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Despite our ever-changing environment, animals are remarkably adept at selecting courses
of action that are predictive of optimal outcomes. While requiring the contribution of
a number of brain regions, a vast body of evidence implicates striatal mechanisms of
associative learning and action selection to be critical to this ability. While numerous
models of striatal-based decision-making have been developed, it is only recently that
we have begun to understand the precise contributions of specific subpopulations of
striatal neurons. Studies utilizing contemporary cell-type-specific technologies indicate
that striatal output pathways play distinct roles in controlling goal-directed and social
behaviors. Here we review current models of striatal-based decision-making, discuss
recent developments in defining the functional roles of striatal output pathways, and assess
how striatal dysfunction may contribute to the etiology of various neuropathologies.
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INTRODUCTION
Economical decision-making can be defined as the selection of
the optimal (i.e., most rewarding or least aversive) course of
action among a host of competing alternatives. This process
requires a system that is capable of: (1) encoding associa-
tions between actions and the predicted value of their out-
comes, (2) initiating selected actions while suppressing competing
non-selected actions, and (3) dynamically adapting behavior
in response to changes in outcome value. Although complex
decision-making is thought to rely on a widely distributed neu-
ral network, including cortical, limbic and midbrain regions,
efferent projections from these structures are known to con-
verge within the striatum of the basal ganglia (Alexander and
Crutcher, 1990; Haber, 2003). Indeed, the striatum is hypothesized
to integrate cognitive, emotional, and motivational informa-
tion that help to guide to the selection of economical actions
(Mogenson et al., 1980). This review will begin by summa-
rizing the role of striatal mechanisms in neuropsychological
processes associated with economical decision-making. Subse-
quently, we will discuss how new technologies have begun to
elucidate discrete roles for striatal cell-types and output pathways,
and how these may contribute to decision-making-associated
neuropathologies. Finally, we will review recent evidence that
economical decision-making guiding individual and social behav-
ior may share common molecular mechanisms and neurocir-
cuitry.

ANATOMY OF THE STRIATUM
The striatum, the largest component and primary afferent struc-
ture of the basal ganglia, is anatomically linked to the cerebral
cortex, limbic system and thalamo-cortical motor system via a
series of parallel, but largely structurally and functionally dis-
tinct cortico-subcortical circuits (Holland and Rescorla, 1975;

Gerfen and Young, 1988; Alexander and Crutcher, 1990; Dick-
inson and Balleine, 1994; Haber, 2003). The dorsomedial and
dorsolateral regions of the striatum receive afferent projections
from frontal and parietal associated cortices, and sensorimo-
tor cortices, respectively. Whereas, the ventral striatum, largely
comprised of the nucleus accumbens (NAc), receives projections
from limbic structures, including the amygdala, hippocam-
pus as well as the medial prefrontal and anterior cingulate
cortices (Alexander et al., 1986; Haber, 2003). This topogra-
phy is proposed to confer dissociable functions to each of the
striatal subregions, allowing them to dynamically and adap-
tively control the flow of cognitive and affective information
to motor output systems, resulting in facilitation or inhibi-
tion of actions (Mink, 1996; Balleine and Dickinson, 1998;
Nicola, 2006).

STRIATAL-MEDIATED LEARNING
The striatum acts to support selection of economical actions
through its role in mediating two different forms of associa-
tive learning (Balleine et al., 2007; Liljeholm and O’Doherty,
2012). The first, Pavlovian (stimulus-response) learning, describes
the process by which an initially neutral conditioned stimu-
lus (CS), by repeated pairing with an unconditioned stimulus
(US) eliciting an unconditioned response (UR), acquires the
capacity to evoke the same, now conditioned, response (CR).
Whereas, in instrumental (action-outcome) learning, the like-
lihood of performance of a specific behavior is modified by
the appetitive or aversive outcome (US) it is associated with.
While stimulus-response and the early stages of action-outcome
contingencies are sensitive to devaluation of the US, following
repeated training action-outcome associations become habitual,
regardless of changes to the outcome (Holland and Rescorla,
1975; Dickinson and Balleine, 1994; Balleine and Dickinson,
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1998). These associative learning strategies act to facilitate the
likelihood of incurring economic outcomes predicted by condi-
tioned stimuli or actions, while also conserving energy expended
during cognitive processing. Interestingly, stimulus-response
and action-outcome associations are not mutually exclusive
and often interact with each other, such as in Pavlovian-to-
instrumental transfer (PIT), in which instrumental responding
for a US is facilitated by presentation of a CS that was previ-
ously paired with the same US (specific PIT) or a different US
(general PIT).

