesz transform was adopted to exploit the

intrinsic two-dimensional (i2D) local structures such as corners,

junctions, and other complex contours. They demonstrated that i2D

structures are better representative parts than i1D structures (i.e.,

simple structures such as lines and straight edges) in describingMEs.

By supplementing the robust Bi-WOOF descriptor (Liong et al.,

2016b) with Riesz monogenic phase information derived from the

onset-apex difference image (Liong and Wong, 2017), recognition

performance can be further boosted.

Integral projections are an easy way of simplifying spatial

data to obtain shape information along different directions.

The LBP-Integral Projection (IP) technique proposed by Huang

et al. (2015) applies the LBP operator on these projections.

A difference image is first computed from successive frames

(to remove face identity) before it is projected into two parts:

vertical projection and horizontal projection. This method

was found to be more effective than directly using features

derived from the original appearance information. In their

extended work (Huang et al., 2017), original pixel information

is replaced by extracted subtle emotion information as input for

generating spatio-temporal local binary pattern with revisited

integral projection (STLBP-RIP) features. To further enhance

the discriminative power of these features, only features with

the smallest Laplacian scores are selected as the final feature

representation.

A few works increase the significance of features by means

of excluding irrelevant information such as pose and subject

identity, which may obstruct salient emotion information. Robust

principal component analysis (RPCA) (Wright et al., 2009) was

adopted in Wang et al. (2014a) and Huang et al. (2016)

to extract subtle emotion information for feature extraction.

In Wang et al. (2014a), the extracted subtle emotion information

was encoded by local spatio-temporal directional (LSTD) to

extract more detailed spatio-temporal directional changes on the

x, y, and t directions from each plane (XY, XT, and YT).

Lee et al. (2017) proposed an interesting use of Multimodal

Discriminant Analysis (MMDA) to orthogonally decompose a

sample into three modes or “identity traits” (emotion, gender

and race) in a simultaneous manner. Only the essential emotion

components are magnified before the samples are synthesized and

reconstructed.

Recently, numerous new works have begun exploring other forms

of representation and mechanisms. He et al. (2017) proposed a

strategy to extract low-level features from small regions (or cubes)

of a video by learning a set of class-specific feature mappings.
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Jia et al. (2017) devised a macro-to-micro transformation model

based on singular value decomposition (SVD) to recognize MEs

by utilizing macro-expressions as part of the training data. This

overcomes the lack of labeled data in MEs databases. There were

various recent attempts at casting the recognition task as one

arising from a different problem. Zheng (2017) formulated it as

a sparse approximation problem and presented the 2D Gabor

filter and sparse representation (2DSGR) technique for feature

extraction. Zhu et al. (2018) drew inspiration from similarities

between MEs and speech to propose a transfer learning method

that projects both domain signals to a common subspace. In a

radical move, Davison et al. (2017) proposed to re-group MEs

based on Action Units (AUs) instead of by emotion categories,

which are arguably susceptible to bias in self-reports used during

the construction of dataset. Their experimental results on CASME

II and SAMM showed that recognition performance should be

higher than what is currently expected from other works that used

emotion labels.

4.3. Classification
The last stage in an ME recognition task involves the classification of

the emotion type. Various types of classifiers have been used for the

task of ME recognition such as k-Nearest Neighbor (k-NN), support

vector machine (SVM), random forest (RF), sparse representation

classifier (SRC), Relaxed K-SVD, group sparse learning (GSL)

and extreme learning machine (ELM). From the literature, the

most widely used classifier is the SVM. SVMs are computational

algorithms that construct a hyperplane or a set of hyperplanes in a

high or infinite dimensional space (Cortes andVapnik, 1995). During

the training of SVM, the margins between the borders of different

classes are sought to be maximal. Compared to other classifiers,

SVMs are robust, accurate, and very effective even in cases where

the number of training samples is small. On the contrary, two

other notable classifiers—RF and k-NN are seldom used in the ME

recognition task. Although the RF is generally quicker than SVM, it

is prone to overfit when dealing with noisy data. The k-NN uses an

instance-based learning process which may not be suitable for sparse

high-dimensional data such as face data.

To deal with the sparseness of MEs, several works tried using

relaxed K-SVD, SRC, andGSL techniques for classification. However,

each of these methods tackle the sparseness of MEs differently.

