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Generalized structured component analysis (GSCA) is a component-based approach

to structural equation modeling (SEM), where latent variables are approximated by

weighted composites of indicators. It has no formal mechanism to incorporate errors

in indicators, which in turn renders components prone to the errors as well. We propose

to extend GSCA to account for errors in indicators explicitly. This extension, called

GSCAM, considers both common and unique parts of indicators, as postulated in

common factor analysis, and estimates a weighted composite of indicators with their

unique parts removed. Adding such unique parts or uniqueness terms serves to account

for measurement errors in indicators in a manner similar to common factor analysis.

Simulation studies are conducted to compare parameter recovery of GSCAM and existing

methods. These methods are also applied to fit a substantively well-established model

to real data.

Keywords: generalized structured component analysis, uniqueness, measurement error, bias correction,

structural equation modeling

INTRODUCTION

Structural equation modeling (SEM) involves the specification and testing of the relationships
between variables that are observed (indicators) and unobserved (latent variables). Two approaches
have been proposed for SEM: Factor-based vs. component-based (e.g., Fornell and Bookstein,
1982; Jöreskog and Wold, 1982; Tenenhaus, 2008; Rigdon, 2012). The former includes covariance
structure analysis (CSA; Jöreskog, 1970, 1973), and the latter includes partial least squares
path modeling (PLSPM; Wold, 1966, 1973, 1982; Lohmöller, 1989) and generalized structured
component analysis (GSCA; Hwang and Takane, 2004, 2014). As their names imply, the two
approaches become divergent in how they approximate latent variables in these sub-models. That
is, factor-based SEM assumes that common factors may approximate latent variables as in common
factor analysis, whereas component-based SEM posits that weighted composites of indicators may
serve as proxies for latent variables as in principal component analysis. In this regard, the two
approaches are conceptually different, and choices on them would likely be application-dependent
and should be theoretically decided in advance, considering how to conceptualize latent variables
in the application as well as how to validate the relation between latent variables and their proxies
(factors or components; Rigdon, 2012).

Nonetheless, in comparison with factor-based SEM, perhaps the most common criticism of
component-based SEM has been that it has no mechanism to formally take into account errors in
indicators, which appear practically inevitable in the social sciences (e.g., Bentler andHuang, 2014).
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This also leads components to take over these errors to some
extent, although extracting a weighted composite from a set
of indicators can play a role in reducing the errors implicitly
(Gleason, 1973). It is well-known that errors in independent
(observed or latent) variables will likely result in biased parameter
estimates (e.g., Bollen, 1989, Chapter 5).

To deal with this problem, a bias-correction method, called
consistent partial least squares (PLSc; Dijkstra, 2010; Dijkstra
and Henseler, 2015), has been proposed in the context of
PLSPM. The basic premise of PLSc is that the true measurement
model is the so-called basic design (Wold, 1982), representing
a unidimensional confirmatory factor analytic model, where
each latent variable/factor underlies at least two indicators with
each indicator loading on one and only one latent variable.
Under this assumption, PLSc begins to apply PLSPM to estimate
component weights for a set of indicators per latent variable
and then obtains a correction constant for the set of indicators
based on their component weights and sample correlations.
The loadings for the indicators are estimated by multiplying
their component weight estimates by the correction constant.
The correlations among latent variables are also estimated using
the correction constants for all sets of indicators, which are
subsequently used for estimating path coefficients. Conceptually,
it is somewhat arbitrary whether PLSc falls into component-
based SEM because it has little interest in the specification and
estimation of components per se, and simply utilizes their weight
estimates to obtain parameter estimates of factor-based SEM. In
practice, the assumption of the basic design can be restrictive,
leading to the exclusion of cross loadings that have been well-
accepted in numerous structural equation models (Asparouhov
and Muthén, 2009). For example, a classical model involving
cross loadings is a multitrait-multimethod model, where trait
and method latent variables underlie each indicator (Campbell
and Fiske, 1959). Another example is latent growth curve models
(Meredith and Tisak, 1990; Duncan et al., 2006), where indicators
are typically assumed to load on multiple latent variables,
each of which captures a different trajectory of change over
time.

To our knowledge, no attempts have beenmade to incorporate
errors in indicators or develop a bias-correction strategy in
the context of GSCA. Thus, in this paper, we propose to
extend GSCA to explicitly account for errors in indicators.
Specifically, we aim to combine a unique part of each indicator
into GSCA. As postulated in common factor analysis or
factor-based SEM, adding such a unique part may be seen
as accounting for measurement error in each indicator. We
shall call this proposed extension “GSCAM,” standing for
GSCA with measurement errors incorporated. GSCAM will
provide parameter estimates comparable to those from factor-
based SEM. Whereas PLSc involves two separate estimation
steps, GSCAM has a single estimation procedure where a
least squares criterion is consistently minimized to estimate all
model parameters. In addition, GSCAM does not require the
basic design assumption in model specification and parameter
estimation.

The paper is organized as follows. Section Method discusses
the technical underpinnings of GSCAM, including model

specification and parameter estimation. Section Simulation
Studies conducts a simulation study to evaluate the performance
of GSCAM and two existing methods—CSA and PLSc. Section
An Empirical Application presents an application to show the
empirical usefulness of GSCAM as compared to the existing
methods. The final section summarizes the implications of the
proposed method.

METHOD

Model
As with GSCA, GSCAM involves three sub-models—
measurement, structural, and weighted relation. The
measurement model is used to specify the relationships
between indicators and latent variables, whereas the structural
model is to specify the relationships among latent variables.
The weighted relation model is used to express a latent variable
as a weighted composite of indicators. Unlike GSCA, however,
GSCAM contemplates both common and unique parts of each
indicator in the measurement model, and expresses a latent
variable as a weighted composite of indicators with their unique
parts removed in the weighted relation model.

