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Rasch’s unidimensional models for measurement show how to connect object measures
(e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading
items), and observational outcomes (e.g., counts correct on reading instruments).
Substantive theory shows what interventions or manipulations to the measurement
mechanism can be traded off against a change to the object measure to hold the
observed outcome constant. A Rasch model integrated with a substantive theory
dictates the form and substance of permissible interventions. Rasch analysis, absent
construct theory and an associated specification equation, is a black box in which
understanding may be more illusory than not. Finally, the quantitative hypothesis can be
tested by comparing theory-based trade-off relations with observed trade-off relations.
Only quantitative variables (as measured) support such trade-offs. Note that to test the
quantitative hypothesis requires more than manipulation of the algebraic equivalencies
in the Rasch model or descriptively fitting data to the model. A causal Rasch model
involves experimental intervention/manipulation on either reader ability or text complexity
or a conjoint intervention on both simultaneously to yield a successful prediction of
the resultant observed outcome (count correct). We conjecture that when this type of
manipulation is introduced for individual reader text encounters and model predictions are
consistent with observations, the quantitative hypothesis is sustained.
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The thermometer, as it is at present construed, cannot be applied
to point out the exact proportion of heat . . .. It is indeed generally
thought that equal divisions of its scale represent equal tensions of
caloric; but this opinion is not founded on any well decided fact.

Joseph-Louis Gay-Lussac (1802)

Thirty years ago, three of the authors of this article introduced the
concept of the specification equation as a new model for measure-
ment validity studies in the human and social sciences (Stenner
and Smith, 1982; Stenner et al., 1983; Stone and Wright, 1983).
The primary characteristic setting the concept of the specification
equation apart from other approaches to psychological and social
measurement is its decidedly mechanismic (causal) approach. In
the years that have passed, the causal notions associated with
the specification equations have been variously endorsed (Hobart
et al., 2007) and ignored (Messick, 1989).

Perhaps the causal perspective on measurement would not
be deserving of an update were it not for the theoretical fruit-
fulness and widespread adoption of the Lexile Framework for
Reading. In this paper, the ideas presented in the initial papers
are situated in the contemporary psychometric context and some
recent advances are outlined. The framework for measurement
in the human and social sciences set out here adopts from
17th- and 18th-century physical science measurement a focus
on experimental manipulations of three variable systems (such

as F = MA). We conjecture that in three-variable systems of
this kind, demonstrating that all three variables are quantitative
requires manipulations of one variable to result in predictable
changes to a second variable when the third is held constant.
When this manipulation works up and down the scale no mat-
ter which variable is held constant, then all three variables are
quantitative.

For instance, given that a change in mass can be offset by a
change in acceleration such that force is left unchanged, and this
trade-off operates the same way at every point along the mass
scale and along the acceleration scale, then mass, acceleration, and
force are quantitative attributes. In what follows, we make some
strong claims regarding the possibility that human and social sci-
ence measurement might find foundations in causal relationships
akin to those obtained in the physical sciences. Measurement is
conceived in this context as a three-variable equation involving
an attribute measure, a measurement mechanism and a mea-
surement outcome (often a count). The primary conjecture is
that a prescribed change in a mechanism (such as text com-
plexity) is offset by a change in an attribute measure (such as
reading ability) to hold a measurement outcome (percent correct)
constant. Our unproven conjecture is that, when this trade-off
functions precisely the same way up and down the scale, then
the three variables are quantitative (equal interval) variables.
We follow Pearl (2000, p. 158) in taking “the stand that the
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value of structural equations lies not in summarizing distribution
functions but in encoding causal information for predicting the
effects of policies.”

In other words, our purpose is to elaborate the intuition that
if like differences in differences have the same predictive out-
comes wherever along the scale the differences are experimentally
induced, then the attributes are quantitative. A 100 L difference
between text complexity and reader ability has the same implica-
tion for predicted success rates on reading items wherever along
the scale the 100 L difference is experimentally induced. If the
predicted success rates are observed, then 100 L means the same
thing up and down the scale in the substantive terms of real texts
encountered by real readers. Is not this capacity to infer the repeti-
tion of a qualitatively meaningful constant amount precisely what
we mean by “equal interval”?

