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Integrated information (8) is a measure of the cause-effect power of a physical system.

This paper investigates the relationship between 8 as defined in Integrated Information

Theory and state differentiation (D), the number of, and difference between potential

system states. Here we provide theoretical justification of the relationship between 8

and D, then validate the results using a simulation study. First, we show that a physical

system in a state with high 8 necessarily has many elements and specifies many causal

relationships. Furthermore, if the average value of integrated information across all states

is high, the system must also have high differentiation. Next, we explore the use of D

as a proxy for 8 using artificial networks, evolved to have integrated structures. The

results show a positive linear relationship between8 andD for multiple network sizes and

connectivity patterns. Finally we investigate the differentiation evoked by sensory inputs

and show that, under certain conditions, it is possible to estimate integrated information

without a direct perturbation of its internal elements. In concluding, we discuss the need

for further validation on larger networks and explore the potential applications of this work

to the empirical study of consciousness, especially concerning the practical estimation

of 8 from neuroimaging data.

Keywords: integrated information theory, state differentiation, cause-effect power, animats, consciousness

INTRODUCTION

Integrated information (8) is a quantity that describes the intrinsic causal properties of a physical
system in a state (Oizumi et al., 2014). Integration emphasizes that a unitary system must have
causal power beyond its constituent parts. Information emphasizes that the causal power of a
system in a state must be specific, implying that it should be different in different states, a
property also referred to as differentiation (Tononi and Edelman, 1998; Tononi, 2004). Despite
this intuitive connection, a formal examination of the relationship between integrated information
and differentiation has not yet been performed. Here, we explore the notion of state differentiation
(D) explicitly, propose a way to measure it, and assess its relationship to the integrated information
of a physical system in a state.

Integrated information has been used as a measure of complexity in dynamical systems, such as
cellular automata (Albantakis and Tononi, 2015) and artificially evolved agents (animats) (Edlund
et al., 2011; Albantakis et al., 2014). Moreover, integrated information theory (IIT) relates, 8 to the
level of consciousness in a physical system, since integration (unity) and specificity (differentiation)
are two fundamental properties of experience (Tononi, 2004; Oizumi et al., 2014). The connection
between consciousness and integrated information proposed by IIT has motivated neuroimaging
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studies which employ simple perturbational approaches aimed
at estimating the brain’s capacity to integrate information
(Massimini et al., 2005; Casali et al., 2013).

While IIT makes many interesting predictions relating 8 and
the neural substrate of consciousness (Tononi, 2012; Oizumi
et al., 2014; Tononi and Koch, 2015), both the theory and some
of its counterintuitive predictions are controversial (Aaronson,
2014; Barrett, 2014; Dehaene et al., 2014). To validate these
predictions, one should ideally evaluate 8 on real neuronal
systems; however, this is not currently possible except using
proxy measures, such as differentiation, which motivates the
present contribution. There are two practical issues which
must be overcome before 8 can be calculated for a broader
class of systems. First, the calculation requires a proper causal
model of the system, as could be obtained by perturbing
the elements of the system into all possible states. Second, it
requires evaluating all possible bi-partitions of the system, a
task that is computationally infeasible for moderate to large
sized systems. Theoretical advances and new experimental
procedures may eventually allow us to exhaustively perturb
and partition a system, but until then it is not possible to
apply integrated information for even modestly sized physical
systems.

One alternative that has been pursued is to develop empirical
measures that quantify the balance between differentiation and
integration that characterizes physical systems with high 8.
Neural complexity was the first attempt in this direction, using
mutual information between parts of a system (Tononi et al.,
1996). A more recent measure, causal density (Seth, 2005),
utilizes a similar approach but applies the statistical notion of
Granger causality to quantify the integration of directed causal
interactions within a system. Adaptations of 8 for time series
data have also been suggested, such as empirical Phi (8E) (Barrett
and Seth, 2011) and Phi star (8∗) (Oizumi et al., 2015).

Here we explore the possibility of estimating 8 by
using measures of state differentiation. We will demonstrate
theoretically, that state differentiation can be successfully used
to assess the intrinsic cause-effect power of the brain (and
similar systems) in practice, because there is a strong relationship
between 8 andD, if one can assume that the system of interest is
integrated and connected effectively to an external environment.
Measures of differentiation are easier and faster to compute
than other approximations of integrated information, and can be
readily employed in neuroimaging studies (Gosseries et al., 2011;
Sarà et al., 2011; Barttfeld et al., 2015; Boly et al., 2015; Hudetz
et al., 2015; Montijn et al., 2016).

The goal of this work is to elucidate the relationship between
8 and D, providing the theoretical foundation for future
empirical studies to use state differentiation as a proxy for the
intrinsic cause-effect power of a system. The rest of the paper is
structured as follows. In Section 2 we formally define integrated
information and differentiation, and then derive their theoretical
relationship. Section 3 presents the results of simulation studies,
further explicating the relationship between 8 and D. Finally,
in Section 4 we discuss the current work in the context of
neuroimaging studies of consciousness and highlight points to be
considered for future studies.

METHODS

Complete expositions of IIT are provided in Oizumi et al. (2014)
and Tononi (2015). Here, focus is given to aspects of the theory
necessary to understand the current results. In the mathematical
definitions, we use the convention that a bold faced character
represents a vector. Integrated information is evaluated on a
physical system, which is a collection of elements in a state, at a
specific spatio-temporal grain. Elements are units having at least
two possible states, inputs which affect its state and outputs which
are affected by its state. Additionally, it is possible to manipulate,
observe and partition physical elements. By randomly setting the
system into all possible states according to a maximum entropy
distribution, and observing the subsequent state transitions,
while holding elements outside the physical system fixed (Oizumi
et al., 2014), we are able to describe the causal properties of the
system (Pearl, 2009). In the current work, we represent a physical
system by a discrete random vector S = S1, S2, ..., Sn, where each
Si is an element of the system, and the causal properties by a
transition probability function p : �S × �S → (0, 1) which
describes its state-to-state transitions. In what follows, we focus
on a physical system S consisting of n binary elements, and state
space �S = {0, 1}n, with |�S| = 2n states, although results
are expected to extend to non-binary elements. However, the
assumption is that each of these mathematical representations
corresponds to a real physical system, and that the transition
probability function has been determined from a systematic
perturbation of system elements.

There are five postulates that IIT employs to characterize the
cause-effect power of physical systems: existence, composition,
information, integration and exclusion. Here we elaborate on the
application of these postulates to characterize a physical system
in a state and its intrinsic causal properties.

Mechanisms
Existence and Composition
The notion of causality is fundamental to explain the nature
of a physical system. A set of elements that forms a causal
relationship with other elements of the physical system is
called a mechanism. A mechanism must have both causes
and effects within the physical system. In IIT the basis for
analyzing causal relationships is the cause repertoire and effect
repertoire.

A repertoire is a probability distribution which describes
the possible past or future states of a set of elements in the
physical system, as constrained by the current state of another
(potentially different) set of elements. The set of elements whose
potential states are described by a cause or effect repertoire is
called its purview (Z), and the set of elements that constrain
the purview is called the candidate mechanism (M = mt). The
purview and candidate mechanism are compositions of elements
within the system, i.e., they are any subsets of the physical system.
For a system of n binary elements, this means that there are
2n-1 candidate mechanisms for the system. A cause repertoire
describes the possible states of a past purview Zt−1,

pcause(z|mt), z ∈ �Zt−1 ,
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while an effect repertoire describes the possible future states of a
future purview Zt+1,

peffect(z|mt), z ∈ �Zt+1 .