Let Z = [z1,. . . , zJ] denote an N by J matrix of indicators,
where N is the number of observations, and zj is the jth indicator
(j = 1,. . . , J). Let Ŵ = [γ1,. . . , γP] denote an N by P matrix of
latent variables, where γp is the pth latent variable (p = 1,. . . ,
P). Assume that all indicators and latent variables are normalized
such that their lengths are equal to one (i.e., zj

′zj = γ p
′γ p = 1).

Let C denote a P by J matrix of loadings relating latent variables
to indicators. Let U denote an N by J matrix of unique variables.
Let D denote a J by J diagonal matrix of unique loadings. Let E1
denote an N by J matrix of residuals for indicators. Let B denote
a P by P matrix of path coefficients connecting latent variables
among themselves, and E2 denote an N by P matrix of residuals
for latent variables. The three sub-models of GSCAM are given as
follows.

Z = ŴC+ UD+ E1 (1)

Ŵ = ŴB+ E2 (2)

Ŵ = (Z− UD)W. (3)

In the measurement model (1), ŴC and UD represent common
and unique parts of indicators, respectively. We assume that Ŵ is
uncorrelated withU (U′Ŵ = Ŵ′U = 0) andU is orthonormalized
(U′U = IJ , where IJ is the identity matrix of order J). In
the measurement model, the C matrix contains fixed values
(e.g., zeros) to accommodate hypothesized relationships between
indicators and their latent variables as in confirmatory factor
analytic models. If this matrix has no fixed values, (1) may be seen
as the fixed exploratory factor analytic model (Young, 1941; de
Leeuw, 2004, 2008). The structural model (2) remains the same
as that for GSCA or the reticular action model (McArdle and
McDonald, 1984). The weighted relation model (3) shows that
a latent variable is defined as a weighted composite of indicators
with their unique parts eliminated.
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GSCAM integrates the sub-models into a single equation, as
follows.

[Z,Ŵ] = Ŵ [C,B]+ [UD, 0]+ [E1,E2]

9 = ŴA+ S+ E, (4)

where 9 = [Z, Ŵ], A = [C, B], S = [UD, 0], and E = [E1, E2].
This is called the GSCAM model.

Parameter Estimation
The parameters of GSCAM (Ŵ, A, U, and D) are estimated by
minimizing the following least squares criterion

φ = SS (9 − ŴA− S) , (5)

subject to γp
′
γp = 1or equivalently diag(Ŵ′Ŵ)= IP,U

′Ŵ = 0, and
U′U = IJ , where SS(X)= tr(X′X), and IP is the identity matrix of
order P.

A simple iterative algorithm is developed tominimize (5). This
algorithm begins by assigning initial values to the parameters.
Then, it alternates several steps until convergence, each of which
updates a set of parameters in a least squares sense, with the other
sets fixed. A detailed description of the algorithm is provided in
the Appendix in Supplementary Material.

We can apply GSCA to obtain initial values for Ŵ, C, and B,
although any other initial values can be considered. Then, those
for U and D may be obtained as described in Steps 3 and 4 in
the Appendix in Supplementary Material. We can employ the
bootstrapmethod (Efron, 1979) to estimate the standard errors or
confidence intervals of the parameter estimates without resorting
to a distributional assumption such as multivariate normality of
indicators. When the number of observations is smaller than that
of indicators (N < J), rank(U) < J and the constraint U′U = IJ
cannot be fulfilled. In this situation, we may apply Unkel and
Trendafilov’s (2013) algorithm to update U, subject to the new
constraint U′UD = D (also see Trendafilov and Unkel, 2011).
We assume that all indicators and latent variables are normalized,
which still results in standardized parameter estimates except
for latent variable scores that are normalized. The standardized
latent variable scores are obtained by multiplying the normalized
scores by

√
N.

GSCAM can provide a measure of overall model fit, called FIT.
The FIT indicates the total variance of all variables explained by
a particular model specification. It is given by

FIT = 1−
SS(9 − ŴA− S)

SS(9)
(6)

The values of the FIT range from 0 to 1. The larger this value, the
more variance in the variables is accounted for by the specified
model. Moreover, it can provide separate model fit measures for
the measurement and structural models, as follows.

FITM = 1−
SS(Z− ŴC− UD)

SS(Z)
, (7)

FITS = 1−
SS(Ŵ − ŴB)

SS(Ŵ)
(8)

The FITM shows how much the variance of indicators is
explained by a measurement model, whereas the FITS indicates
how much the variance of latent variables is accounted for by a
structural model. Both measures range from 0 to 1 and can be
interpreted in a manner similar to the FIT.

SIMULATION STUDIES

We conducted simulation studies to evaluate the performance
of GSCAM as compared to existing methods, including GSCA,
PLSc, and CSA. In particular, we focused on comparing GSCAM

to these methods in parameter recovery.

Simulation Study 1
We specified a structural equation model that consisted of three
latent variables and three indicators per latent variable. Figure 1
displays the specified model along with their unstandardized and
standardized parameter values.

For this study, we considered four levels of sample size: N
= 100, 200, 500, and 1,000. At each sample size, we generated
1,000 random samples from a multivariate normal distribution
with zero means and the covariance matrix implied by the
unstandardized parameters of the correct model, based on a CSA
formulation. We used the maximum likelihood method for CSA.
For PLSc, we used Mode A and the path weighting scheme that
is preferred over the other schemes (centroid and factorial) in
estimating component weights (Esposito Vinzi et al., 2010). We
used the same random seed for all the methods for each sample
to have them run with the same initial values.

Table 1 exhibits the relative biases (expressed as percentages),
standard deviations, and mean square errors of the standardized
loadings and path coefficients estimated from the four methods
over the different sample sizes. In the calculations of these
properties, we removed any sample involving non-convergence
within 300 iterations or convergence to improper solutions. CSA
encountered such convergence problems across all the sample
sizes. The number of the samples omitted with the convergence
problems under CSA was as follows: 66 (N = 100), 46 (N =
200), 31 (N = 500), and 31 (N = 1,000). PLSc was faced with
the problems only when N ≤ 200. Specifically, 23 and 2 samples
were omitted when N = 100 and 200, respectively. Conversely,
GSCA and GSCAM did not encounter non-convergence or the
occurrence of improper solutions across all the sample sizes.