QUANTITY vs. HETEROGENEOUS ORDERS
Michell (1997, 2000, 2007) effectively made the case for what
measurement is and in his earlier writings, exhorted psychol-
ogists to adopt this “standard model” in their practice. Over
time, this eminently sensible call morphed into a diagnosis of
so-called pathological behavior on the part of the field of psychol-
ogy and its high priests and priestesses, called psychometricians.
Most recently, some researchers have asserted that no psycho-
logical attributes have been shown to be quantitative and have
offered the explanation that none will be because these attributes
are actually heterogeneous orders:

Scientists who care more about appearing to be quantitative and
the advantages that might accrue from that appearance, than they
do about investigating fundamental scientific issues, put expedi-
ence before the truth. In this, they do not conform to the values
of science and elevate non-scientific interests over those values,
thereby threatening to bring science as a whole into disrepute. If
the attributes that psychometricians aspire to measure are hetero-
geneous orders then psychometrics, as it exists at present, is fatally
flawed and destined to join astrology, alchemy and phrenology in
the dustbin of science. (Michell, 2012, 16)

Throughout this paper, we draw analogies to human tem-
perature measurement via the NexTemp thermometer1 and to

1“The NexTemp thermometer is a thin, flexible, paddle-shaped plastic strip
containing multiple cavities. In the Fahrenheit version, the 45 cavities are
arranged in a double matrix at the functioning end of the unit. The columns
are spaced 0.2◦F intervals covering the range of 96.0◦F to 104.8◦F. . .. Each
cavity contains a chemical composition comprised of three cholesteric liquid
crystal compounds and a varying concentration of a soluble additive. These
chemical compositions have discrete and repeatable change-of-state tempera-
tures consistent with an empirically established formula to produce a series
of change-of-state temperatures consistent with the indicated temperature
points on the device. The chemicals are fully encapsulated by a clear poly-
meric film, which allows observation of the physical change but prevents any
user contact with the chemicals. When the thermometer is placed in an envi-
ronment within its measure range, such as 98.6◦F (37.0◦C), the chemicals in
all of the cavities up to and including 98.6◦F (37.0◦C) change from a liquid
crystal to an isotropic clear liquid state. This change of state is accompanied
by an optical change that is easily viewed by a user. The green component
of white light is reflected from the liquid crystal state but is transmitted
through the isotropic liquid state and absorbed by the black background. As

English reading ability measurement2 via the EdSphere™ tech-
nology (Hanlon et al., 2012). Both measurement systems share
a basic three-part structure in common with many other mea-
surement technologies (Hebra, 2010): (1) An observational
outcome, often a count (number of NexTemp cavities chang-
ing from green to black reflecting temperature change or
count of correct responses to EdSphere™ four-choice embed-
ded cloze items reflecting change in reading ability), (2) a
causal mechanism that transmits variation in the intended
attribute (temperature or reading ability) to the observed out-
come, and (3) an attribute measure denominated in some
unit (such as degrees Celsius or Lexiles). As Michell (2012)
correctly observed, “Only quantitative attributes can be mea-
sured because only they possess the necessary kind of homo-
geneity” (7). The crucial question is: How does one test for
the necessary homogeneity that distinguishes quantity from
mere order?

The history of science reveals a developmental course traveled
by every attribute that figures in advanced scientific discourse.
For some of these attributes, the full course took centuries and
for others many decades, but in no case was an attribute born
quantitative. Most quantities that are now recognized began as
qualitative distinctions (hot, cold, or good reader, poor reader),
were later understood to be ordinal and grew to adulthood as
a quantity that admits of homogeneous differences. Historical
and philosophical treatments that ignore this developmental
pathway and the struggles along the way, whether purposeful
or not, only confuse (Chang, 2004; Sherry, 2011). In ancient
times, only extensive attributes (time, volume, weight, etc.)
were considered measurable. Attributes such as temperature,
density, and electromagnetism were in their infancy and were
specifically not thought to be measurable (Heilbron, 1993; Roche,
1998).

It took hundreds of years of science and a solution to the par-
ticularly knotty problem of forsaking human sense impression as

a result, those cavities containing compositions with threshold temperatures
up to and including 98.6◦F (37.0◦C) appear black, whereas those with tran-
sition temperatures of 98.6◦F (37.0◦C) and higher continue to appear green”
(Medical Indicators, 2006, pp. 1–2). Thus, the observed outcome is a count
of cavities turned black. The measurement mechanism is an encased chemical
compound that includes a varying soluble agent that changes optical prop-
erties according to changes in temperature. Amount of soluble agent can be
traded off for change in human temperature to hold number of black cavities
constant.
2The Edsphere™ technology for measuring English language reading ability
employs computer generated, four-option, multiple choice cloze items built
on the fly for any prose text. Counts correct on these items are converted into
Lexile measures via an applicable Rasch model. Individual cloze items are one
off and disposable; an item is used only once. The cloze and foil selection
protocol ensures that the correct answer (cloze) and incorrect answers (foils)
match the vocabulary demands of the target text. The Lexile text complexity
measure and the expected spread of the cloze items are given by a proprietary
text theory and associated equations. Thus, the observed outcome is a count
of correct answers. The measurement mechanism is a text with a specified
Lexile text complexity and an item generation protocol consistent with that
text complexity measure. The text complexity measure can be traded off for
a change in reading ability to hold constant the number of items answered
correctly.
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the final arbiter of disputes concerning quantitative attributes.
In the case of temperature, degrees were obviously not homo-
geneous because one more had such ridiculously discontinuous
consequences (e.g., a nominal one-degree change makes water
freeze or boil). The lesson here is that perceived qualitative
distinctions are a poor guide as to whether an attribute is quanti-
tative as measured. Magnitudes of the same quantitative attribute
appear to differ in dozens of ways. In the infancy and adoles-
cence of many attributes that today are considered quantitative,
quantitative homogeneity was impure. Quantitative measurement
has been a hard-fought and dearly won battle; it has never been
and never will be a given or something to be decided solely by
speculation about perceived qualitative distinctions and hetero-
geneous orders. The historical record includes many attributes
thought at one time to indicate mere order and later rendered as
quantities and is void of confirmed quantitative attributes that are
later found to be merely ordinal. This does not mean that every
ordered attribute will, given time, be rendered quantitative, but
science has taught us to leave the door ajar because, over and
over, science has found ways to render some of today’s orders as
tomorrow’s quantities.