Note that these probability distribution are not obtained by
simply observing the system. In order to measure the causes
and effects a perturbation analysis must be performed, similar to
applying the do() operator defined by Pearl (2009). For full details
of the repertoire calculation, refer to Appendix S1.

Information
The unconstrained repertoires are probability distributions over
the potential past and future states of a physical system with
no constraints from the current state of the elements. This
corresponds to applying a maximum entropy perturbation to the
output of the purview to obtain the cause repertoire, and to the
inputs of the purview to obtain the effect repertoire. The result
is a maximum entropy distribution on the cause side, while the
effect side describes the one-step transition probabilities of the
physical system.

The cause-effect information of a mechanism resides precisely
in its capacity to specify the past and future states of the system.
To measure the cause-effect information of a mechanism in a
state, its causes and effects are quantified using the earth movers
distance (EMD)metric between two probability distributions (see
Appendix S1). The cause (effect) information of a mechanism in
a state is the distance between its constrained repertoire and the
corresponding unconstrained repertoire,

ci(mt) = emd
(

pcause(z|mt), pcause(z|∅)
)

,

ei(mt) = emd
(

peffect(z|mt), peffect(z|∅)
)

.

In summary, the cause and effect information quantify how the
current state of a mechanism constrains the possible past and
future states of the system. A mechanism must constrain both
the past and future states of the system, i.e., have both causes
and effects. The cause-effect information of a mechanism is the
minimum of its cause and effect information,min(ci, ei).

The larger the state space of the system, the more potential
there is for a mechanism to constrain the possible past and future
states. This idea is formalized in the following theorem,

Theorem 2.1. For a physical system in a state S = st ∈ �S with n
binary elements, the cause and effect information of a mechanism
in a stateM =mt are bounded,

ci(mt) ≤
n

2
=

log2 |�S|

2
, and ei(mt) < n = log2 |�S|.

Proof: See Appendix S2.

Theorem 2.1 provides the first link between IIT and the state
space of a system. The maximum possible cause-effect power of
a mechanism is determined by the size of the state space of the
physical system. The potential cause-effect information increases
logarithmically with the size of the state space of the system. The

different results for cause and effect information are related to
differences in the unconstrained repertoires; the unconstrained
effect repertoire has the potential to be asymmetric, which allows
some states to have larger values of effect information (while
others must have less).

Integration
Amechanism’s cause-effect information must also be irreducible.
This means that any decrease in the mechanism’s connections
must result in a loss of cause-effect information. This precludes
the inclusion of unnecessary elements that do not contribute to
the cause or effect, and prevents the combination of unrelated
mechanisms to create a larger mechanism that is nothing more
than the sum of its parts.

To assess irreducibility, we consider the information specified
by a mechanism above and beyond that of a partition (or cut).
This irreducible information is quantified by the EMD between
the repertoires for the unpartitioned (whole) and partitioned
(cut) mechanism. Details on how to apply the cut, and find the
partitioned repertoire are given in Appendix S1. The cut that
makes the least difference to themechanism is called itsminimum
information partition (MIP),

MIP = argmin
cut

{

emd
(

pcause(z|mt), p
cut
cause(z|mt)

)

}

.

The irreducible cause-effect power of a mechanism is measure by
its integrated information (ϕ), the information generated by the
whole above and beyond its MIP. The integrated cause (effect)
information of a mechanism is,

ϕ(mt,Zt−1) = emd
(

pcause(z|mt), p
MIP
cause(z|mt)

)

ϕ(mt,Zt+1) = emd
(

peffect(z|mt), p
MIP
effect(z|mt)

)

Exclusion
Finally, cause-effect power should not be counted multiple times.
Thus, given that each mechanism has only one cause and one
effect, they are defined as the ones which maximize cause-effect
power. To find the cause-effect power of a mechanism, the
integrated information is evaluated across all possible purviews,
to find the ones that are maximally irreducible.

ϕmax
cause(mt) = max

Zt−1

{

emd
(

pcause(z|mt), p
MIP
cause(z|mt)

)

}

.

ϕmax
effect(mt) = max

Zt+1

{

emd
(

peffect(z|mt), p
MIP
effect(z|mt)

)

}

.

Amechanism is irreducible only if both its cause information and
effect information are irreducible. The integrated information
of mt is the minimum of its irreducible cause and effect
information,

ϕmax(mt) = min
{

ϕmax
cause(mt), ϕ

max
effect(m t)

}

.

If a candidate mechanisms cause-effect information is completely
reducible, ϕmax = 0, then it is not a mechanism.
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Corollary 2.2. For a physical system in a state S = st ∈ �S

with n binary elements, and mechanism M = mt , the integrated
information ofmt is bounded by

ϕmax(mt) ≤
n

2
.

Proof: See Appendix S2.

Corollary 2.2 strengthens the link between IIT and the state
space described in Theorem 2.1. The integrated information of
a mechanism is bounded by the cause-effect information, and
thus the size of the state space of a physical system. This means
that the MIP can never increase the information of a mechanism.
The greatest possible effect is that a partition of the mechanism
eliminates all information about the past and future states of the
purview, and in this case the integrated information is equal to
the cause-effect information of the mechanism.

Physical Systems
So far, we have used the postulates of IIT to define the
mechanisms within a system S. We are now in a position to
consider the system as a whole.

Information
For a physical system in a state, the cause-effect structure of
the system is the set of mechanisms with irreducible cause-effect
power (ϕmax > 0) and corresponding cause-effect repertoires,

C(st) = {(mt, pcause, peffect)|ϕ
max(mt) > 0}.

To have cause-effect power, a system must have at least one
mechanism in its cause-effect structure. The more mechanisms
a system has in its cause-effect structure, both in number and
magnitude (ϕ), the more cause-effect power the system can have.
Since the empty set necessarily has ϕmax = 0, the maximum
number of mechanisms in the cause-effect structure of S is one
less than the size of its power set,

|C(s)| ≤

n
∑

i=1

(

n

i

)

= 2n − 1, s ∈ �S.

The number of mechanisms, and thus the total cause-effect
power of a cause-effect structure is constrained by the number
of elements which constitute the physical system. The maximum
number of mechanisms increases exponentially with the size of
the physical system.

Integration
Analogous to the irreducibility of mechanisms, physical systems
must be irreducible to their constituting parts. To assess
irreducibility at the systems level, we consider the effect of a
directed partition (or system cut on the cause-effect structure. The
effect of the system cut is measured by using the EMD to compute
the distance between cause-effect structures (see Appendix S1 for
details).

A directed partition of a physical system is a partition of the
system elements into two subsets, with the connections from the

first subset to the second cut (injected with noise). The MIP of
a physical system is the directed partition which makes the least
difference, i.e., it minimizes the distance between cut and uncut
cause-effect structures,

MIP = argmin
cut

{

emd
(

C(st),C(s
cut
t )
)

}

.

The integrated information (8) of a physical system is measured
by evaluating the distance between its cause-effect structure and
the cause-effect structure of its MIP. Using the MIP to evaluate
integrated information amounts to cutting the “weakest link” of
the system, so that including unnecessary elements in the physical
system will reduce the integrated information,

8(st) = emd
(

C(st),C(s
MIP
t )

)

Exclusion
Once again, only maximally irreducible systems are considered.
This is because a mechanism can only have one cause and one
effect, and thus can only contribute to one cause-effect structure
without counting causes and effects double, and that is the
cause-effect structure which is maximally irreducible,

8 = 8max(st) =

{

8(st) if 8(s∗t ) < 8(st), ∀ (S∗ ∩ S) 6= ∅

0 otherwise

The set of elements with the maximally irreducible cause-effect
structure is called the complex of a physical system. Next we
extend the previous result to show how system size also bounds
the integrated information of a system.