We regarded relative bias>10% in absolute value as indicative
of an unacceptable degree of bias (e.g., Bollen et al., 2007; Lei
and Wu, 2012). As shown in Table 1, GSCA provided positively
biased loading estimates and negatively biased path coefficient
estimates across all the sample sizes. This is expected because
the simulated data were generated based on a CSA formulation,
assuming that a latent variable was equivalent to a common
factor. In this case, component-based approaches to SEM, such
as GSCA and PLSPM, are known to overestimate loadings
and underestimate path coefficients (e.g., Velicer and Jackson,
1990; Dijkstra, 2010; Hwang et al., 2010; Sarstedt et al., 2016).
Conversely, GSCAM, PLSc, and CSA tended to result in unbiased
estimates of both loadings and path coefficients across the sample
sizes. When N = 100, however, the path coefficient estimates of
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FIGURE 1 | The structural equation model specified for the first simulation study. Standardized parameters are given in parentheses.

GSCAM showed larger relative biases (4–5%) than those from
PLSc and CSA, although they decreased rapidly with the sample
size, approaching essentially zero when N = 1,000.

The standard deviations of the estimates from the four
methods became smaller with the sample size. However, GSCA
provided smaller standard deviations than the other methods.
This was particularly salient when the sample size was small (e.g.,
N = 100), which is consistent with the literature (Hwang et al.,
2010). When the sample size was small, all the methods tended
to show similar mean square errors of the loading estimates,
whereas GSCA tended to provide larger mean square errors
of the path coefficient estimates. As the sample size increased,
the mean square errors of all the parameter estimates obtained
from GSCAM, PLSc, and CSA approached zero, while those from
GSCA remained slightly larger.

Simulation Study 2
The first simulation study was useful to evaluate how GSCAM

performed as compared to different methods. Nonetheless, this
study considered a model with equal loadings, which might
be too ideal in reality. Thus, we conducted another simulation
study to compare the performance of the methods under a
model with the same structure but unequal loadings varying
from 0.4 to 0.8. We also compared their performance given a
misspecification of the model. Figure 2 displays both correct
and misspecified models along with their unstandardized and
standardized parameter values. The misspecified model involved
two cross loadings and an additional path coefficient, as indicated
by dashed arrows in Figure 2.

For both specifications, we considered the same four levels
of sample size, at each of which 1,000 random samples were
generated from a multivariate normal distribution with zero
means and the covariance matrix implied by the unstandardized
parameters of the correct model, based on a CSA formulation.
Again, we used the maximum likelihood method for CSA, and
Mode A and the path weighting scheme for PLSc. We applied all
the four methods to estimate the parameters of the correct model,
whereas applied only GSCA, GSCAM, and CSA to estimate the

parameters of the misspecified model because as stated earlier,
PLSc was not designed for models involving cross loadings.

Table 2 presents the relative biases (expressed as percentages),
standard deviations, and mean square errors of the standardized
loadings and path coefficients estimated from the four methods
under the correct model specification. GSCA did not encounter
non-convergence or the occurrence of improper solutions across
all the sample sizes. Conversely, the numbers of the samples
omitted with the convergence problems under CSA at the
different sample sizes were 72 (N = 100), 41 (N = 200), 30 (N =
500), and 23 (N = 1000), whereas those under PLSc were 38 (N =
100) and 3 (N = 200). One sample was removed under GSCAM

only when N = 100.
As expected, all the loading estimates fromGSCA except those

of two high loadings (0.8) were positively biased, whereas all the
path coefficient estimates were negatively biased, regardless of
the sample sizes. Conversely, overall, GSCAM, PLSc, and CSA
tended to result in unbiased estimates of a majority of loadings
and all path coefficients across the sample sizes. However, the
estimates of two low loadings (0.4 or 0.5) under these methods
remained similar in magnitude and positively biased even when
N = 1,000. As in the first simulation study, when N = 100, the
path coefficient estimates of GSCAM showed larger relative biases
than those from PLSc and CSA, although they decreased rapidly
with the sample size, approaching zero when N = 1,000.

The standard deviations of the estimates from the four
methods became smaller with the sample size. GSCA provided
smaller standard deviations than the other methods. The mean
square errors of all the parameter estimates obtained from
GSCAM, PLSc, and CSA remained similar in magnitude across
the sample sizes and most of them, except for those for the
estimates of the two loadings, approached zero when the sample
size increased. On the other hand, those from GSCA remained
larger and only a few approached zero, although they gradually
decreased with the sample size.

Table 3 shows the relative biases (expressed as percentages),
standard deviations, and mean square errors of the standardized
loadings and path coefficients estimated from GSCA, GSCAM,
and CSA under the incorrect model specification. CSA suffered

Frontiers in Psychology | www.frontiersin.org 4 December 2017 | Volume 8 | Article 2137

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hwang et al. GSCA with Measurement Error Incorporated

TABLE 1 | Relative biases expressed as percentages (RB(%)), standard deviations (SD), and mean square errors (MSE) of standardized loadings and path coefficients

obtained from GSCA, GSCAM, PLSc, and CSA over different sample sizes.