Yet another argument is due to Sherry (2011): if treating an
attribute such as text complexity or reading ability as quantita-
tive allows one to employ mathematical models to bring order to
the data, “then a plausible explanation for this success is that the
attribute is approximately quantitative” (523).

So, if speculation about a hierarchy of states, stages, dis-
continuities, heterogeneous orders, and conceptual inclusions
are unworthy guides to whether or not an attribute is quan-
titative, how does one proceed? As we will show, there is a
simple, powerful test for essential homogeneity: the trade-off
property. In many three-variable systems, such as, for example,
a causal Rasch model that relates observed outcome (dependent
variable) to a difference (or product) between the measure-
ment mechanism (e.g., item difficulties) and the measurement
attribute (e.g., reading ability), the trade-off property asserts that
a manipulation on the measurement mechanism (e.g., increas-
ing text complexity by 100 L) can be traded off for an off-
setting manipulation on the measurement attribute (increasing
reader ability by 100 L) to hold constant the observed outcome
(percent correct).

We conjecture that when this trade-off property can be experi-
mentally verified up and down the scale, all variables in the system
are quantitative and differences (units) are monotonic, invari-
ant, and homogeneous. As suggested by Trendler (pers. commun.,
2011), and expanding on Burdick et al. (2006), the capacity to
successfully predict differences from differences up and down a
scale are an acid test for quantity. This trade-off property (in
the service of successful substantive theory) is all that matters
in demonstrating causality, deep understanding of the construct,
and predictive control over interventions. There will always be
extraneous qualities that can be identified in rhetorical arguments
against a quantitative claim. Endless speculations can be made
about why this or that feature of an attribute is a qualitative dis-
tinction worthy of notice (such as variation in the freezing point
of water, relative to temperature), thus, appearing to render the
unit non-homogeneous.

But such speculations are unable to offer distinctions that
make a difference when evidence supports the trade-off property.
This does not, however, mean that data fit to a descriptive (not
explicitly causal) Rasch model implies that all three variables in
the system are quantitative. Such fit may be suggestive in the same
way that highly correlated data are a good place to look for causal
relationships, but it is inconclusive as to the quantitative claim
until experimental manipulation sustains the trade-off relation.

Perhaps an intuitively accessible illustration of the power of
the trade-off relation would be helpful. Suppose Lexile reader
measures and Lexile text complexity measures were replaced
with randomly spaced numbers that preserve mere order. In this
case, a text complexity difference between two articles might be
increased from +10 L to 150 L and the adjacent 10 L article dif-
ference might be increased to 160 L. Thus, order is preserved but
essential homogeneity is destroyed. Clearly, the trade-off relation
would be violated even though strict order was maintained. Each
trade off would produce wildly varying predicted observed out-
comes, not the constant observed outcome asserted under the
trade-off property. Order is not sufficient; differences must be
preserved and retained as invariant ranges up and down the scale.

Note that there is a crucial difference between the trade-off
property and order-restricted inference tests such as double and
triple cancelation (Michell, 1997; Kyngdon, 2008). The trade-off
relation is a claim about what will happen in the individual case or
a token test of a causal model. Most tests of double and triple (and
so on) cancelation with which we are familiar test between-person
orders, not within-person (intra-individual) differences (but see
von Winterfeldt et al., 1997; Luce, 1998). The trade-off property
can and should be tested within persons over time. We further
develop this idea later in the paper.

Process talk localizes the active features of a measurement pro-
cess within the person or object of measurement. Mechanism
talk conceptualizes the active ingredients as a tunable mechanism
within the instrument. In temperature measurement, it seems
awkward to talk about a response process that functions within
the person and that interacts with the instrument to produce the
cavity count on a NexTemp thermometer1. It is often more use-
ful to reflect on the instrument features (tunable mechanisms)
that transmit variation in the attribute to the cavity count. When
the attribute reader ability is measured with a machine-generated,
multiple choice, cloze test, the tunable mechanism involves the
text complexity of the passage and the decision as to which words
are “clozed” and how the foils are chosen. A causal Rasch model
may be seen as formalizing how a measurement mechanism and
an attribute measure cooperate to produce (cause) the observed
outcome. The difference between calibrated mechanism and mea-
sured attribute causes the observed outcome. When viewed this
way, it is clear that manipulations of the mechanism (e.g., added
text complexity) can be offset (traded off) by a manipulation of
the attribute (more practice reading) to hold the observed out-
come (success rate or comprehension) and the measure based on
it constant.