As well as being delineated by their various afferents, subre-
gions of the striatum are also functionally dissociable (Figure 1).
The NAc of the ventral striatum, specifically the core region and
its inputs from the basolateral amygdala (BLA), are implicated
in the mediation of Pavlovian and instrumental conditioning
[reviewed in (Everitt et al., 2001; Cardinal and Everitt, 2004)].
Furthermore, specific ‘hotspots’ within the NAc shell have been
shown to mediate hedonic reactions or ‘liking’ for food and drug
reward (Pecina and Berridge, 2005; Castro and Berridge, 2014).
In contrast, the dorsal striatum is implicated in the control of
instrumental behavior by stimulus-action associations [reviewed
in (Robbins, 2002; Balleine et al., 2007)]. Interestingly, lesions
to the dorsomedial striatum (DMS) inhibit goal-directed instru-
mental conditioning, while lesions to the dorsolateral striatum
(DLS) disrupt habit formation, indicating that the DMS and DLS
mediate the initial acquisition and later consolidation phases of

skill learning, respectively (Yin et al., 2004, 2005, 2009). Indeed,
the switch from voluntary to habitual and compulsive drug use
in addiction is hypothesized to represent a neural transition in
the control of behavior from ventral to dorsal striatal regions
(Everitt and Robbins, 2005).

STRIATAL MECHANISMS CONTROLLING SELECTION OF
ECONOMICAL ACTIONS
While the neural mechanisms by which action selection occurs
are still largely unclear, a compelling hypothesis posits that neu-
ronal ensembles within the striatum may encode specific action
representations, which when selected act to disinhibit down-
stream motor output nuclei (Mink, 1996; Gurney et al., 2001).
In this model, actions are selected by ‘signals’ provided by input
channels from cortical and limbic regions, with the most salient
signal (or strongest input) winning over behavioral control. How-
ever, this model fails to explain how striatal-mediated learning
influences action selection. More recently, updated models have
suggested that phasic bursts of dopamine and their resulting plas-
ticity may act to discriminatively amplify neuronal ensembles
within the striatum, effectively reducing the signal-to-noise ratio
(Frank, 2005; Frank and Claus, 2006; Nicola, 2006; Schroll and
Hamker, 2013). This proposal is greatly influenced by the work
of Schultz et al. (1997) indicating that phasic bursts of dopamine
within the striatum facilitate reward-related learning by signaling
reward-prediction errors (Schultz, 1998). Moreover, these models

FIGURE 1 | Schematic representation of striatal-associated

decision-making neurocircuitry. Striatonigral D1 direct pathway neurons
inhibit the SNr and release inhibition of thalamic activity, promoting behavior.
Whereas, striatonigral D2 indirect pathway neurons inhibit the GP,
disinhibiting the STN and exciting the SNr, which ultimately inhibits the
thalamus and thus suppresses behavior. The balance between these

opposing projections is likely to be regulated by glutamatergic and
dopaminergic afferents, as well as GABAergic signaling within the striatum.
DLS, Dorsolateral Striatum; DMS, Dorsomedial Striatum; GP, Globus Pallidus;
NAc, Nucleus Accumbens; SNc, Substancia Nigra pars compacta; SNr,
Substancia Nigra pars reticulata; STN, Subthalamic Nucleus; VTA, Ventral
Tegmental Area.
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begin to implicate specific striatal cell types in the control of
behavior.