Theorem 2.3. For a physical system in a state S = st ∈ �S with
n binary elements, the integrated information of the cause-effect
structure of its complex is bound by

8max(st) ≤
(2n − 1)3n2

4
.

Proof: See Appendix S2.

The maximum possible information corresponds to when all
potential mechanisms are included, and specify the maximum
amount of cause and effect information. The maximum possible
integration is when all information specified by the mechanisms
is lost after the MIP.

Theorem 2.3 establishes a key result for this work: systems
with high 8 must have a large number of elements and
mechanisms, and thus a large state space. For a physical system
with a fixed number of elements, as the value of 8 increases, so
must the number of mechanisms. It now remains to connect this
result to the notion of differentiation.

Differentiation
The differentiation of a physical system is the diversity of its
potential states. Here we consider twomeasures of differentiation
that can be mathematically related to integrated information.
Both measures of differentiation are calculated from the
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transition probably function, and thus require a causal analysis
of the elements constituting the physical system (internal
perturbation). Evoked differentiation using external perturbation
through stimuli manipulation is explored in the Results section.

The first measure of differentiation (D1) is the number of
potential states of the system, i.e., the number of states which
could occur following every possible state the system can be
perturbed into,

D1 =

∣

∣

∣

∣

∣

∣







s

∣

∣

∣

∣

∣

∣

∑

s∗∈�S

p(s∗, s) > 0







∣

∣

∣

∣

∣

∣

.

In other words, D1 is the number of states that the system can
potentially transition into from all other states within the state
space. This is different from the size of the state space of a physical
system, which is always |�S| = 2n. The number of potential
states may be less than the size of the state space in the case of
convergence; it depends on what the system actually does.

There are two ways in which D1 affects 8, both relating to
cause information. First, states without a cause have no cause
information, nomechanisms and thus8 = 0. For a deterministic
system, every state that is impossible means that there is a
different state with an additional cause. This decreases the
selectivity, i.e., increases degeneracy, of that state (a completely
degenerate state could have come from any previous state, while
a non-degenerate state has a unique cause) which corresponds to
less cause information, lower ϕ values for mechanisms and lower
8 values of the system (Hoel et al., 2013; Albantakis and Tononi,
2015). This can be seen in Figure 1, where increasing the number
of potential states that can be reached increases the amount of
cause information. The cause information increases from 0 to 0.5
to 1, as the number of potential states increases from 1 to 2 to 4
Figures 1A,B,D . As the unconstrained cause repertoire remains
the same for all panels, it is the increased selectivity of the cause
repertoire from four possible causes to just one, that results in
higher values of cause information.

The D1 measure captures the number of potential states, but
there is another aspect to differentiation, the differences between
those states. The second measure of differentiation (D2) is the
cumulative variance of all the elements of the system,

D2 =

n
∑

i=1

ui(1− ui),

where ui is the unconstrained probability element Si will be in the
ON (1) state given all possible perturbations of its inputs,

ui = peffect(si,t = 1|∅).

This measure captures how different the potential states of the
system are from each other. The most different two binary states
can be, is for them to have the opposite state for each element,
e.g., state (0, 0, 0) to state (1, 1, 1) in a three element system.
The average distance between states is thenmaximized when each
element is equally likely to be ON (1) or OFF (0) in the next state
. For each element, the variance of its potential state is ui(1− ui),

and this quantity reaches its maximum value when ui = 0.5
(maximum entropy).

The D2 measure relates to integrated information via the
effect information of mechanisms. The unconstrained effect
repertoire is calculated by independently injecting maximum
entropy into the inputs of each element (see Appendix S1), so its
entropy is equal to the sum of the entropy of the corresponding
elements. Since effect information of a mechanism is the distance
between the constrained and unconstrained effect repertoire,
an unconstrained effect repertoire with greater entropy has
more potential average effect information. Larger values of D2

correspond to greater entropy and allow for more potential
average effect information and thus more potential average
integrated information.

In Figure 1, as D2 increases from 0 to 0.25 to 0.5, the effect
information increases from 0 to 0.25 to 1 Figures 1A–C. In
this situation the effect repertoire has the same selectivity in all
panels, and it is the increasing entropy of the unconstrained
effect repertoire which permits higher values of effect
information.

The above intuition about the relationship between D1, D2

and cause-effect information is formalized in the following
theorem,

Theorem2.4. For a physical system Swith n binary elements, state
space �S and candidate mechanismM ⊆ S the average cause and
effect information ofM are bounded,

µ
[

ci(m)
]

≤
nD1

2n+1
≤

n

2
, and µ

[

ei(m)
]

≤ 2D2 ≤
n

2
.

Proof: See Appendix S2.

Theorem 2.4 directly relates the notion of differentiation to
the average cause and effect information, quantities that are
fundamental in IIT. The result allows for the possibility that
a system with low values of D1 or D2 could have large values
of cause-effect information for a single state, but then other
states must have low cause-effect information. Only a system
with large values of D1 and D2 can have high values of cause-
effect information in most states. The average cause information
is bounded by the number of accessible states in the system,
and this bound can be achieved only if the system is non-
degenerate, so that each potential state has a unique cause.
The effect information is bounded by the cumulative entropy
of individual element states, and this bound is maximized
when the entropy of each individual element is maximized.
A mechanism can only reach the upper bound of effect
information if the system is deterministic, so that the constrained
elements have minimal (zero) entropy and the distance between
constrained and unconstrained repertoires is as large as possible.
This reinforces the result of Albantakis and Tononi (2015)
and Hoel et al. (2013), that determinism and non-degeneracy
are properties of systems with larger values of integrated
information.

The following theorem provides the principal theoretical
result of this work, providing a direct link between differentiation
and integrated information,
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FIGURE 1 | An illustration of two element systems with increasing values of differentiation (note that the system elements displayed here are only a

subset of a larger set of elements). Each quadrant of the figure shows the state transitions and differentiation values of the corresponding system, as well as the

constrained and unconstrained cause-effect repertoire and cause-effect information of the mechanism composed of both elements, in the state m = (0,0). System

(A) has no differentiation, system (B) has low values of both D1 and D2, system (C) has low D1 and high D2, system (D) has high values of D1 and D2. As D1

increases (systems A → B → D), so does the cause information of the mechanism. This change happens by making the mechanism’s cause repertoire more selective

without changing the unconstrained cause repertoire (reducing convergence). As D2 increases (systems A → B → C), so does the effect information of the

mechanism. This happens by increasing the entropy of the unconstrained effect repertoire without changing the effect repertoire (reducing divergence).

Theorem 2.5. For a physical system S with n binary elements and
corresponding state space �S = {0, 1}n, the average integrated
information is bounded by

µ[8] ≤ (2n − 1)
n

2

(

nD1

2n+1
+ 2D2

)

≤
(2n − 1)n2

2

Proof: See Appendix S2.

Theorem 2.5 further constrains the average integrated
information than the bound implied by Theorem 2.3. Any
reduction in differentiation, either in the number of states (D1)
or the distance between states (D2) results in a reduction of
the potential integrated information of the system. To have the
maximum potential integrated information, a physical system

must be able to enter every state in its state space and each
element of the system should be equally likely to be ON (0) or
OFF (1) in the future state. The amount of integrated information
a system actually has depends on how integrated it is. For
example, a pure noise system can visit all possible states, and each
element is equally likely, but it will have 8 = 0 because it is
not integrated. It should be noted that the bound of Theorem
2.5 assumes that a system, and each of its mechanisms can all
be “maximally integrated,” in the sense that all information is
lost when the system or mechanism is partitioned. However,
this is not possible in practice, so no system will actually reach
this upper bound. Future work that further explores integration
should be able to provide a tighter bound on µ[8].