The relaxed K-SVD (Zheng et al., 2016) learns a sparse dictionary

to distinguish different MEs by minimizing the variance of sparse

coefficients. The SRC (Yang et al., 2012) used in Zheng (2017)

represents a given test sample as a sparse linear combination

of all training samples; hence the sparse nonzero representation

coefficients are likely to concentrate on training samples that are

of the same class as the test sample. A Kernelized GSL (Zong

et al., 2018a) is proposed to facilitate the process of learning a set

of importance weights from hierarchical spatiotemporal descriptors

that can aid the selection of the important blocks from various

facial blocks. Neural networks can offer a one-shot process (feature

extraction and classification), with a remarkable ability to extract

complex patterns from data. However, a substantial amount of

labeled data is required to properly train a neutral network without

overfitting it, resulting in it being less favorable for ME recognition

since labeled data is limited. The ELM (Huang et al., 2006), which is

naturally just feed-forward network with a single hidden layer was

used by Adegun and Vadapalli (2016) to classify MEs.

4.4. Experimental Protocol and
Performance Metrics
The original dataset papers (Li et al., 2013; Yan et al., 2014a; Davison

et al., 2016a) all propose the adoption of the Leave-One-Subject-Out

(also known as “LOSO”) cross-validation as the default experimental

protocol. This is done with consideration that the samples were

collected by eliciting the emotions from a number of different

participants (i.e., S number of subjects). As such, cross validation

should be carried out by withholding a particular subject s while the

other S − 1 subjects are used in the training step. This removes the

potential identity bias that may arise during the learning process;

a subject that is being evaluated could have been seen and learned

in the training step. A number of other works used the Leave-

One-Video-Out (“LOVO”) cross-validation protocol instead, which

exhaustively divides all samples into S number of possible train-test

partitions. This protocol is deemed to avoid irregular partitioning

but is often likely to overestimate the performance of the classifier.

A few works opted to report their results using their own choice of

evaluation protocol, such as an evenly distributed sets (Zhang et al.,

2017), random sampling of test partition (Jia et al., 2017), and five-

fold cross validation (Adegun and Vadapalli, 2016). Generally, the

works in literature can be categorized into these three groups, as

shown in Table 4.

The ME recognition task reports the typical performance

metric of Accuracy, which is commonly used in other image/video

recognition problems. Amajority of works in the literature report the

Accuracy metric, which is simply the number of correctly classified

video sequences over the total number of video sequences in the

dataset. However, due to the imbalanced nature of the ME datasets

which was first discussed by Le Ngo et al. (2014), Accuracy scores can

be highly skewed toward classes that are larger as classifiers tend to

learn poorly from classes that are less represented. Consequently, it

makes more sense to report the F1-Score (or F-measure), which is the

harmonic mean of the Precision and Recall:

F1-Score = 2 ·
Precision · Recall

Precision+ Recall
(5)

Precision =
tp

tp+ fp
(6)

Recall =
tp

tp+ fn
(7)

where tp, fp, and fn are the number of true positives, false positives,

false negatives, respectively. The overall performance of a method

can be reported by macro-averaging across all classes (i.e., compute

scores for each class, then average them), or by micro-averaging

across all classes (i.e., summing up the individual tp, fp, and fn in

the entire set before computing scores).

5. CHALLENGES

The studies reviewed in sections 2, 3, and 4 show the progress in the

research work in ME analysis. However, there is still considerable

room for improvement in the performance of ME spotting and

recognition. In this section, some recognized problems in existing

databases and challenging issues in both tasks are discussed in detail.
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5.1. Databases
Acquiring valuable spontaneous ME data and their ground truth is

far from being solved. Among the various affective states, certain

emotions (such as happiness) are relatively easier to be elicited

compared to others (e.g., fear, sadness, anger) (Coan and Allen,

2007). Consequently, there is an imbalanced distribution of samples

per emotion and number of samples per subject. This could be biased

toward particular emotions that constitute a larger portion of the

training set. To address this issue, a more effective way of eliciting

affective MEs (especially to those are relatively difficult) should be

discovered. Social psychology has suggested creative strategies for

inducing affective expressions that are difficult to elicit (Coan and

Allen, 2007). Some works have underlined the possibility of using

other complementary information from the body region (Song et al.,

2013) or instantaneous heart rate from skin variations (Gupta et al.,

2018) to better analyze micro-expressions.

Almost all the existing datasets contain amajority of subjects from

one particular country or ethnicity. Though it is common knowledge

that basic facial expressions are universal across the cultural

background, nevertheless subjects from different backgrounds may

express differently toward the same elicitation, or at least with

different intensity level as they may have different ways of expressing

an emotion. Thus, a well-established database should comprise a

diverse range of ethnic groups to provide better generalization for

experiments.