N Parameters RB (%) SD MSE

GSCA GSCAM PLSc CSA GSCA GSCAM PLSc CSA GSCA GSCAM PLSc CSA

100 Loadings 0.7 15.77 0.64 −1.11 −0.03 0.04 0.09 0.12 0.08 0.01 0.01 0.01 0.01

0.7 15.91 1.04 −0.79 −0.14 0.04 0.09 0.11 0.08 0.01 0.01 0.01 0.01

0.7 15.59 0.33 −1.29 −0.73 0.04 0.09 0.11 0.08 0.01 0.01 0.01 0.01

0.7 16.00 1.49 −0.33 0.37 0.04 0.09 0.09 0.08 0.01 0.01 0.01 0.01

0.7 15.80 0.56 −0.09 −0.29 0.04 0.09 0.09 0.07 0.01 0.01 0.01 0.01

0.7 15.60 1.04 −1.07 −0.54 0.04 0.09 0.09 0.08 0.01 0.01 0.01 0.01

0.7 15.80 0.34 −0.50 −0.46 0.04 0.09 0.11 0.08 0.01 0.01 0.01 0.01

0.7 15.97 1.44 −1.19 0.26 0.04 0.09 0.12 0.08 0.01 0.01 0.01 0.01

0.7 15.93 0.91 −0.64 0.03 0.04 0.09 0.11 0.08 0.01 0.01 0.01 0.01

Paths 0.6 −25.00 −4.65 0.87 −0.60 0.08 0.10 0.10 0.11 0.03 0.01 0.01 0.01

0.6 −24.52 −4.08 1.42 −0.02 0.08 0.10 0.10 0.10 0.03 0.01 0.01 0.01

200 Loadings 0.7 15.80 −0.01 −0.36 −0.43 0.03 0.06 0.08 0.05 0.01 0.00 0.01 0.00

0.7 15.90 0.27 −0.51 −0.10 0.03 0.06 0.08 0.05 0.01 0.00 0.01 0.00

0.7 16.06 0.80 −0.41 0.17 0.03 0.06 0.08 0.05 0.01 0.00 0.01 0.00

0.7 15.94 0.24 0.01 −0.07 0.03 0.06 0.08 0.05 0.01 0.00 0.00 0.00

0.7 15.94 0.60 −0.33 −0.17 0.03 0.06 0.08 0.05 0.01 0.00 0.00 0.00

0.7 15.99 0.71 −0.31 −0.06 0.03 0.06 0.08 0.05 0.01 0.00 0.00 0.00

0.7 16.00 0.39 −0.40 0.01 0.03 0.06 0.08 0.05 0.01 0.00 0.01 0.00

0.7 15.96 0.50 −0.33 −0.03 0.03 0.06 0.08 0.05 0.01 0.00 0.01 0.00

0.7 15.97 0.47 −0.36 0.01 0.03 0.06 0.08 0.05 0.01 0.00 0.01 0.00

Paths 0.6 −25.10 −1.82 0.67 −0.18 0.06 0.07 0.07 0.07 0.03 0.01 0.01 0.01

0.6 −24.90 −1.63 0.87 0.18 0.06 0.07 0.07 0.07 0.03 0.01 0.01 0.00

500 Loadings 0.7 16.03 0.14 −0.03 0.00 0.02 0.04 0.05 0.03 0.01 0.00 0.00 0.00

0.7 16.01 0.20 −0.30 −0.13 0.02 0.04 0.05 0.03 0.01 0.00 0.00 0.00

0.7 16.09 0.29 0.01 0.10 0.02 0.04 0.05 0.03 0.01 0.00 0.00 0.00

0.7 16.06 0.33 −0.09 0.06 0.02 0.04 0.04 0.03 0.01 0.00 0.00 0.00

0.7 15.96 0.11 −0.19 −0.11 0.02 0.04 0.04 0.03 0.01 0.00 0.00 0.00

0.7 16.00 0.09 −0.04 −0.06 0.02 0.04 0.04 0.03 0.01 0.00 0.00 0.00

0.7 16.03 0.17 −0.13 −0.14 0.02 0.04 0.05 0.04 0.01 0.00 0.00 0.00

0.7 16.07 0.37 −0.34 −0.11 0.02 0.04 0.05 0.06 0.01 0.00 0.00 0.00

0.7 16.04 0.07 0.21 −0.23 0.02 0.04 0.05 0.06 0.01 0.00 0.00 0.00

Paths 0.6 −25.73 −1.02 −0.10 −0.35 0.04 0.04 0.05 0.04 0.03 0.00 0.00 0.00

0.6 −25.32 −0.45 −0.45 −0.02 0.04 0.05 0.05 0.06 0.02 0.00 0.00 0.00

1,000 Loadings 0.7 16.04 0.13 −0.13 0.00 0.01 0.03 0.04 0.02 0.01 0.00 0.00 0.00

0.7 16.01 0.04 −0.14 −0.13 0.01 0.03 0.03 0.03 0.01 0.00 0.00 0.00

0.7 16.06 0.07 0.07 0.01 0.01 0.03 0.04 0.02 0.01 0.00 0.00 0.00

0.7 16.01 0.01 −0.04 −0.03 0.01 0.03 0.03 0.02 0.01 0.00 0.00 0.00

0.7 15.94 −0.10 −0.17 −0.13 0.01 0.03 0.03 0.02 0.01 0.00 0.00 0.00

0.7 15.97 0.07 −0.21 −0.11 0.01 0.03 0.03 0.02 0.01 0.00 0.00 0.00

0.7 16.03 −0.04 0.04 −0.19 0.01 0.03 0.04 0.03 0.01 0.00 0.00 0.00

0.7 16.14 0.30 0.09 0.20 0.01 0.03 0.03 0.02 0.01 0.00 0.00 0.00

0.7 16.07 0.23 −0.09 0.11 0.01 0.03 0.03 0.02 0.01 0.00 0.00 0.00

Paths 0.6 −25.60 −0.25 0.20 0.15 0.02 0.03 0.03 0.03 0.02 0.00 0.00 0.00

0.6 −25.67 −0.40 0.07 0.02 0.03 0.03 0.03 0.03 0.02 0.00 0.00 0.00

A factor-based structural equation model with equal loadings was specified.
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FIGURE 2 | The structural equation model specified for the second simulation study. Standardized parameters are given in parentheses. A model misspecification

involves addition of two cross loadings and a path coefficient as indicated by dashed arrows.

severely from non-convergence or convergence to improper
solutions across all the sample sizes. The numbers of the samples
omitted under CSA were 371 (N = 100), 216 (N = 200), 131 (N
= 500), and 100 (N = 1,000), whereas those under GSCAM were
54 (N = 100), 12 (N = 200), 1 (N = 500), and 1 (N = 1,000).
Again, GSCA had no such problems across all the sample sizes.