In this formulation of the measurement process, we require
that the way the mechanism works and the way it trades off
against the attribute measure to cause changes in the observed
outcome must be invariant both within and between objects of
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measurement (e.g., persons). Note that if the mechanism is well
explicated and functions invariantly across objects of measure-
ment, it does not matter how the object arrived at its position
on the attribute scale. Process talk can confuse on this point and
may cause worry about the how. For example, two persons, Jane
and Dave, may both have a fever of 104◦F. For purposes of human
temperature measurement (as opposed to, say, treatment regime),
it is not relevant that Jane has a bacterial infection and Dave a
viral infection. What is relevant is that temperature and the mea-
surement mechanism cooperate in the same way for Jane and
Dave, and for every other person, independent of what might have
caused a deviation from normal human temperature. Similarly,
two fourth-grade readers may both read at 800 L, but one got
there with a particularly fortuitous genetic makeup (Castles et al.,
1999) and the other because of 1 h of daily practice for 5 years. It
is clarifying to maintain focus on exposing and explicating the
measurement mechanism and not on distractions such as the
myriad causes responsible for any specific attribute measure, be
it temperature or reading ability.

In what we have termed theory-referenced measurement,
instrument calibrations are provided by a construct theory and
specifically not by data. For example, NexTemp thermometers
and EdSphere™ reading tests2 are calibrated via theory. Person-
fit statistics become not just checks on how similar a person’s
response data are to the reference group’s data but on how
well each person conforms to theoretical expectations. What is
intended to be measured (e.g., temperature or reading ability)
is made explicit with the theory-based instrument calibrations,
and the fit statistics confirm or disconfirm whether the respective
observed outcomes and their associated measures are consistent
with theoretical expectations in the individual case (Smith, 2000).

One way in which causal Rasch models differ from descriptive
Rasch models is in the pattern of counterfactual dependencies
inherent in the former. Woodward (2003) referred to these
dependencies as “w questions” (11): What if things had been dif-
ferent with either the attribute or the measurement mechanism?
What value would the observed outcome take? We document
these counterfactual dependencies by manipulating the attribute
or the measurement mechanism or conjointly manipulating
them both and seeing whether the expected score outcome is in
fact observed. The trade-off property is a special kind of counter-
factual dependence that can be used to test the quantitative status
of constructs, as shown below.

THE MEASUREMENT MECHANISM
Equation (2) is the familiar Rasch model for dichotomous data,
which sets an observed outcome (raw score) equal to a sum
of modeled probabilities. The observed outcome is the depen-
dent variable and the measure (e.g., person parameter b) and
instrument (e.g., item parameters di) are independent variables.
The concrete outcome (e.g., count correct on a reading test)
is observed, whereas the measures and instrument parameters
are not observed but can be estimated from the response data.
In Equation (3), a mechanismic interpretation is imposed on
the equation, the right-hand side (r.h.s.) variables are presumed
to characterize the process that generates the observed out-
come on the left-hand side (l.h.s.). An illustration of how such
a mechanism can be exploited is given in Stone (2002). The

item map for the Knox cube test (a test of short-term memory)
revealed a 1 logit gap with no items. The specification equa-
tion was used to build an item that theory asserted would fill
in the gap. Subsequent data analysis confirmed the theoretical
prediction of the items scale location:

Comprehension = Reading Ability − Text Complexity (1)

Conceptual Rasch Model

Raw Score =
∑

i

e(b− di)

1 + e(b− di)
(2)

Descriptive Rasch Model

Raw Score =:
∑

i

e(b− di)

1 + e(b− di)
(3)

Causal Rasch Model

where raw score is the observed outcome, b is the attribute mea-
sure, and di’s are mechanism calibrations. The observed outcome
is thus, modeled as a sum of success probabilities. Typically, the
item calibrations (di’s) are assumed to be known and the measure
parameter is iterated until the equality is realized (i.e., the sum
of the modeled probabilities equals the observed outcome). How
is this equality to be interpreted? Is something more happening
than simply the algebra?

In an effort intended to clarify the practical value of the
algebra, Freedman (1997) proposed three uses for regression
equations like those above:

(1) To describe or summarize a body of data,
(2) To predict the l.h.s. from the r.h.s, and
(3) To predict the l.h.s. after manipulation or intervention on one

or more r.h.s. variables (measure parameter and/or mecha-
nism parameters).