Although much effort has been paid toward the collection

of databases of spontaneous MEs, some databases (e.g., SMIC)

lack important metadata such as FACS. It is generally accepted

that human facial expression data need to be FACS coded. The

main reason being that FACS AUs are objective descriptors and

independent of subjective interpretation. Moreover, it is also

essential to report the reliability measure of the inter-observers (or

inter-coders) involved in the labeling of data.

Considering the implementation of real-life applications of ME

recognition in the near future, existing databases that are constructed

under studio environments, may not best represent MEs exhibited in

real-life situations. Thus, developing and introducing real-world ME

databases could bring about a leap of progress in this domain.

5.2. Spotting
Recent work on the spotting of MEs have achieved promising

results on successfully locating the temporal dynamics of micro-

movements; however, there is room for improvement as the problem

of spotting MEs remains a challenging task to date.

5.2.1. Landmark Detection
Even though the facial landmark detection algorithms have made

remarkable progress over the past decade, the available landmark

detectors are not always accurate or steady. The unsteadiness of

face alignment based on imprecise facial landmarks may result in

significant noise (i.e., rigid head movements and eye gaze) associated

with dynamic facial expressions. This in turn increases the difficulty

in detecting the correct MEs. Thus, a more advanced robust facial

landmark detection is required to correctly and precisely locate the

landmark points on the face.

5.2.2. Eyes: To Keep or Not Keep?
To avoid the intrusion of eye blinks, majority of works in the

literature simply mask out the eye regions. However, according to

some findings (Zhao et al., 2011; Vaidya et al., 2014; Lu et al., 2015;

Duan et al., 2016), the eye region is one of the most discriminative

regions for affect recognition. As many spontaneous MEs involving

muscles around eye regions, there is a need to differentiate between

the eye blinks corresponding to certain expressions and those that are

merely irrelevant facial motions. In addition, the onsets of the many

MEs also temporally overlap with eye blinks (Li et al., 2017). Thus,

this warrants a more robust approach at dealing with overlapping

occurrences of facial motions.

5.2.3. Feature-Based or Rule-Based?
The few studies (Liong et al., 2015; Yan and Chen, 2017) investigated

the effectiveness of individual feature descriptors in capturing the

micro-movements for the ME spotting task. They have showed that

micro-movements that are induced from different facial components

actually resulted in motion changes from different perspectives such

as appearance, geometric, and etc. For example, lifting up or down

the eyebrows results in a clear contour change (geometrical), which

could be effectively captured by geometric-based feature descriptors;

pressing of lips could cause the variation in appearance but not

the position, and thus appearance-based feature descriptors can

capture these changes. Interestingly, they reported that motion-

based features such as optical flow based features outperformed

appearance-based and geometric-based features in the ME spotting.

The problem remains that the assumptions made by optical flow

methods are likely to be violated in unconstrained environments,

rendering real-time implementation challenging.

Majority of existing efforts toward the spotting of MEs

employ rule-based approaches that rely on thresholds. Frames

with magnitude exceeding the pre-defined threshold value are the

frames (i.e., the temporal dynamics) where ME appears. However,

prior knowledge is required to set the appropriate threshold for

distinguishing the relevant peaks from local magnitude variation

and background noise. This is not really practical in the real-time

domain. Instead, Liong et al. (2015) designed a simple divide-and-

conquer strategy, which does not require a threshold to locate the

temporal dynamics of MEs. Their method finds the apex frame based

on a high concentration of peaks.

5.2.4. Onset and Offset Detection
Further steps should also be considered to locate the onset and

offset frames of these ME occurrences. While it is relatively easier

to identify the peaks and valleys of facial movements, the onset

and offset frames are much more difficult to determine. The

task of locating the onset and offset frames will be even tougher

when dealing with real-life situations where facial movements

are continuously changing. Thus, the indicators and criteria for

determining the onset and offset frames need to be properly defined

and further studied. Spotting the ME onset and offset frames is a

crucial step which can lead to automatic ME analysis.