Overall, GSCAM and CSA tended to produce unbiased
estimates of most of the loadings and all the path coefficients
across the sample sizes. However, their estimates of two low
loadings (0.4 or 0.5) remained similar in magnitude and
positively biased even when N = 1,000. GSCA resulted in
positively biased loading estimates except those of two high
loadings (0.8) regardless of the sample sizes. Conversely, it
produced path coefficient estimates with an acceptably small
amount of bias, although the amount of bias on average remained
unchanged over the sample sizes.

The standard deviations of the estimates from the three
methods became smaller with the sample size. Again, GSCA
provided smaller standard deviations than the other methods.
The mean square errors of all the parameter estimates obtained
from GSCAM and CSA were similar in magnitude across the
sample sizes and most of them, except for those for the estimates
of the two loadings, approached zero when the sample size
increased. On the other hand, the mean square errors of the
loading estimates from GSCA remained larger and only a few
approached zero, although they gradually decreased with the
sample size. The mean square errors of the path coefficient
estimates from GSCA were comparable to those from GSCAM

and CSA across the sample sizes.
To summarize, GSCAM was found to recover the parameters

equally well to CSA in both simulation studies that generated
data within the factor-analytic framework.When the basic design
held for the specified model, PLSc also performed equally well
to GSCAM and CSA. In general, GSCAM was less likely to
suffer from non-convergence or the occurrence of improper
solutions than CSA and PLSc. In particular, CSA tended to

suffer from these problems when the sample size was small
and/or the model was misspecified, which was consistent with
the literature (e.g., Boomsma, 1982, 1985; Anderson andGerbing,
1984). Conversely, GSCA largely resulted in biased parameter
estimates in these simulation studies that were based on the
assumption of factor-analytic models.

AN EMPIRICAL APPLICATION

The present example came from the American customer
satisfaction index (ACSI; Fornell et al., 1996) database. The ACSI
has been widely used to assess four different levels of customer
satisfaction (national-, sector-, industry-, and company-level) in
the United States over the past two decades. This example was
company-level data collected in 2002 for 152 companies (N =
152). Figure 3 displays the ACSI model. We did not display
the residual terms associated with all endogenous variables to
make the figure concise. As depicted in Figure 3, the ACSI model
contains fourteen indicators: z1 = customer expectations about
overall quality, z2 = customer expectations about reliability, z3 =
customer expectations about customization, z4 = overall quality,
z5 = reliability, z6 = customization, z7 = price given quality,
z8 = quality given price, z9 = overall customer satisfaction,
z10 = confirmation of expectations, z11 = distance to ideal
product or service, z12 = formal or informal complaint behavior,
z13 = repurchase intention, and z14 = price tolerance. The
measures and scales of the indicators are described in Fornell
et al. (1996). This model also involves six latent variables
that underlie the 14 indicators, as follows: CE = customer
expectations, PQ = perceived quality, PV = perceived value, CS
= customer satisfaction, CC = customer complaints, and CL =
customer loyalty. The specified relationships in the ACSI model
were well-derived from previous theories, and their detailed
conceptual derivations can be found in Fornell et al. (1996).

We applied GSCAM, CSA, and PLSc to fit the ACSI model to
the data.We used the R packages lavaan (version 0.5-16) (Rosseel,
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TABLE 2 | Relative biases expressed as percentages (RB(%)), standard deviations (SD), and mean square errors (MSE) of standardized loadings and path coefficients

obtained from GSCA, GSCAM, PLSc, and CSA over different sample sizes.