Medium spiny neurons (MSNs), the primary cell type within
the striatum, are typically divided into two subpopulations based
upon their expression of dopamine receptors, releasable peptides
and their axonal projection targets (Gerfen and Young, 1988).
Dopamine D1-receptor, dynorphin-, and substance P-expressing
striatonigral neurons, and D2-receptor and enkephalin-expressing
striatopallidal neurons, form integral parts of the direct and indi-
rect striatal output pathways, respectively (Figure 1; Gerfen et al.,
1990; Surmeier et al., 1996; Bertran-Gonzalez et al., 2010). Acti-
vation of dopamine D1-receptors by phasic bursts of dopamine
induces long-term potentiation (LTP) of glutamatergic synapses
on striatonigral MSNs, facilitating signaling through the direct
pathway (Grace et al., 2007; Gerfen and Surmeier, 2011). While
activation of D2-receptors induces long-term depression (LTD) in
striatopallidal MSNs, producing a blockade of the indirect path-
way (Kreitzer and Malenka, 2007; Shen et al., 2008). Thus altered
availability of dopamine in the striatum, induced by presentation
of conditioned stimuli, is able to dynamically alter activity in direct
and indirect striatal output pathways. The implications of this will
be discussed in the next section.

Action selection may be additionally facilitated by GABAergic
lateral inhibition of competing interactions between NAc single
projection neurons (Nicola and Deadwyler, 2000; Taverna et al.,
2004, 2005). Interestingly, recent evidence indicates dopamine to
increase GABAergic tonic current in striatonigral MSNs, while
decreasing tonic inhibition in striatopallidal MSNs (Liang et al.,
2014; Maguire et al., 2014). This newly discovered mechanism
might act as a neuroprotective mechanism against maladaptive
behaviors associated with prolonged activiation of NAc neurons
by dopamine, as with drug-induced dopamine release (Maguire
et al., 2014).

STRIATAL PATHWAYS AND THE CONTROL OF MOVEMENT
As previously alluded to, the influence of neuronal afferents coding
for specific actions or tasks are likely modulated with the support

of the direct and indirect striatal output pathways (Table 1; Kravitz
et al., 2010; Fukabori et al., 2012; Nishizawa et al., 2012; Tai et al.,
2012; Freeze et al., 2013). These pathways converge within the sub-
stantia nigra pars reticulata (SNr), where they dynamically control
the activity of afferents to the thalamus, and consequently produce
opposing influences on motor output systems (DeLong, 1990;
Deniau et al., 2007). Optical stimulation of the direct pathway
promotes motor activity, whereas stimulation of indirect path-
way inhibits motor activity (Kravitz et al., 2010). More recently it
has been proposed that cooperative activity in both pathways may
be necessary for action selection and initiation. Time-correlated
single-photon counting demonstrates concurrent activation of
selected direct and indirect pathway striatal neurons prior to ini-
tiation of directed movement (Cui et al., 2013). It is possible that
synchronized activity of individual direct and indirect pathway
neurons may act to integrate the various antagonistic spatiotem-
poral components needed to complete motor behaviors (Isomura
et al., 2013). According to this model, increases in motor activity
observed following ablation (Durieux et al., 2009) or disruption
(Bateup et al., 2010) of indirect pathway neurons, can be explained
as an inability of the indirect pathway to inhibit competing action
representations, resulting in hyperkinesia.

Interestingly, it has also been proposed that rather than, or
in addition to, simply controlling movement, striatal output
pathways act to influence behavior by the inference of value to
specific actions (Samejima et al., 2005; Tai et al., 2012). Opti-
cal activation of dorsomedial striatal direct or indirect pathway
neurons biased action selection for a nosepoke hole located con-
tralateral or ipsilateral to the side of stimulation, respectively.
(Tai et al., 2012). This bias mimicked an additive shift in the
action value estimated by the mice’s previous behavior and reward
history.

STRIATAL PATHWAY CONTROL OF GOAL-DIRECTED
BEHAVIOR
There is now considerable evidence to indicate that striatal path-
ways are also implicated in the control of goal-directed behavior,

Table 1 | Effects of cell-specific genetic manipulation of direct and indirect pathway neurons within different striatal regions.