Description and summarization possess a reducing property in
that they abstract away incidentals to focus on what matters in
a given context. In a rectangular persons-by-items data matrix
(with no missing data), there are Np × Ni observations. Equations
like those above summarize the data using only Np + Ni − 1 inde-
pendent parameters. Description and summarization are local
in focus. The relevant concept is the extant data matrix with
no attempt to answer questions that might arise in the appli-
cation realm about “what if things were different.” Note that if
interest centers only on the description and summarization of a
specific data set, additional parameters can be added, as neces-
sary, to account for or better describe the data (e.g., as in fitting a
polynomial equation).

Prediction typically implies the use of the extant data to project
into an as yet unobserved context/future in the application realm.
For example, item calibrations from the extant data are used to
compute a measure for a new person, or person parameters are
used to predict how these persons will perform on a new set of
items. Predictions like these rest on a set of invariance claims.
New items and new persons are assumed to behave as persons
and items behaved in the extant data set (Andrich, 1989). Rasch
fit statistics (for persons and items) are available to test for certain
violations of these assumptions of invariance (Smith, 2000).

Frontiers in Psychology | Quantitative Psychology and Measurement August 2013 | Volume 4 | Article 536 | 4

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Stenner et al. Causal Rasch models

To explain how an instrument works is to detail how it gen-
erates the count it produces (the observed outcome) and what
characteristics of the measurement procedure affect that count.
This kind of explanation is neither just statistical nor synony-
mous with prediction. Instead, the explanation entails prediction
under intervention: If one wiggles this part of the mechanism,
the observed outcome will imply a measure different by this
amount. As noted by Hedström (2005), “Theories based on ficti-
tious assumptions, even if they predict well, give incorrect answers
to the question of why we observe what we observe” (108). Rasch
models, absent a substantive theory capable of producing theory-
based instrument calibrations, may predict how an instrument
will perform with another subject sample (invariance) but can
offer only speculation in answer to the question, “How does
this instrument work?” Rasch models without theory are not
predictive under intervention and thus, are not causal models.

In 1557, the Welshman Robert Recorde remarked that no two
things could be more alike (i.e., more equivalent) than parallel
lines, and thus, was born the equal sign, as in 3 + 4 = 7. We pro-
pose that the distinction between descriptive Rasch models and
causal Rasch models should be signaled by the use of a 250-year-
old symbol (=:) attributable to Euler (circa 1730) and exhumed
by Pearl (1999), which denotes that interventions/manipulations
on the r.h.s. of the equation causes a change to the l.h.s. of the
equation (Pearl, 1999; Stenner et al., 2009). Allowable manipula-
tions include changes to just reading ability, just text complex-
ity, or conjointly to both. These equations purport to predict
what will happen in the individual case (token causation) to
the observed outcome (raw score, count correct, or percent cor-
rect) if allowable manipulations are made. Manipulations of
reader ability and/or text complexity presume that these two
variables (attributes of persons and text respectively), are well
enough understood that manipulation is possible. Our recom-
mended symbol also suggests that we adopt the more precise and
explicit definition, as indicated above, to avoid the metaphysi-
cal implications of using causation in any narrative without an
explicit understanding of what is implied. The symbol and def-
inition reins in speculation surrounding the so-called swamp of
language.

Cook and Campbell (1979) observed, “The paradigmatic
assertion in causal relationships is that manipulation of a cause
will result in the manipulation of an effect.... Causation implies
that by varying one factor [variable] I can make another vary”
(p. 36). Holland (1986) reduced this to an aphorism: “No causa-
tion without manipulation” and Freedman (1997) distinguished
the merely descriptive from the causal:

Causal inference is different, because a change in the system is con-
templated: for example, there will be an intervention. Descriptive
statistics tell you about correlations that happen to hold in the
data: causal models claim to tell you what will happen to Y if you
change X. (116)

The descriptive Rasch model above, which employs a simple
equality relating raw score to an exponentiated difference between
ability (b) and item difficulty (di), is a descriptive model (equa-
tion 2). Algebraic manipulation of the ability parameter or item

difficulty parameter can be evaluated for consequences to the raw
score, but this says nothing about what would result following an
experimental manipulation of b or d or a conjoint intervention
on both simultaneously. Following Woodward (2003), we require
causal Rasch models to be modular in the sense that it is pos-
sible to intervene on (manipulate) one variable in the equation
on the right side without affecting another right-hand variable.
Specifically, a manipulation of text complexity (e.g., choosing a
more difficult text) should not alter reader ability and vice versa. A
causal Rasch model should expose the mechanism that transmits
variation in the attribute to the observed outcome: “One would
also like to have more detailed information about just which inter-
ventions on X [r.h.s. of the equation] will change Y [the score or
comprehension rate] and in what circumstances and exactly how
they will change Y” (Woodward, 2003, p. 66). Reflecting on the
distinction between a descriptive use and a causal use of a Rasch
equation, asymmetry is apparent. A causal model can always be
used for merely descriptive purposes even though it can do more,
whereas a descriptive (e.g., correlational) model can offer no pre-
dictions about what would happen if right-side variables were
manipulated as in equation (3).