N Parameters RB (%) SD MSE

GSCA GSCAM PLSc CSA GSCA GSCAM PLSc CSA GSCA GSCAM PLSc CSA

100 Loadings 0.8 4.79 −4.43 −6.25 −5.23 0.03 0.09 0.11 0.08 0.00 0.01 0.01 0.01

0.7 16.13 0.99 −0.70 −0.04 0.04 0.08 0.11 0.08 0.01 0.01 0.01 0.01

0.6 31.38 9.97 8.07 8.98 0.04 0.08 0.12 0.08 0.04 0.01 0.02 0.01

0.7 15.97 2.29 −0.63 0.21 0.04 0.11 0.09 0.08 0.01 0.01 0.01 0.01

0.6 31.22 10.58 9.72 9.58 0.05 0.11 0.09 0.08 0.04 0.02 0.01 0.01

0.5 53.36 27.28 24.24 25.08 0.05 0.11 0.10 0.09 0.07 0.03 0.03 0.02

0.8 4.59 −4.58 −6.19 −5.39 0.03 0.09 0.11 0.08 0.00 0.01 0.01 0.01

0.7 16.17 1.69 −0.99 0.26 0.04 0.09 0.12 0.08 0.01 0.01 0.01 0.01

0.4 90.18 52.95 50.88 51.53 0.05 0.09 0.13 0.08 0.13 0.05 0.06 0.05

Paths 0.6 −26.52 −5.73 1.18 −0.35 0.08 0.10 0.11 0.11 0.03 0.01 0.01 0.01

0.6 −26.67 −5.40 2.12 0.07 0.08 0.10 0.10 0.10 0.03 0.01 0.01 0.01

200 Loadings 0.8 4.78 −4.96 −5.45 −5.59 0.02 0.06 0.07 0.06 0.00 0.01 0.01 0.01

0.7 16.11 0.24 −0.51 −0.04 0.03 0.06 0.08 0.05 0.01 0.00 0.01 0.00

0.6 32.03 10.52 9.15 9.92 0.03 0.06 0.08 0.05 0.04 0.01 0.01 0.01

0.7 15.87 0.60 −0.11 −0.04 0.03 0.07 0.07 0.06 0.01 0.01 0.00 0.00

0.6 31.40 10.62 9.38 9.65 0.03 0.07 0.07 0.06 0.04 0.01 0.01 0.01

0.5 54.06 26.72 25.28 25.80 0.03 0.07 0.07 0.06 0.07 0.02 0.02 0.02

0.8 4.73 −4.53 −5.56 −5.05 0.02 0.06 0.08 0.05 0.00 0.01 0.01 0.00

0.7 16.16 0.53 −0.39 −0.11 0.03 0.06 0.09 0.06 0.01 0.00 0.01 0.00

0.4 90.38 52.38 50.93 51.63 0.04 0.07 0.09 0.06 0.13 0.05 0.05 0.05

Paths 0.6 −26.65 −2.30 0.72 −0.05 0.06 0.07 0.08 0.08 0.03 0.01 0.01 0.01

0.6 −27.15 −2.33 1.05 0.25 0.06 0.07 0.07 0.07 0.03 0.01 0.01 0.00

500 Loadings 0.8 4.93 −4.95 −5.10 −5.03 0.01 0.04 0.05 0.03 0.00 0.00 0.00 0.00

0.7 16.23 0.21 −0.33 −0.10 0.02 0.04 0.05 0.03 0.01 0.00 0.00 0.00

0.6 32.10 10.07 9.73 9.88 0.02 0.04 0.05 0.03 0.04 0.00 0.01 0.00

0.7 15.99 0.50 −0.13 0.09 0.02 0.04 0.04 0.03 0.01 0.00 0.00 0.00

0.6 31.42 9.90 9.53 9.63 0.02 0.04 0.04 0.04 0.04 0.01 0.01 0.00

0.5 54.10 25.82 25.66 25.68 0.02 0.04 0.04 0.04 0.07 0.02 0.02 0.02

0.8 4.73 −4.89 −5.25 −5.13 0.01 0.04 0.05 0.03 0.00 0.00 0.00 0.00

0.7 16.27 0.37 −0.37 0.09 0.02 0.04 0.05 0.03 0.01 0.00 0.00 0.00

0.4 90.60 51.88 52.13 51.73 0.02 0.04 0.06 0.04 0.13 0.04 0.05 0.04

Paths 0.6 −27.28 −1.18 −0.07 −0.35 0.04 0.05 0.05 0.05 0.03 0.00 0.00 0.00

0.6 −27.57 −0.67 0.55 0.22 0.04 0.05 0.05 0.05 0.03 0.00 0.00 0.00

1,000 Loadings 0.8 4.94 −4.95 −5.20 −5.06 0.01 0.03 0.03 0.02 0.00 0.00 0.00 0.00

0.7 16.24 0.04 −0.16 −0.06 0.01 0.03 0.03 0.02 0.01 0.00 0.00 0.00

0.6 32.05 9.83 9.83 9.77 0.01 0.03 0.04 0.03 0.04 0.00 0.00 0.00

0.7 15.94 0.07 −0.07 −0.06 0.01 0.03 0.03 0.02 0.01 0.00 0.00 0.00

0.6 31.40 9.62 9.53 9.55 0.01 0.03 0.03 0.03 0.04 0.00 0.00 0.00

0.5 54.06 25.80 25.38 25.52 0.02 0.03 0.03 0.03 0.07 0.02 0.02 0.02

0.8 4.71 −5.14 −5.06 −5.18 0.01 0.03 0.03 0.02 0.00 0.00 0.00 0.00

0.7 16.33 0.36 0.07 0.20 0.01 0.03 0.03 0.02 0.01 0.00 0.00 0.00

0.4 90.73 52.10 51.55 51.88 0.02 0.03 0.04 0.03 0.13 0.04 0.04 0.04

Paths 0.6 −27.15 −0.32 0.23 0.10 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.00

0.6 −27.93 −0.47 0.12 0.07 0.03 0.03 0.03 0.03 0.03 0.00 0.00 0.00

A factor-based structural equation model with unequal loadings was specified.

Frontiers in Psychology | www.frontiersin.org 7 December 2017 | Volume 8 | Article 2137

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hwang et al. GSCA with Measurement Error Incorporated

TABLE 3 | Relative biases expressed as percentages (RB(%)), standard deviations (SD), and mean square errors (MSE) of standardized loadings and path coefficients

obtained from GSCA, GSCAM, PLSc, and CSA over different sample sizes.