Direct pathway Indirect pathway

NAc Reward-learning (Hikida et al., 2010, 2013; Lobo et al.,

2010; Kravitz et al., 2012)

Aversion-learning (Hikida et al., 2010, 2013; Kravitz

et al., 2012; Danjo et al., 2014)

DS (unspecified) Increased motor behavior (Kravitz et al., 2010)

Increased the value of an action contralateral to a

bilateral infusion (Tai et al., 2012)

Decreased motor behavior (Kravitz et al., 2010)

Increased the value of an action ipsilateral to a

bilateral infusion (Tai et al., 2012)

DMS Regulates correct response time in performance of

visual-discrimination (Fukabori et al., 2012)

Inhibits SNr neurons predicting movement (Freeze

et al., 2013)

Excites SNr neurons predicting motor suppression

(Freeze et al., 2013)

DLS Regulates correct response accuracy in performance

of audio discrimination (Nishizawa et al., 2012)

NAc, Nucleus Accumbens; DS, Dorsal Striatum; DMS, Dorsomedial Striatum; DLS, Dorsolateral Striatum; SNr, Substancia Nigra pars reticulata.
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including the acquisition of rewarding stimuli and the avoid-
ance of aversive stimuli (Table 1; Hikida et al., 2010, 2013; Lobo
et al., 2010; Kravitz et al., 2012; Danjo et al., 2014). Reversible-
neurotransmitter-blocking (RNB) inhibition of direct pathway
neurons attenuated the conditioned place preference (CPP) for
a chamber previously paired with a food reward in a test of
food-conditioned, while inhibition of the indirect pathway had
no effect on food-CPP (Hikida et al., 2010). Conversely, RNB
disruption of indirect pathway neurons, but not direct path-
way neurons, blocks passive avoidance learning (Hikida et al.,
2010). Thus it appears that direct and indirect striatal path-
ways are critical for reward- and aversion-learning, respectively.
This idea is supported by optogenetic evidence demonstrat-
ing activation of direct pathway neurons in the NAc to induce
persistent reinforcement, while stimulation of indirect pathway
neurons was sufficient for persistent avoidance (Kravitz et al.,
2012). Subsequent investigation has revealed that the ability of the
direct pathway to facilitate reward-based learning is contingent
upon the activation of dopamine D1-receptors within the NAc,
while specific inactivation of NAc D2-receptors within the indi-
rect pathway underlies passive avoidance learning (Hikida et al.,
2013).

In addition to dopamine receptors, several other receptor types
expressed in striatal pathway neurons have been implicated in
the control of goal-directed behaviors. Indeed, the sphingosine-
1-phosphate receptor Gpr6 and A2A receptor, expressed selec-
tively in striatopallidal neurons, control instrumental learning,
likely by influencing indirect pathway activity (Lobo et al., 2007;
Yu et al., 2009).

Interestingly, recent evidence indicates that the striatal path-
ways also control retention and flexibility of reward-related
learning, critical for economical action selection in the face of
constant or changing outcomes. Designer receptor exclusively acti-
vated by a designer drug (DREADD) activation of direct pathway
neurons in the DMS significantly enhances retention of economic
strategies in a reward discrimination task (Ferguson et al., 2013).
Conversely, RNB inactivation of D2-receptors within the NAc is
necessary for flexibly learning a new strategy, as well as suppress-
ing the previously learned strategy in a visual-discrimination task
(Yawata et al., 2012).

THE ROLE OF THE STRIATUM IN SOCIAL ECONOMIC
DECISION-MAKING
Up until now we have described how the balance of neural activity
within specific striatal subpopulations contributes to decision-
making processes based upon an individual’s personal value
representations and behavior. However, in many circumstances
decision-making is influenced by the needs of the social groups
to which an individual belongs. Furthermore, social interactions,
including parental attention, mutual grooming and pair-bonding,
can in themselves act as reward. Accordingly, the striatum is known
to contribute significantly to the organization of social behaviors
(Báez-Mendoza and Schultz, 2013).