It is often argued in garden-variety Rasch applications that
the best evidence that an instrument is doing what it is sup-
posed to do is data fit to the Rasch model, which implies that
the observed outcome (e.g., count correct on a reading test) is
a sufficient statistic for the attribute measure and so exhausts the
information in the data about the attribute measure. Conditional
on the difference between attribute measure (e.g., temperature)
and measurement mechanism (amount of additive in a NexTemp
cavity) the residuals taken over persons and taken within per-
son over time are uncorrelated. Unfortunately, nothing in the fact
that data fit the model licenses the conclusion that what is being
measured is “temperature” or “reading ability” (Maraun, 1998).
Typical so-called science tests are often poorly disguised read-
ing tests. More than good fit of data to the model are needed
to decide among competing claims regarding what attribute an
instrument measures. We speculate that this fact is poorly under-
stood because it is believed that conditioning on a variable is the
same thing as intervening to fix the value of that variable. The
former is a statistical manipulation and the latter is an experi-
mental manipulation: “When one conditions, one takes as given
the probability distribution. When one intervenes, one changes
the probability distribution” (Hausman, 1998, p. 233). This is
an important difference between descriptive Rasch models and
causal Rasch models.

Measurement mechanism is the name given to just those
manipulable features of the instrument that cause invariant
observed outcomes for objects of measurement that possess iden-
tical measures. A measurement mechanism explains by opening
the black box and showing the cogs and wheels of the instru-
ment’s internal machinery. A measurement mechanism provides
a continuous and contiguous chain of causal links between the
encounter of the object of measurement and instrument and
the resulting observed outcome (Elster, 1989). We say that the
observed outcome (e.g., raw score) is explained by explicating the
mechanism by which those outcomes are obtained. In this view,
to respond with a recitation of the Rasch equation for converting
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counts into measures, to reference a person by item map, to
describe the directions given to the test-taker, to describe an item-
writing protocol, or simply to repeat the construct label more
slowly and loudly (e.g., extroversion), provide non-answers to the
question, “How does this instrument work?”

Measurement mechanisms as theoretical claims, made explicit
as specification equations, make point predictions under inter-
vention: When one changes (via manipulation or intervention)
either the object measure (e.g., reader experiences growth over a
year) or measurement mechanism (e.g., increase text complexity
measure by 200 L), the result will be a predictable change in the
observed outcome. Notice how this process is crucially different
from the prediction of the change in the observed outcome based
on the selection of another, previously calibrated instrument with
known instrument calibrations. Selection is not intervention in
the sense used here. Sampling from banks of previously calibrated
items is likely to be completely atheoretical, relying, as it does, on
empirically calibrated items/instruments. In contrast, to modify
the measurement mechanism requires intimate knowledge of how
the instrument works. A theoretical psychometrics is character-
ized by the aphorism “test the predictions, never the postulates”
(Jasso, 1988, p. 4), whereas theory-referenced measurement, with
its emphasis on measurement mechanisms, says test the postu-
lates, never the predictions. Those who fail to appreciate this
distinction will confuse invariant predictors with genuine causes
of observed outcomes.

We assert that a Rasch model combined with a substantive the-
ory embodied in a specification equation provides a more or less
complete explanation of how a measurement instrument works
(Stenner et al., 1983). A Rasch model in the absence of a spec-
ified measurement mechanism is merely a probability model; a
probability model absent a theory may be useful for Freedman’s
(1) and (2), whereas a Rasch model in which instrument cali-
brations come from a substantive theory that specifies how the
instrument works is a causal model; that is, it enables prediction
after intervention [i.e., Freedman’s (3)].

DISTINGUISHING FEATURES OF CAUSAL RASCH MODELS
Admittedly, the measurement model we have proposed for the
human sciences mimics key features of physical science mea-
surement theory and practice (Bond and Fox, 2007). Below we
highlight several such features.

First, the model is individual-centered. The focus is on
explaining variation within person over time. Much has been
written about the disadvantages of studying between-person vari-
ation with the intent to understand within-person causal mech-
anisms (Molenaar, 2004; Molenaar and Newell, 2010). Molenaar
proved that only under severely restrictive and generally unten-
able conditions can such cross-level inferences be sustained. In
general, in the human sciences, it is necessary to build and
test individual-centered models and not rely on variable- or
group-centered models (with attendant focus on between person
variation) to inform one’s understanding of causal mechanisms.
Causal Rasch models are individually centered measurement
models. The measurement mechanism that transmits variation in
the attribute (within-person over time) to the observed outcome
(count correct on a reading test) is hypothesized to function the

same way for every person (the second ergodicity condition of
homogeneity; Molenaar and Newell, 2010).