In summary, if a system has a large value of integrated
information then it must be integrated, have many elements, a
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large state space and many mechanisms. Furthermore, to have a
large average value of integrated information, it is not sufficient
that there is a large state space, the system must also have the
capacity to visit many states (D1), and the states it visits should
be as distant as possible from each other (D2), i.e., it must have
high differentiation.

Typical States
The above results suggest that tractable differentiation quantities
may be used as a proxy for the average 8 of a physical
system. However, since in IIT integrated information is a
state dependent quantity, the following theorem introduces a
relationship between the average integrated information of a
system and the integrated information of a typical state.

Theorem 2.6. Consider the integrated information for a random
state of a physical system. If 8 ∝

∑

ϕ and σ [8] = o(µ[8]), then
for any ǫ > 0 and δ > 0 there exists µ0 such that for all system
with µ[8] > µ0 ,

P
(

|8 − µ[8]| ≥ δµ[8]
)

≤ ǫ.

Proof: See Appendix S2.

As the value of µ[8] gets very large (and hence the number
of elements must increase, see Theorem 2.5), the probability
of observing a value of 8 that is relatively different from the
average is essentially zero. This means that for large integrated
systems, when state specific information is not available we are
still able to make useful inferences, such as approximating the
integrated information of a specific state from the average 8 of
the physical system. The feasibility of the theorem assumptions
are discussed in Appendix S2. If satisfied, this allows us to use
the average integrated information, and thus the differentiation,
as a proxy for the state-dependent integrated information of a
physical system.

RESULTS

The previous section established that greater values of integrated
information imply greater levels of differentiation. A natural
follow-up question is whether the reverse is true, do high levels
of differentiation imply high integrated information? or are
there any other relationships between integrated information
and differentiation? These questions are further explored in
two different settings, using artificially evolved networks called
animats. The first is a controlled environment, where a full
internal perturbational analysis is applied to the elements of the
system to calculate 8 and differentiation values exactly. Next
is a setting where external perturbation techniques (stimulus
manipulation) are used to evoke differentiation.

Animats are artificial entities consisting of several elements,
connections between them, and a logic governing the interaction
of the elements. There are three types of elements: sensors receive
inputs only from the outside world and may send output to other
elements, motors may receive inputs from other elements but
only send output to the external world, and internal elements
have no direct connections with the external world but may

receive inputs and send outputs to other elements. The network
structure of each animat was evolved by mutation over many
generations using a genetic algorithm (Edlund et al., 2011). The
population of animats was ranked according to a fitness function;
animats with high fitness were more likely to contribute to the
next generation than animats with low fitness.

In general, high differentiation does not necessarily imply high
integrated information: a system which is not integrated can
have high differentiation, but be completely reducible and thus
have zero 8. Thus, a relationship between differentiation and
integrated information is only possible if the system can be shown
or assumed to be integrated (see Figure 2). To investigate the
relationship between D1, D2 and 8, a population of animats was
evolve to a fitness function that was the integrated information
of the most common state of the system during evolution. Two
different animat configurations were evolved for this experiment:
2 sensors, 4 hidden units, 2 motors and 3 sensors, 3 hidden units,
2 motors. In total, 56 animats were evolved to have integrated
structures, 28 for each element configuration.

To study the differentiation evoked by a stimulus set (DW)
evoked by a stimulus set W, we require a means to present
the stimulus to the network (see Figure 2). Of the original
56 animats, there were 10 which received no input from
the environment, and they were excluded. The remaining 46
integrated animats were connected to the environment using
their sensors, and they were used to explore the relationship
between integrated information and stimulus set differentiation.

Relationship between 8 and D1, D2
An perturbational approach is used to evaluate the causal
relationships in a physical system (Pearl, 2009; Oizumi et al.,
2014) (see also Appendix S1). The animat is set into an
initial state, a state transition of the system is observed,
and then the resulting state is recorded. This process is

FIGURE 2 | The relationship between differentiation and 8 for three

different classes of system. Left: A high differentiation system that is not

integrated, such as a camera. Although the camera has the potential to enter

many states, it has 8 = 0 because it is not integrated. Middle: An integrated

system that is disconnected from its environment, such as a dreaming human.

Its differentiation is related to 8; however, since it is disconnected from the

environment, external perturbations cannot be used to evoke differentiation.

Right: An integrated system that is connected to its environment. Its D is also

related to 8, but in addition, it can be influenced to explore its internal

structure using rich stimulus sets.
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repeated many times for all possible initial states, and
the results specify the transition probability function p of
the system. Using the transition probability functions, the
values of D1, D2 and µ[8] were calculated exactly for
each animat in the population using the methods described
above.

When calculating differentiation, an important consideration
is which elements should contribute to the differentiation
measures. Differentiation could be made arbitrarily large by
simply including additional elements in the definition of the
physical system, without having any effect on the 8 values.
This requires an additional exclusion assumption: only elements
which are part of the complex (set of maximally irreducible
elements) are included in the differentiation estimation, others
have been excluded (Oizumi et al., 2014). For the current animats,
all internal elements contributed to the complex of the physical
system, and were used in the estimation of D1 and D2.

Elements outside the complex of a physical system are
considered background conditions (Oizumi et al., 2014), and
their state can affect both 8 and D. Here, the sensor and
motor elements of the animats are background conditions. The
values of differentiation and integrated information for each
animat are calculated using only the complex (internal elements),
but averaged over all possible background conditions (states of
background elements).

Using the Mann-Whitney U test, µ[8] was significantly
higher (p = 0.003) in the 2 sensor condition (median value
of 1.434) than in the 3 sensor condition (median value of
1.077). This result was consistent with the theory developed
in the Methods section, since animats with more internal
elements have the potential for more integrated elements, more
mechanisms, and thus greater 8 values. To control for the effect
of network configuration, differentiation values were adjusted
for the number of internal elements in the network using linear
regression.

Using Pearson correlation coefficient, µ[8] had a significant
linear relationship with D1 (r = 0.668, p < 0.001) and D2

(r = 0.452, p < 0.001). A scatter plot between integrated
information and the (network size adjusted) differentiation
values shows a clear linear relationship (Figure 3). This

positive relationship confirms that for an integrated system,
greater values of differentiation correspond to greater values
of average integrated information. The remaining variability
in the data is likely due to the degree of integration in the
system; weakly integrated systems will fall below the line,
while strongly integrated systems will be above the line. The
potential outlier at the top of the plot corresponds to a
system that not only has above average differentiation, but also
exceptional integration, resulting in a 8 value that is far above
average.

The animat systems analyzed in the current work are
small in comparison to the size of system involved in
neuroimaging studies; however, it is reasonable that the results
may hold in larger systems. The linear relationship is equivalent
for both the 3 and 4 node networks after controlling for
network size. Furthermore, the networks were evolved using
a genetic algorithm that involves random mutations at each
stage, and thus constitute a random, independent sample.
There is no reason to believe that the sample is biased
toward any specific structure that would prevent the results
from generalizing. One difference that may occur at larger
scales is greater variability in the degree of integration of
the physical system. Thus, at larger scales, we still expect
the linear relationship between differentiation and integrated
information to hold, but perhaps with a greater degree of
variability. Of course, the extent to which the present conclusions
will actually hold for larger networks will require further
validation.