5.3. Recognition
In the past few years, much effort has been done toward ME

recognition, including developing new features to better describe

MEs. However, due to the short elapsed duration and low intensity

of MEs, there is still room for improvement toward achieving

satisfactory accuracy rates. This could be due to several possible

reasons.
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5.3.1. Block Selection
In most works, block-based segmentation of a face to extract local

information is a common practice. Existing efforts employed block-

based segmentation of a face without considering the contribution

from each of the blocks. Ideally, the contribution from all blocks

should be varied, whereby the blocks containing the key facial

components such as eyebrows, eyes, mouth, and cheek should

be highlighted as the motion changes at these regions convey

meaningful information from differentiating different MEs. Higher

weights can be assigned to those regions that contain key facial

components to enhance the discriminative power. Alternatively, the

discriminative features from the facial blocks can be selected through

a learning process; the recent work of Zong et al. (2018a) offers a

solution to this issue.

5.3.2. Type of Features
Since the emergence of the ME recognition works, many different

feature descriptors have been proposed for MEs. Due to the

characteristic of the feature descriptors, the extracted features might

carry different information (e.g., appearance, geometric, motion,

etc). For macro-expressions, it has been shown in (Fasel and

Luettin, 2003) and Zeng et al. (2009) that geometric-based features

performed poorer than appearance- and motion-based features as

they are highly dependent on the precision of facial landmark points.

However, recent ME works (Huang et al., 2015, 2017) show that

shape information is arguably more discriminative for identifying

certain MEs. Perhaps different features may carry meaningful

information for different expression types. This should be carefully

exploited and taken into consideration during feature extraction

process.

5.3.3. Deep Learning
The advancement of Deep Learning has prompted the community

to look for new ways of extracting better features. However, a crucial

ingredient to this remains as to the feasible amount of data necessary

to train a model that does not over-fit easily; the small scale of data

(lack of ME samples per category) and the imbalanced distribution

of samples are the primary obstacles. Recently an approach by Patel

et al. (2016)made an attempt to utilize deep features transferred from

pretrained ImageNet models. The authors deemed that fine-tuning

the network to theME datasets is not plausible (insufficient data) and

opted for a feature selection scheme. Some other works (Kim et al.,

2016; Peng et al., 2017) have also begun exploring the use of deep

neural networks by encoding spatial and temporal features learned

from network architectures that are relatively “shallower” than those

used in the ImageNet challenge (Russakovsky et al., 2015). This may

be a promising research direction in terms of advancing the features

used for this task.

5.3.4. Cross-Database Recognition
Another on-going development that challenges existing

experimental presuppositions is cross-database recognition.

This setup mimics a realistic setting where training and test samples

may come from different environments. Current recognition

performance based on single databases, is expected to plunge

under such circumstances. Zong et al. (2017, 2018b) proposed a

domain regeneration (DR) framework, which aims to regenerate

micro-expression samples from source and target databases. The

authors aptly point out that much is still to be done to discover more

robust algorithms that work well across varying domains. The first

ever Micro-Expression Grand Challenge (Yap et al., 2018) was held

with special attention given to the importance of cross-database

recognition settings. Two protocols – Hold-out Database Evaluation

(HDE) and Composite Database Evaluation (CDE), were proposed

in the challenge, using the CASME II and SAMM databases. The

reported performances (Khor et al., 2018; Merghani et al., 2018;

Peng et al., 2018) were poorer than most other works that apply only

to single databases, indicating that future methods need to be more

robust across domains.

5.4. Experiment Related Issues
5.4.1. Evaluation Protocol
An important issue that should be addressed in ME recognition is

how the data is evaluated. Due to the different evaluation protocols

used in existing works, a fair comparison among these works could

not be adequately established. Currently, the two popular evaluation

protocols that are widely applied in ME recognition are: leave-one-

video-out cross-validation (LOVOCV) and leave-one subject-out

cross validation (LOSOCV). The common k-fold cross-validation

is not suitable as the current publicly available spontaneous ME

datasets are highly imbalanced (Le Ngo et al., 2014). The number of

samples per subject and the number of samples per emotion class in

these datasets vary quite considerably. For instance, in the CASME

II dataset, the number of samples that belong to the “Surprise” class

is 25 compared to the 102 samples of the “Others” class; while the

difference in the number of samples for “Subject 08” and “Subject

17” are 8 and 34, respectively. As such, with k-fold cross-validation,

the fairness in evaluation is likely to be questionable. The same

goes with employing LOVOCV, where only one video sample is left

out as the test sample while the remaining samples are used for

training; subsequently, the average accuracy across all folds is taken

as the final result. This can possibly introduce additional biases on

certain subjects that have more representation during the evaluation

process.Moreover, the performance of such a protocol typically over-

estimates the actual classifier performance due to a substantially

large training set. It is paramount to stress that the LOSOCV

protocol is a more convincing evaluation protocol as it separates

the samples of the test set based on the subject identity. As such,

the training model is not biased toward the identity of the subject

(akin to face recognition instead). Naturally, this protocol also

limits the ability of methods to learn the intrinsic micro-expression

dynamics of each subject. The intensity and manner of which

micro-expressions are shown may differ from person to person,

hence compartmentalizing a subject altogether may inhibit the

modeling process.