N Parameters RB (%) SD MSE

GSCA GSCAM CSA GSCA GSCAM CSA GSCA GSCAM CSA

100 Loadings 0.8 2.90 −4.35 −4.89 0.04 0.08 0.07 0.00 0.01 0.01

0.7 13.76 0.71 −0.01 0.04 0.08 0.07 0.01 0.01 0.01

0.6 28.48 10.13 8.87 0.05 0.08 0.08 0.03 0.01 0.01

0.0 12.89 2.08 1.72 0.10 0.13 0.16 0.03 0.02 0.03

0.7 2.84 −0.80 −1.73 0.08 0.16 0.14 0.01 0.03 0.02

0.6 27.92 11.15 11.73 0.05 0.10 0.08 0.03 0.02 0.01

0.5 49.14 27.64 26.32 0.06 0.11 0.08 0.06 0.03 0.02

0.0 12.72 2.14 4.01 0.08 0.11 0.15 0.02 0.01 0.02

0.8 −4.31 −7.20 −9.75 0.06 0.13 0.13 0.01 0.02 0.02

0.7 15.90 2.26 2.67 0.04 0.09 0.08 0.01 0.01 0.01

0.4 89.50 53.35 53.88 0.05 0.09 0.09 0.13 0.05 0.05

Paths 0.6 −5.18 −6.68 −4.50 0.08 0.11 0.12 0.01 0.01 0.01

0.0 −1.95 3.99 1.48 0.11 0.16 0.19 0.01 0.03 0.04

0.6 −0.65 −8.78 −6.22 0.11 0.15 0.18 0.01 0.03 0.03

200 Loadings 0.8 2.80 −5.10 −5.66 0.02 0.06 0.05 0.00 0.01 0.00

0.7 13.73 0.17 −0.40 0.03 0.06 0.05 0.01 0.00 0.00

0.6 29.08 10.47 9.88 0.03 0.06 0.05 0.03 0.01 0.01

0.0 13.40 1.08 0.66 0.07 0.08 0.12 0.02 0.01 0.01

0.7 2.69 −0.53 −0.39 0.05 0.11 0.11 0.00 0.01 0.01

0.6 27.90 10.60 10.28 0.03 0.07 0.06 0.03 0.01 0.01

0.5 49.72 26.62 26.28 0.04 0.07 0.06 0.06 0.02 0.02

0.0 12.38 0.62 0.62 0.05 0.08 0.11 0.02 0.01 0.01

0.8 −3.60 −5.24 −5.76 0.04 0.10 0.11 0.00 0.01 0.01

0.7 15.69 0.63 0.63 0.03 0.06 0.06 0.01 0.00 0.00

0.4 89.35 52.40 51.75 0.04 0.06 0.06 0.13 0.05 0.05

Paths 0.6 −4.88 −2.32 −1.40 0.06 0.08 0.08 0.00 0.01 0.01

0.0 −2.21 1.07 0.18 0.08 0.13 0.14 0.01 0.02 0.02

0.6 −0.38 −3.02 −1.27 0.08 0.12 0.13 0.01 0.01 0.02

500 Loadings 0.8 3.01 −4.98 −4.96 0.02 0.04 0.03 0.00 0.00 0.00

0.7 13.84 0.19 −0.14 0.02 0.04 0.03 0.01 0.00 0.00

0.6 29.22 10.07 9.93 0.02 0.04 0.03 0.03 0.00 0.00

0.0 12.98 0.16 −0.33 0.04 0.05 0.07 0.02 0.00 0.01

0.7 3.39 0.29 0.53 0.03 0.07 0.07 0.00 0.00 0.00

0.6 27.85 9.90 9.82 0.02 0.04 0.04 0.03 0.01 0.00

0.5 49.68 25.82 25.64 0.02 0.04 0.04 0.06 0.02 0.02

0.0 12.39 0.13 −0.40 0.03 0.05 0.08 0.02 0.00 0.01

0.8 −3.48 −5.08 −4.63 0.03 0.06 0.07 0.00 0.01 0.01

0.7 15.77 0.40 0.23 0.02 0.04 0.04 0.01 0.00 0.00

0.4 89.53 51.95 52.03 0.02 0.04 0.04 0.13 0.04 0.04

Paths 0.6 −5.12 −1.32 −0.43 0.03 0.05 0.05 0.00 0.00 0.00

0.0 −2.01 0.39 −0.19 0.05 0.08 0.08 0.00 0.01 0.01

0.6 −0.68 −0.92 0.28 0.05 0.08 0.08 0.00 0.01 0.01

1,000 Loadings 0.8 3.00 −4.98 −5.04 0.01 0.03 0.02 0.00 0.00 0.00

0.7 13.87 0.04 −0.07 0.01 0.03 0.02 0.01 0.00 0.00

0.6 29.17 9.83 9.72 0.01 0.03 0.03 0.03 0.00 0.00

0.0 13.00 0.09 −0.27 0.03 0.04 0.05 0.02 0.00 0.00

(Continued)
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TABLE 3 | Continued

N Parameters RB (%) SD MSE

GSCA GSCAM CSA GSCA GSCAM CSA GSCA GSCAM CSA

0.7 3.37 −0.03 0.37 0.02 0.05 0.05 0.00 0.00 0.00

0.6 27.78 9.65 9.53 0.02 0.03 0.03 0.03 0.00 0.00

0.5 49.56 25.70 25.54 0.02 0.03 0.03 0.06 0.02 0.02

0.0 12.45 0.22 −0.07 0.02 0.03 0.06 0.02 0.00 0.00

0.8 −3.45 −5.30 −4.98 0.02 0.04 0.05 0.00 0.00 0.00

0.7 15.81 0.36 0.21 0.01 0.03 0.03 0.01 0.00 0.00

0.4 89.58 52.13 52.03 0.02 0.03 0.03 0.13 0.04 0.04

Paths 0.6 −4.92 −0.38 0.17 0.02 0.03 0.04 0.00 0.00 0.00

0.0 −1.83 0.31 0.02 0.03 0.06 0.06 0.00 0.00 0.00

0.6 −1.12 −0.62 −0.13 0.03 0.06 0.06 0.00 0.00 0.00

A misspecification of a factor-based structural equation model with unequal loadings was considered.

FIGURE 3 | The American customer satisfaction index model. No residual terms are displayed.

2012) to apply CSA and wrote MATLAB codes for GSCAM

and PLSc. As in the simulation study, we utilized maximum
likelihood for CSA, and Mode A and the path weighting scheme
for PLSc.

Note that in the ACSI model, only a single indicator (z12)
loads on customer complaints. As discussed earlier, PLSc was
developed based on the basic design requiring at least two
indicators per latent variable. When there is only one indicator
for a latent variable, PLSc cannot estimate its loading and
the path coefficients involving the latent variable because the
correction constant for the indicator becomes zero (see Dijkstra
and Henseler, 2015). Thus, we used the PLSPM estimate of the
component weight for the indicator z12, which was equal to

one, by fixing the correction constant to one. This was also the
case when estimating the path coefficients involving customer
complaints (b7 and b9), indicating that they might be suboptimal
estimates of the path coefficients.

Tables 4, 5 provide the estimates of the standardized loadings
and path coefficients of the ACSI model obtained from the
methods. CSA yielded a number of improper solutions, including
the standardized loading and path coefficient estimates greater
than one in absolute value. In addition, the loading estimate for
z1 (customer expectations about overall quality) was almost zero.
This was inconsistent with that the indicator is expected to be
highly and positively related to customer expectations (Fornell
et al., 1996). PLSc also produced improper solutions, although it
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TABLE 4 | The estimates of standardized loadings of the ACSI model obtained

from CSA, PLSc, and GSCAM.