Stimulus Set Differentiation
To measure evoked differentiation, the system of interest is
observed while being presented with a sequence of stimuli. Let
{wt} be the sequence of states the system enters during exposure
to a stimulus setW of length T, and�W be the set of unique states
in {wt}. The evoked differentiation,D

W
1 is calculated by counting

the number of unique states the system entered during exposure
to the stimulus set,

D
W
1 = |�W |.

FIGURE 3 | Scatter plot of adjusted differentiation values (Left: D1, Right: D2) against average integrated information. In both plots there is a clear

positive linear relationship between D and 8.
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For DW
2 , we first calculate the proportion of time each element

was ON,

uWi =
1

T

T
∑

t=1

wt,i,

and then combined those to estimate the cumulative variance,

D
W
2 =

n
∑

i=1

uWi
(

1− uWi
)

Evoked differentiation was directly influenced by the choice
of stimulus set. Two different stimulus sets were presented
to each animat, which can be generally described as “blocks”
and “points.” The “blocks” stimulus set consisted of blocks of
length 3 or 5, passing over the animats visual field from the
left or right. The “points” stimulus set consisted of exactly one
sensor randomly being activated at every time. Both stimulus
sets consisted of T = 32 time points. In 34 of the animats, the
number of unique states evoked was greater for the “blocks” than
the “points,” in 15 the “points” evoked more unique states, and
in 3 they were equal. Overall, the differentiation was greater for

the “blocks” compared to the “points,” for both D
Wmax
1 (mean

difference = 0.270, p = 0.010) and D
Wmax
2 (mean difference =

0.280, p < 0.001).
For each animat, we also calculated the number of unique

mechanisms activated by the stimulus sets, to see if there
was a relationship to integrated information. A significant
linear relationship is found between the difference in activated
mechanisms and the difference in evoked differentiation, for both
D1 (r = 0.783, p < 0.001) and D2 (r = 0.605, p < 0.001),
Figure 4 is a scatter plot of the results. This means that for
a particular animat, if the “blocks” stimulus set evokes greater
differentiation than the “points” stimulus set, than it will also
activate more mechanisms and vice versa.

The above result suggests that by presenting the animat with
a sufficiently rich stimulus set, it should activate many or all of
its mechanisms, which should be associated with a high value of
integrated information. Longer stimulus sets of length T = 4608

(the number of samples used in the evolution of animats) were
used in an attempt to evoke the highest levels of differentiation.
Ideally, all possible stimulus sets would be considered to find the
set which evokes the highest differentiation. For practical reasons,
here we restricted the search to randomly generated stimulus sets
with three different levels of stimulus entropy, and selected the
one that forced it to enter the most states and thus activate the
most mechanisms,

Wmax = argmax
W

|�W |.

The maximum entropy stimulus set evoked the most unique
states, and also most accurately approximate the true
differentiation of the system; the average relative error was

7.8% between D1 and D
Wmax
1 and 12.5% between D2 and D

Wmax
2 .

The ability to approximate differentiation with stimulus set
differentiation is further explored in S3, investigating the role of
sample size and measurement errors. The relationship between
8 and stimulus set differentiation also mimicked the results from
the perturbational analysis (r = 0.519, p < 0.001 for D

Wmax
1

and r = 0.334, p = 0.023 for D
Wmax
2 ). Figure 5 shows a scatter

plot of µ[8] against stimulus set differentiation, and the linear
relationship remains for both measures.

Differentiation Measures
The indices of differentiation investigated here were part of a
large class of possible measures of system differentiation; they
were chosen for this work because they were well suited to
proving theorems that related them to integrated information
and in principle lend themselves to practical and computationally
efficient ways of studying consciousness. Both D1 and D2 are
clearly related to other measures of differentiation that capture
either the number or differences between potential states of a
physical system. Several alternative measures were investigated
by presenting a rich stimulus set to the animats and looking
at the relationship between evoked differentiation and µ[8].
Measures which, like D1, considered the potential internal states
of a system, such as state entropy (r = 0.475, p = 0.001), or
Lempel-Ziv complexity (Lempel and Ziv, 1976) (r = 0.406, p =

FIGURE 4 | Scatter plot of the difference in activated mechanisms and evoked differentiation between the “blocks” and “points” stimulus sets

(Left: D1, Right: D2). In both plots there is a clear positive linear relationship.
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FIGURE 5 | (Top) Scatter plot of the average integrated information against estimated differentiation (Left: D
Wmax

1
, Right: D

Wmax

2
) for the connected

group of animats. A positive linear relationship exists for both measures, but is not as strong as in the perturbational analysis.

0.006) were significantly correlated with µ[8]. Other measures
that, like D2, are affected by the average distance between states,
can also capture state differentiation. The average Euclidean
distance had a significant relationship to µ[8] (r = 0.384,
p = 0.011) similar to the measures used in this work. On
the other hand, the correlation distance does not correlate with
integrated information (r = 0.157, p = 0.315), presumably
because this metric is not well suited for binary data. Measures
of external system states, such as sensor entropy (r = −0.202,
p = 0.193) or sensor-motor mutual information (r = −0.269,
p = 0.081) showed no significant relationship to µ[8]. This
emphasizes that 8 is a measure of intrinsic cause-effect power
and is primarily concerned with internal elements, rather than
stimulus or behavioral differentiation. It is worth noting that the
animats in the current study had not evolved to interact with their
world, and for agents that interact with their environment, such
as humans, behavioral differentiation becomes more relevant and
may be related to 8 (Albantakis et al., 2014).

DISCUSSION

We have demonstrated a theoretical link between integrated
information (8) and measures of differentiation (D) of a
physical system. A physical system with high values of integrated
information must be constituted of many elements, have a
large state space (Theorem 2.3), and have many mechanisms,
including mechanisms composed of multiple elements (high-
order mechanisms). Moreover, in order to have high 8 on
average, it must have high differentiation (Theorem 2.5), i.e., have
many potential states (D1), and have those states be as different as
possible from each other (D2). Essentially, a physical system with
typically large values of integrated information is necessarily one
with high differentiation.

We then performed a simulation study using artificially
evolved networks—animats—to more precisely determine the
relationship between integrated information and differentiation.
The results demonstrate that, as long as the system under
consideration is integrated, then high values of D1 and D2

correspond to large values of µ[8] (see Figure 3). For systems
connected to an external environment, we also investigated

the differentiation evoked by a stimulus set. We found a
positive correlation between the number of distinct mechanisms
activated and the state differentiation evoked by a stimulus set
(see Figure 4). Furthermore, if the stimulus set is sufficiently
broad, stimulus-evoked differentiation can approximate the state
differentiation of the system obtained by systematic perturbation
of its internal elements (see Figure 5).

Studying Cause-Effect Power with State
Differentiation
The results of this work provide a theoretical foundation for using
state differentiation to study the intrinsic causal properties of a
physical system. Several important aspects were identified that
should be considered when studying differentiation: integration
assumption; connectedness assumption; choice of stimulus
set; choice of differentiation measure. We will briefly discuss
each point in the context of neuroimaging and suggest some
procedures for future experimental work.