5.4.2. Performance Metrics
Besides the usage of evaluation protocol, the choice of performance

metrics is also crucial to understanding the actual performance

of automatic ME analysis. Currently, two performance metrics

are used most widely: the Accuracy rate and F1-score. While the

Accuracy rate is straightforward in calculation, it does not give

an adequate reflection of the effectiveness of a classifier as it is

susceptible to heavily skewed data (uneven distribution of samples

per emotion class), a characteristic found in most current datasets.

Also, the Accuracy rate merely shows the average “hit rate” across all

classes; thus the performance of the classifier that deals with each

emotion class is not revealed. It is a much preferred practice to

report confusion matrices for better understanding of its per-class
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performances. From thereafter, performance metrics such as F1-

score, Precision and Recall provide a better measure of a classifier’s

performance when dealing with imbalanced datasets (Sokolova and

Lapalme, 2009; Le Ngo et al., 2014). The overall F1-score, Precision

and Recall scores should be micro-averaged based on the total

number of true positives, false positives, and false negatives.

5.4.3. Emotion Class
There are several existing works considering different number of

emotion classes instead of using the emotion classes provided by the

databases. For instance, in the works by Wang et al. (2015a) and

Zheng (2017), the authors considered only three or four emotion

labels (i.e., Positive, Negative, Surprise, and/or Others) instead of the

original emotion labels of the CASME II (i.e., Happiness, Surprise,

Disgust, Repression, and Others). Due to the reduction in the

number of emotion classes considered, the classification task could

be relatively simpler compared to those that have more emotion

classes. As a result, higher performances were reported but this also

inhibits these works from fair benchmarking against other works

on the merit of their methods. It is important to note also that the

grouping of classes may be biased toward negative categories since

there is only one positive category (Happiness).

Recently, Davison et al. (2017) challenged the current use of

emotion classes by proposing the use of objective classes, which are

determined by restructuring these new categories around the Action

Units (AUs) that have been FACS coded. Samples from the two most

recent FACS coded datasets, CASME II and SAMM, were re-grouped

into these objective classes for their use. The authors argued that

emotion classification requires the context of the situation for an

interpreter to make a meaningful interpretation, while relying on

self-reports (Yan et al., 2014a) can also cause further unpredictability

and bias. Although FACS coding can objectively assign AUs to

specific muscle movements of the face but the emotion type becomes

less obvious. Lim and Goh (2017), through their fuzzy modeling,

provided some insights as to why the emotional content in ME

samples are non-mutually exclusive as they may contain traces of

more than one emotion type.

6. CONCLUSION

Research on the machine analysis of facial MEs has witnessed

substantial progress in the last few years as several new spontaneous

facial MEs databases were made available to aid automatic analysis

of MEs. This has spiked the interest of the affective and visual

computing community with a good number of promising methods

making headways in both automatic ME spotting and recognition

tasks. This necessitates a comprehensive review of recent advances

to better taxonomize the increasing number of existing works.

In addition, this paper also summarizes the issues that have not

received sufficient attention, but are crucial for feasible machine

interpretation of MEs. Among the important issues that are yet to

be addressed in the field of ME spotting:

• Handling macro movements: Differentiating between larger,

macro facial movements such as eye blinks and twitches, for better

spotting of the onset of MEs,

• Developing more precise spotting techniques that can cope with

various head poses and camera views: Extension of current

constrained environments toward more real-time “in-the-wild”

settings will provide a major leap in practicality.

• Establishing a firm criteria for defining the onset and offset frames

forMEs: This allowsME short sequences to be extracted from long

videos, which in turn, can be classified into emotion classes.

For the ME recognition task, there are a few issues that deserve the

community’s attention:

• Excluding irrelevant facial information: As MEs are very subtle, it

is a great challenge to remove other image perturbations caused

by face alignment and slight head rotations which may interfere

with the MEs.

• Improving feature representations: Encoding subtle movements

are difficult even when feature representations are rich. This is due

to limitations in the amount of data that is currently available.

• Encouraging cross-database evaluation: Evaluating within

single databases often gives a false impression of a method’s

performance, especially when existing databases lack diversity.
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