Fast scan voltammetry in rodents demonstrates dopamine
release within the NAc to correlate with instances of social
interaction (Robinson et al., 2002, 2011). Similarly, dopamine
transmission within the NAc rostral shell, but not caudal shell

or core, facilitates pair-bond formation in prairie voles (Aragona
et al., 2005). Further investigation revealed D1 and D2 receptors
within the NAc rostral shell to produce opposing influences on
pair-bond formation, promoting and inhibiting its development,
respectively (Aragona et al., 2005). Indeed, the pair-bond forma-
tion was associated with an upregulation of D1 receptors within
the NAc (Aragona et al., 2005). Interestingly, evidence indicates
that the rewarding properties of social interaction additionally
requires the coordinated action of oxytocin and serotonin upon
both D1- and D2-MSNs of the NAc (Dölen et al., 2013).

More recently, a set of studies by Gunaydin et al. (2014)
has begun to elucidate specific neural pathways underlying
social behavior. Social interaction in mice, but not novel
object interation, was predicted by increased activity in ven-
tral tegmental area (VTA) dopamine neurons projecting to the
NAc. Accordingly, optical activation of VTA-NAc dopamine pro-
jection neurons, enhancing phasic dopamine release within the
NAc, was demonstrated to increase social interaction behav-
ior. Interestingly, intra-NAc infusion of a dopamine D1- but
not D2-receptor antagonist was able to block the prosocial
effects of optical VTA stimulation, while optical activation of
NAc D1-MSNs was sufficient to increase social interaction.
These data provide additional evidence that social behaviors
can act as natural reward that are controlled through NAc
D1-MSNs within the direct pathway. Moreover, these studies
indicate that neural circuits implicated in mediating individ-
ual and social decision-making processes share common neural
circuits.

Finally, recent evidence reveals that accumbens MSNs are
able to bidirectional control behavioral outcomes to social stress.
Artificial activation of D1-MSNs reversed social avoidance and
anhedonia behaviors induced by chronic social defeat stress in
mice, while inhibition of these neurons increased depression-like
behaviors (Francis et al., 2014). Conversely, enhancement of NAc
D2-MSN activity induced social avoidance following subthresh-
old social defeat stress (Francis et al., 2014). These data suggest
that NAc D1- and D2-MSNs may provide efficacious targets for
the treatment of disorders associated with social avoidance and
depression.

CLINICAL IMPLICATIONS
Recent discoveries elucidating striatal pathway control of decision-
making and behavior may also help to develop our understand-
ing of the neuropathologies associated with dysfunction of the
striatum.

PARKINSON’S DISEASE
Bilateral optical excitation of striatal indirect pathway neurons
results in a Parkinsonian state, inducing increased freezing,
bradykinesia and decreased locomotor initiations (Kravitz et al.,
2010). Conversely, in a mouse model of Parkinson’s disease, stim-
ulation of direct pathway neurons rescued deficits in freezing,
bradykinesia and initiation of ambulation (Kravitz et al., 2010).
These data indicate that Parkinsonian symptoms may result from
an overactivation of the indirect pathway, highlighting the efficacy
of treatments that act to increase activity in the direct pathway and
reduce activity in the indirect pathway.
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DRUG ABUSE
Optogenetic and gene-manipulation studies demonstrate activity
within direct and indirect pathway NAc neurons to bidirection-
ally control both psychostimulant-induced locomotor sensiti-
sation and CPP, facilitating or attenuating responses, respec-
tively (Hikida et al., 2010; Lobo et al., 2010; Ferguson et al.,
2011; Chandra et al., 2013). Similarly, optical activation of NAc
D1-, but not D2-MSNs enhances morphine CPP (Koo et al.,
2014). Indeed, recent evidence reveals expression of μ-opioid
receptors within NAc D1-MSNs of the direct pathway to be
necessary to support opiate-induced CPP and locomotor sen-
sitization (Cui et al., 2014). These data are congruent with a
model of striatal functioning proposing direct pathway neu-
rons to control reinforcement learning, and indirect pathway
neurons to mediate aversive learning and punishment (Hikida
et al., 2010; Kravitz et al., 2012; Nakanishi et al., 2014). Interest-
ingly, recent evidence has revealed that increased activity in the
indirect pathway also promotes resilience to compulsive cocaine-
seeking (Bock et al., 2013). It is hypothesized that this may be
a relevant to the ability of indirect pathway NAc neurons to
reduce perseveration during reward learning (Yawata et al., 2012;
Nakanishi et al., 2014).