Integration
A system with low differentiation is also one with low integrated
information, but it is not necessarily true that a system with high
differentiation has high integrated information (Figure 2). For
high D to predict high 8, a system has to meet the additional
requirement of being highly integrated, that is, not being easily
decomposable into independent components (Tononi, 2004;
Oizumi et al., 2014). A graph of the pairwise causal relationships
between system elements can be used to test the integration
assumption. If the graph is strongly connected (there exists a
directed path between any two elements), then the system is
likely integrated. Otherwise, if the integration assumption cannot
be justified in this way, then alternative measures must be used
which capture the integration of the system, for example 8E

(Barrett and Seth, 2011) or 8∗ (Oizumi et al., 2015).
In the case of the human brain, the assumption of integration

is justified by its remarkable degree of anatomical and function
connectivity, especially within the cerebral cortex (Sporns et al.,
2005). Thus, if the cerebral cortex of a healthy adult human shows
a high value of differentiation, one can reasonably assume that
it will also have a high value of integrated information which,
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according to integrated information theory (IIT) (Tononi, 2004;
Oizumi et al., 2014), should reflect the presence of subjective
experience. Supporting this notion, several empirical studies
have shown a positive relation between state differentiation
and consciousness across different modalities and with different
measures of differentiation (Gosseries et al., 2011; Sarà et al.,
2011; Barttfeld et al., 2015; Hudetz et al., 2015). It should be
kept in mind, however, that IIT ascribes consciousness to the
particular set of elements for which8 reaches a maximum, which
requires additional analyses and assumptions to be explored in
future work.

Connectedness
The differentiation evoked by a stimulus set can be used to
make inferences about the integrated information of a system.
However, this is only possible if the system is not only integrated,
but also connected to the external environment, that is, the
stimuli must have a causal effect on the state of the system. The
connectedness requirement ensures that the stimuli can force
the system to explore its state space, and that the mechanisms it
activates are “about”İ the stimuli. The connectedness assumption
can be tested by measuring the system’s response to different
stimuli that are presumablymeaningful to the system (see below):
if the system’s response is the same regardless of stimuli, or it is
different but unrelated to the stimuli, then it is not connected. For
example, phenomenally, dream experiences are highly integrated
and differentiated. Experiments that directly perturb the cerebral
cortex using transcranial magnetic stimulation and record its
responses with high-density electroencephalography suggest that
the dreaming brain supports neurophysiological activity patterns
that are also integrated and differentiated (Massimini et al., 2010;
see also Sarasso et al., 2015 for ketamine dreams). However, the
sleeping brain is disconnected from its environment through
mechanisms that block the propagation of sensory stimuli (Funk
et al., 2016). As shown in Figure 2, presenting a diverse set
of stimuli to a disconnected system offers no guarantee that it
will explore its state space, hence differentiation may be highly
underestimated. On the other hand, during wakefulness, the alert
brain is both integrated and tightly connected to its environment,
with which it interacts using multiple sensory modalities (vision,
audition, etc.). In fact, recent neuroimaging studies have been
able to exploit the differentiation evoked by a visual stimulus set
to determine whether or not the stimuli were perceived (Montijn
et al., 2016) as well as to compare the meaningfulness of different
sets of stimuli for the subject (Boly et al., 2015).

Choice of Stimulus Set
We have demonstrated that if a system is integrated and
connected to its environment (such as the awake brain), then
the integrated information of the system can be estimated
by exposing the system to a sufficiently rich stimulus set
and measuring the evoked differentiation. The choice of
stimulus set is important because it will directly impact
the evoked differentiation and hence estimates of 8. The
general prescription to obtain the best approximation to state
differentiation, and hence the strongest relationship to 8, is to
employ a stimulus set that is most “meaningful” to the system, in

the sense that it should activate as many as possible of the system’s
mechanisms (Boly et al., 2015).

The animats in our study had two or three binary sensors
through which they were connected to their environment. Under
our controlled conditions, it was possible to present the animats
with all possible stimuli (individual sensor states), as well as short
sequences of stimuli (up to the limit of their internal memory).
The real world is of course much richer than the animat world,
ruling out the option of presenting all possible stimuli and
forcing the choice of a small subset. This subset should not
merely have high entropy, but should contain different stimuli
that are likely to trigger different activity patterns in the system.
For evolved systems, such as brains and animats, a natural
choice is that of stimuli that are as varied as possible but that
are sampled from the “typical” world to which the system has
adapted in the course of evolution, development and learning.
Such stimuli are the most meaningful to a given system and have
the highest likelihood of evoking differential patterns of activity.
Accordingly, recent neuroimaging studies in humans have shown
that movie clips or highly meaningful slides from the natural
world can evoke high neurophysiological differentiation, whereas
white noise stimuli evoke minimal differentiation, despite having
equal or greater stimulus entropy (Boly et al., 2015). In general,
the meaningfulness of stimuli will vary to some extent from
person to person, so ideally the stimulus set should be optimized
based on the concepts available to each participant. In the case
of animats, a fair representation of “meaningful” stimuli would
include both “blocks” and “points” that the animats have evolved
to catch and avoid (Albantakis et al., 2014).

Another consideration is the amount of noise, or
measurement error in the data. A better estimate of
differentiation can be achieved by repeating stimuli and
averaging to find the deterministic component (see Appendix
S3). However, there are a limited number of stimuli that can
be presented in a single experiment. This creates a trade-off,
between showing a more varied (and perhaps more meaningful)
stimulus set and repeating stimuli to get a more accurate
estimate.

Choice of Differentiation Measure
The theoretical results show that systems with high average
integrated information will have high values of both measures
of differentiation investigated here (D1, the number of potential
system states; and D2, the variability of individual elements
of the system). The simulations also indicated that D1 and
D2 are strongly correlated (r = 0.91, p < 0.001),
suggesting that it should be sufficient to measure only one of
the two quantities. Indeed, a bootstrap hypothesis test found
no significant difference in the relationship between the two
differentiation quantities and integrated information (p =

0.170). For empirical work, the statistical properties of D2

(see Appendix S3) make it preferable for studying integrated
information. As shown here, compared to D1, D2 is more robust
to noise and requires fewer samples to get an accurate result
for large networks, both factors that are particularly relevant for
neuroimaging studies.
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For neuronal systems, the choice of differentiation measure
will depend on the mode of neuroimaging technique employed.
The brain can be studied at many different spatial and temporal
scales (individual spikes, calcium imaging, EEG/fMRI, etc). It
is not clear what the correct scale is to study consciousness;
however, IIT proposes that it should be the scale that maximizes
cause-effect power (Tononi and Koch, 2015). Unfortunately, the
scale that maximizes cause-effect power is not currently known,
but perhaps applying the current differentiation techniques
across a range of possible scales will provide some clarity to this
question.

Given a specific spatio-temporal scale, the measure of
state differentiation used should capture the number and/or
differences between potential system states; it should not
measure merely stimulus or behavioral differentiation (e.g.,
sensor entropy). The two measures studied in this work were
selected based on their mathematical properties, so that we could
analytically demonstrate the relationship between integrated
information and state differentiation. However, there are other
alternative options for capturing differentiation, several of which

have been applied to neuroimaging data (Gosseries et al., 2011;
Sarà et al., 2011; Barttfeld et al., 2015; Boly et al., 2015; Hudetz
et al., 2015; Montijn et al., 2016). These alternative measures are
also expected to relate to integrated information (see above), as
long as the assumptions of an integrated and connected physical
system are satisfied.
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APPENDIX S1 - MATHEMATICAL
DEFINITIONS

Mathematical definitions are provided for the key terms in IIT,
for a complete set of definitions from the theory see Oizumi et al.
(2014) and Tononi (2015).

Earth Movers Distance
In IIT the Earth Movers Distance (Rubner et al., 2000) (EMD)
is the metric used to compare both cause-effect repertoires
and cause-effect structures. The EMD is the minimum cost of
transforming one “pile of dirt” into a different “pile of dirt,” where
the cost is equal to the amount of “dirt” moved multiplied by the
distance it has moved.