Second, in this framework, the measurement mechanism is
well specified and can be manipulated to produce predictable
changes in observed outcomes (e.g., percentage correct). For
purposes of measurement theory, a sophisticated philosophy of
causal inference is not necessary. For example, questions about
the role of human agency in the intervention- and manipulation-
based accounts of causal inference are not troublesome here. All
that is meant by the claim that the r.h.s. of equation (3) causes
the l.h.s. is that experimental manipulation of each r.h.s. variable
will have a predictable consequence for the observed outcome
(expected raw score). Stated more generally, what is meant by x
causes y is that an intervention on x yields a predictable change in
y. The specification equation used to calibrate instruments/items
is a recipe for altering just those features of the instrument/items
that are causally implicated in the observed outcome. As noted,
we term this collection of causally relevant instrument features
the measurement mechanism, which transmits variation in the
attribute (e.g., temperature, reading ability) to the observed out-
come (number of cavities that turn black or number of reading
items answered correctly). Two additional applications of the
specification equation are: (a) the maintenance of the unit of
measurement independent of any particular instrument or collec-
tion of instruments, and (b) bringing non-test behaviors (reading
a Harry Potter novel, 980 L) into the measurement frame of
reference (Stenner and Burdick, 2011).

Third, item parameters are supplied by substantive theory and
thus, person-parameter estimates are generated without reference
to or use of any data on other persons or populations. When
data fit a Rasch model, a consequence is that item parameters are
estimated independent of person parameters and person param-
eters are estimated independent of item parameters (Rasch, 1960;
Andrich, 1989, 2002). In a causal Rasch model, item/instrument
calibrations are supplied by a substantive theory and associated
specification equation. In the former, the separation is statistical;
in the latter it is experimental. Karabatsos (2001) commented on
the impossibility of complete separation when the same response
data are used to estimate both person measures and item cal-
ibrations. Effects of the examinee population are completely
eliminated from consideration in the estimation of an individual’s
person parameter and, thus, no information on other persons
is needed because the item/instrument calibrations come from
theory.

Fourth, the quantitative hypothesis (Michell, 1999) can be
experimentally tested by evaluating the trade-off property for the
individual case. A change in the reader parameter can be off-
set or traded off for a compensating change in text complexity
to hold comprehension constant. The trade off is not just about
the algebra in equations (1–3). It is about the consequences of
simultaneous intervention on the attribute (reader ability) and
measurement mechanism (text complexity).

Finally, we conjecture that successful point predictions under
intervention necessitate quantitative predictors and outcomes.
Concretely, if an intervention on the measurement mechanism
(e.g., increase the text complexity of a reading passage by 250 L)
results in an accurate prediction of the observed outcome (e.g.,
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how many reading items the reader will answer correctly), and if
this process of offsets can be successfully repeated up and down
the scale, then text complexity, reader ability, and comprehen-
sion (success rate) are quantitative attributes of the text, person,
and reader/text encounter, respectively. When text complexity is
measured on an ordinal scale, successful point predictions about
counts correct based on a reader/text difference are impossible to
make. Specifically, successful prediction from differences requires
that what is being differenced has the same meaning up and down
the respective scales. Differences on an ordinal scale are not mean-
ingful (will lead to inconsistent predictions) precisely because one
more means something different depending on the location of the
text or reader on the scale.

The algebra in equation (2) dictates that a change in reader
ability can be traded off for an equal change in text complexity
to hold comprehension constant. However, to test the quantita-
tive hypothesis requires more than the algebraic equivalence in a
Rasch model. Rather, what is required is an experimental inter-
vention/manipulation on either reader ability or text complexity
or a conjoint intervention on both simultaneously that yields a
successful prediction on the resultant observed outcome (count
correct). We maintain that when manipulations of the type just
described are introduced for individual reader/text encounters
and model predictions are consistent with what is observed, the
quantitative hypothesis is sustained.

We emphasize that the above account is individual-centered as
opposed to group-centered. The Lexile Framework for Reading
purports to provide a causal model for one aspect of what tran-
spires when a reader reads a text. Nothing in the model precludes
averaging over readers and texts to summarize evidence for the
quantitative hypothesis, but the model can be tested at the indi-
vidual level. These individual-level tests follow through from
Rasch’s (1960, pp. 110–115) care in structuring his models in
the same mathematical form as Maxwell’s analysis of force, mass,
and acceleration. By deliberately requiring models of this form,
Rasch employs Maxwell’s own method of analogy (Turner, 1955;
Nersessian, 2002) and enables us to apply it, as Maxwell did,
in setting up individual-level tests of hypotheses about potential
causal relations among the model parameters (Fisher, 2010).