Latent Indicator CSA PLSc GSCAM

CE z1 0.00 0.91 0.95

z2 −0.91 0.94 0.97

z3 −0.94 0.96 0.92

PQ z4 0.96 0.98 0.97

z5 0.97 0.97 0.96

z6 0.94 0.93 0.97

PV z7 0.93 0.90 0.96

z8 1.02 1.05 0.99

CS z9 1.00 0.98 0.99

z10 0.98 0.94 0.99

z11 0.90 0.95 0.92

CC z12 1.00 1.00 1.00

CL z13 0.93 0.94 0.96

z14 1.00 1.00 0.99

TABLE 5 | The estimates of standardized path coefficients of the ACSI model

obtained from CSA, PLSc, and GSCAM.

CSA PLSc GSCAM

CE → PQ (b1) −0.97 0.95 0.93

CE → PV (b2) 1.35 −0.28 −0.11

CE → CS (b3) 1.83 −0.21 −0.05

PQ → PV (b4) 2.23 1.10 0.93

PQ → CS (b5) 2.90 1.01 0.80

PV → CS (b6) −0.13 0.21 0.27

CS → CC (b7) −0.45 0.46 −0.46

CS → CL (b8) 0.47 0.51 0.50

CC → CL (b9) −0.47 0.44 −0.45

resulted in fewer than CSA. We have tried different schemes, but
continued to have the same problem.Moreover, the positive signs
of the path coefficient estimates involving customer complaints
(b7 and b9) were substantively contradictory, suggesting that
more satisfied customers tended to complain more frequently (b7
= 0.46) and more frequent complainers were likely to be more
loyal customers (b9 = 0.44). These counterintuitive signs were
provided, albeit the signs of all the loading estimates remained
positive as expected, indicating that the latent variables were not
likely to be sign-reversed.

Conversely, GSCAM resulted in neither improper solutions
nor estimates that made little substantive sense. It provided
that FIT = 0.85, indicating that the ACSI model accounted for
about 85% of the variance of all the variables. Moreover, GSCAM

provided that FITM = 0.98 and FITS = 0.57. This indicates that
the measurement model of the ACSI accounted for about 98%
of the variance of the indicators, whereas the structural model
explained about 57% of the variance of the latent variables. As
also shown in Table 4, all the loading estimates were large and

positive. The interpretations of the path coefficient estimates
appeared to be generally consistent with those reported in the
literature (e.g., Fornell et al., 1996; Anderson and Fornell, 2000).
Specifically, customer expectations had a statistically significant
impact on perceived quality (b1 = 0.93, 95% CI = 0.90 ∼ 0.95),
but had statistically non-significant effects on perceived value (b2
= −0.11, 95% CI = −0.48 ∼ 0.22) and customer satisfaction
(b3 = −0.05, 95% CI = −0.18 ∼ 0.05). These non-significant
effects were also discussed in previous studies (e.g., Johnson et al.,
2001). Perceived quality had statistically significant effects on
perceived value (b4 = 0.93, 95% CI= 0.54∼ 1.33) and customer
satisfaction (b5 = 0.80, 95% CI = 0.66 ∼ 0.98). Perceived value
had a statistically significant influence on customer satisfaction
(b6 = 0.27, 95% CI = 0.21 ∼ 0.34). Customer satisfaction had
statistically significant effects on customer complaints (b7 =
−0.46, 95% CI = −0.63 ∼ −0.30) and customer loyalty (b8
= 0.50, 95% CI = 0.39 ∼ 0.61). Customer complaints had a
statistically significant effect on customer loyalty (b9 = −0.45,
95% CI = −0.56 ∼ −0.37). We used 100 bootstrap samples for
the estimation of the 95% confidence intervals of the GSCAM

estimates.
To summarize, in this application, CSA and PLSc yielded

improper solutions that were problematic to interpret. The
improper solutions may have occurred for reasons. For example,
a few latent variables underlie only two indicators each in the
ACSI model, the sample size was relatively small, the correlation
between customer expectations and perceived quality, which was
equivalent to the standardized path coefficient between them
(b1), was quite large (>|0.90|), or a combination of these issues
(e.g., Chen et al., 2001). In addition, both CSA and PLSc provided
estimates that were substantively counterintuitive. For the same
data, conversely, GSCAM did not result in improper solutions
and its estimates were generally consistent with the hypothesized
relationships in the literature.

CONCLUDING REMARKS

Weproposed an extension of GSCA, namedGSCAM, to explicitly
accommodate errors in indicators. As with GSCA, GSCAM can
be viewed as a component-based approach to SEM in that it still
approximates a latent variable by a component. Unlike GSCA,
however, GSCAM considers both common and unique parts of
indicators as in factor-based SEM, and estimates a component
of indicators with their unique parts excluded. In this way,
GSCAM deals with measurement errors in indicators, yielding
parameter estimates comparable to those from factor-based SEM.
In addition, it does not require a distributional assumption,
such as multivariate normality of indicators, for parameter
estimation because it estimates parameters via least squares. As
a component-based approach, furthermore, it can avoid factor
score indeterminacy (e.g., Guttman, 1955; Schönemann and
Wang, 1972), enabling to provide unique latent variable scores.

In the simulation studies, GSCAM performed equally well
to CSA and PLSc in parameter recovery, when the model
was correctly specified to satisfy the basic design assumption.
Conversely, when the model was misspecified to contain
additional cross loadings and path coefficients, only GSCAM

and CSA could be applied to fit the model; and GSCAM
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tended to recover parameters equally to CSA. In the real data
application, GSCAM was the only method that involved no
improper solutions.

Although we do not venture into generalizing the results
of our analyses, GSCAM may be a promising alternative to
CSA, when researchers have difficulty to address such issues
as non-convergence or convergence to improper solutions, or
are interested in obtaining unique individual latent variable
scores for subsequent analyses or modeling of these scores.
This can contribute to widening the scope and applicability of
GSCA. Nonetheless, it would be fruitful to apply the proposed
method to a wide range of real-world problems to investigate
its performance more thoroughly.
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