For cause-effect repertoires the “dirt” is the probability mass at
each past or future system state. The distance the “dirt” is moved,
the distance between system states, is the Hamming distance. The
Hamming distance between two states is equal the number of
individual elements whose states differ between the two states.
The Hamming distance between two binary states s, s∗ ∈ �S is

dss∗ =

n
∑

i=1

(si − s∗i )
2.

For cause-effect structures, we are transforming one set of
mechanisms into another set of mechanisms. The “dirt” is the
integrated information (ϕ) of the mechanism, and the distance
the “dirt” is moved is the combined EMD distance between
the cause and effect repertoires of the mechanism. The distance
between two mechanismsmt andm∗

t is

d(mt,m
∗
t ) = emd

(

pcause(z|mt), pcause(z|m
∗
t )
)

+ emd
(

peffect(z|mt), peffect(z|m
∗
t )
)

Cause-Effect Repertoire
Consider a candidate mechanism M ∈ P(S) and past/future
purviews Zt±1 ∈ P(S).

The cause repertoire of an element of the candidate
mechanism Mi = mi,t over the past purview Zt−1 is the
probability function for the state of the past purview conditioned
on the current state of the element, evaluated causally by
perturbing the system into all possible states (using the do
operator, as defined by Pearl, 2009),

pcause(z|mi,t) ≡

∑

zc∈�Zc
p
(

mi,t|do(z, z
c)
)

∑

s∈�S
p
(

mi,t|do(s)
) , z ∈ �Zt−1 .

The inputs of every element are perturbed independently using
virtual elements to account for the effects of common input. The
resulting cause repertoire for the entire candidate mechanism has
the form

pcause
(

z|mt

)

≡
1

K

|mt |
∏

i=1

pcause
(

z|mi,t

)

, z ∈ �Zt−1 ,

where K is the normalization term,

K =
∑

z∈�Zt−1

|mt |
∏

i=1

pcause
(

z|mi,t

)

.

Similarly, the effect repertoire of the candidate mechanism in a
state Mt = mt over an element of the future purview Zi ∈ Zt+1

is given by

peffect
(

zi|mt

)

≡
1

|�Mc |

∑

mc∈�Mc

p
(

zi|do(mt,m
c)
)

, zi ∈ �Zi

The effect repertoire for the candidate mechanism in a stateM =

mt over the entire future purview Zt+1 is then,

peffect(z|mt) ≡

|z|
∏

i=1

peffect
(

zi|mt

)

.

Mechanism Cut
For a physical system S, candidate mechanism M and a past or
future purview Z, a cut of (M,Z) is a partition into four sets,

cut = {M(1),M(2),Z(1),Z(2)},

such thatM(1) andM(2) partitionM, Z(1) and Z(2) partition of Z,
(M(1) ∪ Z(1)) 6= ∅ and (M(2) ∪ Z(2)) 6= ∅.

The cause or effect repertoire of the cut candidate mechanism
is found by assuming Z(1)|M(1) and Z(2)|M(2) are independent
(the connections between them have been “cut”),

pcutcause(z|mt) = pcause(z
(1)|m

(1)
t )× pcause(z

(2)|m
(2)
t ).

The effect-information is similarly defined as the product of the
partitioned repertoires,

pcuteffect(z|mt) = peffect(z
(1)|m

(1)
t )× peffect(z

(2)|m
(2)
t ).

System Cut
For a physical system S, a system cut is a directed partition,

cut = {S(1), S(2)},

such that

S(1) 6= ∅, S(2) 6= ∅, (S(1) ∩ S(2)) = ∅, (S(1) ∪ S(2)) = S.

The cause-effect structure of the cut system is calculated from
a cut transition probability function, with S(1) 6→ S(2) (the
connections from S(1) to S(2) have been injected with noise),

pcut(st|st−1) = p
(

s
(1)
t |st−1

)

× p
(

s
(2)
t |s

(2)
t−1

)
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APPENDIX S2 - PROOF OF THEOREMS

The EMD between repertoires is defined as least amount of work
necessary to transform one repertoire into the other. One possible
transformation is to distribute the probabilities from the first
repertoire to each state in the second repertoire, proportional to
the probabilities in the second repertoire. This is unlikely to be
the optimal transformation, but it does provide an upper bound
on the EMD,

emd(p1, p2) ≤
∑

s1

∑

s2

p(s1)p(s2)ds1s2 ,

where ds1s2 is the distance between states s1 and s2. We shall use
the symbol (∗∗) to note when we apply this result.

Theorem 2.1. For a physical system in a state S = st ∈ �S with n
binary elements, the cause and effect information of a mechanism
in a stateM = mt are bounded,

ϕcause(mt) ≤
n

2
, and ϕeffect(mt) < n.

Proof. For the cause information ofmt ,

ci(mt) = emd
(

pcause(z|∅), pcause(z|mt)
)

(∗∗) ≤
∑

s∗∈�S

∑

s∈�S

pcause(s
∗|∅)pcause(s|st)dss∗

=
1

2n

∑

s∈�S

pcause(s|st)
∑

s∗∈�S

dss∗

=
1

2n

∑

s∈�S

pcause(s|st)n2
n−1

=
n

2

∑

s∈�S

pcause(s|st)

=
n

2

For the effect information ofmt ,

ei(mt) = emd
(

peffect(s|mt), peffect(s|∅)
)

(∗∗) ≤
∑

s∗∈�S

∑

s∈�S

peffect(s
∗|∅)peffect(s|st)dss∗

≤ n
∑

s∗∈�X

peffect(s
∗|∅)

∑

s∈�S

peffect(s|st)

= n

Corollary 2.2. For a physical system in a state S = st ∈ �S

with n binary elements, and mechanism M = mt , the integrated
information ofmt is bounded by

ϕmax(mt) ≤
n

2
.

Proof. For a fixed past purview Zt−1, note that by cutting
all connections between mechanism and purview, the cut
repertoire is simply the unconstrained repertoire, so we can apply
Theorem 2.1.

emd
(

pcause(z|mt), p
MIP
cause(z|mt)

)

≤ emd
(

pcause(z|mt), pcause(z|∅)
)

= ci(mt)

≤
|Zt−1|

2

Since the integrated information is the maximum across all
possible purviews,

ϕmax(mt) ≤ ϕcause(mt)

≤ max
Zt−1

|Zt−1|

2

≤
n

2

Theorem 2.3. For a physical system in a state S = st ∈ �S with
n binary elements, the integrated information of its cause-effect
structure is bounded by

8(st) ≤
3n2(2n − 1)

4
.

Proof.

8(st) = emd(C(st),C(s
MIP
t ))

≤
∑

m∈C(st)

ϕ(m)(ci(m)+ ei(m))

(Thm2.1) =
∑

m∈C(st)

n

2
(ci(m)+ ei(m))

(Cor2.2) ≤
∑

m∈C(st)

n

2

(n

2
+ n

)

≤ |C(st)|
3n2

4

≤ (2n − 1)
3n2

4
.

Theorem 2.4. For a physical system S with n binary elements,
state space �(S) and candidate mechanism M ⊆ S, the average
cause and effect information are bounded,

µ[ci(m)] ≤
nD1

2n+1
≤

n

2
, and µ[ei(m)] ≤ 2D2 ≤

n

2
.
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Proof. The result of cause information follows directly from
Theorem 2.1, since cause information has the same bounded for
each state, the average must be similarly bounded.