OBESITY
A link between compulsive eating and altered striatopalli-
dal transmission has also recently been revealed (Kenny et al.,
2013). Compulsive-like food intake in obese rats is associ-
ated with a downregulation of dopamine D2 receptors within
the striatum (Johnson and Kenny, 2010). Accordingly, viral
knockdown of striatal D2 receptors accelerated the develop-
ment of compulsive food-seeking behavior in rats (Johnson
and Kenny, 2010). While yet to be investigated, the authors
of this study hypothesize that activity within the indirect path-
way may control compulsive food-seeking in the same way
that it controls compulsive drug-seeking (Bock et al., 2013;
Kenny et al., 2013).

AUTISM SPECTRUM DISORDERS (ASDs)
Recent evidence has also indicated a link between striatal dys-
function and ASDs. Mutations of neuroligin-3, a postsynaptic
cell-adhesion molecule that’s disruption is associated with ASDs,
specifically impeded synaptic inhibition onto D1- but not D2-
MSNs within the NAc in mice (Rothwell et al., 2014). The resulting
disinhibition of NAc D1-MSNs was associated with enhanced
acquisition repetitive motor behaviors, typical of ASDs, pre-
dicted to be resultant of facilitated signaling through the direct
pathway.

SCHIZOPHRENIA
It is still unclear how activity within output pathway neurons
may contribute to other disorders associated with dysfunction
of the striatum, including schizophrenia. However, evidence that
two different transgenic mice lines demonstrating schizophrenia-
like behavioral abnormalities show increased expression levels of
D2-receptor RNA and protein within the striatum, suggests that
altered activity in the indirect pathway may contribute to the eti-
ology of schizophrenia (Jaaro-Peled et al., 2013; Niwa et al., 2013).

CONCLUSION AND FUTURE DIRECTIONS
With recent advances in technologies allowing the specific
investigation of striatal cell-types and output pathways, the role
of the striatum in controlling economical decision-making has
become increasingly clearer. Specifically, the majority of evi-
dence indicates that the direct and indirect striatal pathways
act in an opposing manner to control behavior (Lobo and
Nestler, 2011; Nakanishi et al., 2014). In general, activation
of D1-MSNs within the direct pathway promote actions that
result rewarding outcomes, while activity within the indirect
pathway is necessary to avoid punishment, as well as inhibit
learnt behaviors, thus allowing behavioral flexibility (Hikida
et al., 2010; Kravitz et al., 2012; Yawata et al., 2012). This has
been hypothesized to be facilitated by dopamine induced mod-
ifications in the influence of limbic inputs into D1-MSNs and
cortical inputs onto D2-MSNs, produced by the presentation or
omission of rewarding and aversive stimuli (Grace et al., 2007;
Nakanishi et al., 2014).

There is now a compelling body of evidence indicating that a
decrease in dopamine D2 receptors within the striatum is associ-
ated with compulsive behaviors, likely through a loss of inhibitory
control (Johnson and Kenny, 2010; Bock et al., 2013). Given the
hypothesized role of cortical projections onto striatal D2-MSNs
in controlling the ability to flexibly switch between behaviors, it
could be predicted that optical activation cortical neurons may be
effective in the treatment of maladaptive compulsive behaviors.
Indeed, this may be especially true of D2-MSNs within the DLS,
an area implicated in habit formation (Yin et al., 2004; Seger and
Spiering, 2011).

Finally, it is important to note that the vast majority striatal
manipulations described within this review involve the activa-
tion or inhibition of large populations of MSNs, however, NAc
MSNs encoding separate action representations are thought to
be contained within discrete ensembles of as little as 2% of total
NAc MSNs (Nicola et al., 2004; Mattson et al., 2008). Future
research should seek to further investigate the cellular make-up
of these ensembles and elucidate how specific patterns and tim-
ing of D1- and D2-MSN activation may act to control economical
decision-making.
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