µ[ci(m)] =
∑

s∈�

1

|�|
ci (s)

=
∑

s∈�̂

1

|�|
ci (s)

≤
∑

s∈�̂

1

|�|

n

2

=
|�̂|

|�|

n

2

=
nD1

2n+1

≤
n

2

For the result on effect information, we define some preliminary
notation. Enumerate the states of the system {sj, j =

1 . . . 2n} = �S, then define qk = peffect(sk|∅) (the unconstrained
effect probability of state sk) and pjk = peffect(sk|sj) (the
effect probability of state sk constrained on the current state
being sj). Furthermore, define Ji = {j|sj,i = 1}, the

set of all states sj such that ith element of sj is ON (1).
The unconstrained probability that element i is ON (1) is
then,

ui =
∑

j∈Ji

qj.

Finally, define vj,i to be the unconstrained effect probability that
element i will be the same as it is for state sj,

vj,i =

{

ui if sj,i = 1

1− ui otherwise.

µ[ei(m)] =

2n
∑

i=1

1

|�S|
ei(si)

(∗∗) ≤

2n
∑

i=1

1

2n

2n
∑

j=1

qj

2n
∑

i=k

pikdsjsk

=

2n
∑

j=1

qj

2n
∑

i=1

2n
∑

k=1

pikdsjsk

2n

=

2n
∑

j=1

qj

(

n−

n
∑

m=1

vj,i

)

= n−

n
∑

i=1

2n
∑

j=1

qjvj,i

= n−

n
∑

i=1





∑

j∈Ji

qjui +
∑

j∈Jci

qj(1− ui)





= n−

2n
∑

i=1

u2i + (1− ui)
2

= 2

n
∑

i=1

ui(1− ui)

= 2D2

≤
n

2

Theorem 2.5. For a physical system Swith n binary elements, and
corresponding state space �S = {0, 1}n, the average integrated
information is bounded by

µ[8] =
∑

s∈�S

8(s)

|�S|
≤ (2n − 1)

n

2

(

nD1

2n+1
+ 2D2

)

≤
(2n − 1)n2

2
.

Proof.

µ8 =
∑

s∈�S

8(s)

|�S|

≤
∑

s∈�S

1

|�S|

∑

m⊆S

ϕ(m)(ci(m)+ ei(m))

(Cor2.2) ≤
∑

m⊆S

n

(2|�S|)

∑

s∈�S

(ci(m)+ ei(m))

≤
∑

m⊆S

n

2





∑

s∈�S

ci(m)

|�S|
+
∑

s∈�S

ei(m)

|�S|





=
∑

m⊆S

n

2

(

µ[ci(m)]+ µ[ei(m)]
)

(Thm2.3) ≤
∑

m⊆S

n

2

(

nD1

2n+1
+ 2D2

)

≤ (2n − 1)
n2

2
.

Theorem 2.6. Consider the integrated information for a random
state of a physical system. If 8 ∝

∑

ϕ and σ [8] = o(µ[8]), then
for any ǫ > 0 and δ > 0 there exists µ0 such that for all systems
with µ[8] > µ0,

P
(

|8 − µ[8]| ≥ δµ[8]
)

≤ ǫ.

Proof. Define X as the sum of integrated information of each
candidate mechanism ϕi (i = 1 . . . 2n − 1) for a random state
of a physical system,

X =

2n
∑

i=1

ϕi.
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Since 8 ∝
∑

ϕ, there exists c such that µ[8] = cE(X) and
σ 2[8] = c2Var(X).
By Chebyshev’s inequality,

P
(

|X − µ[X]| ≥ kσ [X]
)

≤
1

k2
,

so that

P
(

|c8 − cµ[8]| ≥ kcσ [8]
)

≤
1

k2
.

Taking k = δµ[8]
σ [8])

,

P
(∣

∣8 − µ(8)
∣

∣ ≥ δµ[8]
)

≤
1

δ2

(

σ [8]

µ[8]

)2

,

and since σ [8] = o(µ[8]), there exists µ0 such that for all
µ[8] > µ0,

P
(

|8 − µ[8]| ≥ δµ[8]
)

≤ ǫ.

The first assumption is that 8 is proportional to
∑

ϕ. The
population of high 8 animats used in this work support this
assumption: the correlation between µ[8] and µ

[
∑

ϕ
]

was ρ =

0.900 (p < 10−16). The second assumption is thatµ[8] is greater
than σ [8]. As n increases, the mean µ[8] grows faster than the
standard deviation σ [8], this is also supported by the animat
used in this work: there is a positive correlation between ϕ values,
which causes the variance of

∑

ϕ and thus also 8 to grow at a
reduced rate. Thus for large systems, this seems like a reasonable
assumption.

APPENDIX S3 - APPROXIMATING
DIFFERENTIATION BY STIMULUS
MANIPULATION

To explore the possibility of estimating differentiation with
evoked differentiation, we evolved a population of animats
that had many different states and were connected to the
environment. To accomplish this, the fitness function used in
the evolution was the product of the number of connections
from sensor elements to internal elements, and the number of
internal element states observed during exposure to a stimulus
set. This resulted in animats which whose states were affected
by an external world and had a large state space. There were
60 animats total for this simulation, each had two sensors and
two motors, and the number of internal elements was evenly
distributed between three and fourteen.

To calculate evoked differentiation, the system of interest is
observed while being presented with a sequence of stimuli. Our
goal is to estimated the true differentiation of the system, so we
exposed the animats to several stimulus sets selected the one that
forced it to best explore its state space (enter the most unique
states). A maximum entropy stimulus set resulted in the greatest
number of states visited and was used to estimate differentiation.
A stimulus set of length T = 4608 (the number of samples used
in the evolution of animats) was used to estimate differentiation
for each of the animats, and the relative error was calculated for
both measures of differentiation,

Ei =
|Di − D̂i|

Di
, i = 1, 2.

For network sizes of up to seven internal elements, both
differentiation quantities were estimated within an error margin
of 5%. For networks with greater than seven internal elements,
D2 is still accurately estimated, but the estimates forD1 get worse

FIGURE A1 | (A) Relative error of differentiation estimates using T = 4608 samples, as a function of network size. The estimates of D1 get worse as network size

increases, but the estimates for D2 stay accurate. (B) Relative error for networks with seven internal elements with increasing levels of measurement error. The

estimate of D1 is greatly affected by even small amounts of noise, while D2 has only margin increase in error. (C) Minimum sample size to estimate differentiation for

desired accuracy. The necessary sample size for D2 does not increase as the network size increases, however the sample size for D1 increases exponentially.
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as the network size increases (see Figure A1A). The number of
samples required to get an accurate estimate of D1 increased
exponentially with network size, while it remained constant for
D2 (see Figure A1C).

It is also of interest whether the differentiation can
be estimated in the presence of measurement errors. We
investigated this question by including measurement error into
the state observations during external perturbation. For every
observed state of the system, each element independently had
a fixed probability of being put into the opposite binary state.
The result was that the accuracy of the D2 estimator only
decreased slightly with the inclusion of noise, while the accuracy

for D1 decreased drastically for even small amounts of noise (see
Figure A1B).

In summary, assuming the network is connected to an
external world, bothmeasures of differentiation can be accurately
approximate by differentiation to a sufficiently large and rich
stimulus set. The sample size necessary for accurate estimation of
D1 increases exponentially with network size, and the accuracy is
greatly reduced by measurement errors in the state observations.
The estimator for D2 is a more robust quantity, giving quality
results for large networks and in the presence of measurement
errors. Thus D2 is preferred over D1 for neuronal and similar
applications.
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