Maxwell’s use of the method of analogy in developing electro-
magnetic theory has been shown to extend and focus everyday
thinking processes into generic scientific model-based reasoning
processes (Nersessian, 2006, 2008). In these reasoning processes,
formal and structural analogies do not in any way imply content-
based analogies. Thus, Rasch’s analogy from masses and forces
to persons and test items has no psychophysical connotations
implying a role for mass and force in the way people respond
to assessment questions. The point here extends beyond the
present concerns to concept formation in science generally: nei-
ther Rasch’s models nor Newton’s laws are conclusions drawn
from observations, being based as they are in reasoning from
geometry, other equations, and information (see Crease, 2004a,b
for lists of similar mathematical laws).

The analogy is purely formal, and could involve any num-
ber of similarly structured relations from a wide variety of other
domains in which lawful causal patterns are found, such as chem-
istry or genetics. No special value beyond their familiarity is to be

inferred from the choice of physical constructs in the analogies
made. That said, just as pressure and volume can be traded off to
hold temperature constant or mass and volume can be traded off
to hold density constant, so can reader ability and text complex-
ity be traded off to hold comprehension constant. Michell (1999)
made the following remarks on this point: “Identifying ratios
directly via trade-offs results in the identification of multiplicative
laws between quantitative attributes. This fact connects the the-
ory of conjoint measurement with what Campbell called derived
measurement” (204). See Kyngdon (2008) for a particularly clear
discussion of this connection.

Garden-variety Rasch models and IRT models are in their
application purely descriptive. They become causal and law-
like when manipulations of the putative quantitative attributes
produce changes (or not) in the observed outcomes that are con-
sistent with model predictions. If a fourth-grade reader grows
100 L in reading ability in 1 year and the text complexity of the
student’s fifth-grade science textbook also increases by 100 L over
the fourth-grade textbook, then the forecasted comprehension
rate (whether 60, 70, or 90%) that the reader will enjoy in fifth
grade science remains unchanged from that experienced in fourth
grade. We offer without proof that only if reader ability and text
complexity are quantitative attributes will experimental findings
coincide with model predictions such as these. We have tested
several thousand students’ comprehension of 719 articles that
averaged 1150 words in length. Total reading time was 9794 h and
the total number of unique machine-generated comprehension
items was 1,349,608. The theory-based expectation was 74.53%
correct and the observed was 74.27% correct.

A measurement instrument comprises two kinds of features:
radicals and incidentals (Irvine and Kyllonen, 2002). The radi-
cals are those features that transmit variation in the attribute to
the observed outcome. Radicals are tunable and when intervened
upon, will change what is observed (count correct or number
of cavities turning black). Incidentals include all features of the
measurement instrument that if manipulated will not change the
observed outcome. To change sentence length and vocabulary
level will alter a text’s complexity and will change count correct
on an embedded reading test (observed outcome), whereas to
change the font style will not. Stenner et al. (1983) and Stone and
Wright (1983) proposed that radicals could be organized into a
specification equation and could be used to provide theory-based
calibrations for items, instruments, and ensembles. A powerful
demonstration that a measurement process is under control is
provided by a tradeoff between an intervention on the attribute
measure (e.g., reading ability) for an intervention on the measure-
ment mechanism/specification equation (e.g., text complexity)
to hold the observed outcome (relative raw score, percentage
correct) constant. Only when an instrument can be tuned to pro-
duce a desired change in the observed outcome when holding
the attribute measure constant is the measurement mechanism
well understood. This is, of course, the feature that enables the
manufacture of large numbers of instruments that share the
same correspondence table linking observed outcome to attribute
measure. We call such instruments strictly parallel.

We maintain that when data fit a descriptive Rasch model,
there is an important sense in which we remain dissatisfied. The
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source of this dissatisfaction resides in the fact that scientists
eschew theories and models that contain many “free parameters...
the values of which are not determined by the theory itself but
rather must, as it is commonly expressed, ‘be put in by hand’—
introduced with no other rationale than they are required by
the data” (Woodward, 1989, p. 364). In descriptive Rasch models
(and all IRT models), item and instrument calibrations are esti-
mated from data, whereas in a causal Rasch model, the item,
ensemble, or instrument calibrations are provided by theory,
thus, dramatically reducing the free parameters in the model and
not so coincidentally reducing the sense of arbitrariness.

We cannot overstate the importance of describing the mea-
surement mechanism when explaining why a particular scored
outcome was observed or how it came to be. If a Rasch or
IRT study is submitted for publication and it makes no attempt
to explicate the mechanism or active ingredients that transmit
variation in the attribute to the observed outcome, then a truth-
in-advertising disclaimer such as, “unfortunately, no mechanism
is known to underlay the Rasch equation that we use,” should
accompany the report.

The simple fact that data fit a Rasch model where the depen-
dent variable is count correct on a test and the predictor is a
difference between a person parameter and an instrument param-
eter does not elicit understanding of the mechanism at work and
thus, does not explain: “Because to explain is to exhibit or assume
a (lawful) mechanism. This is the process—whether causal, ran-
dom, or mixed that makes the system work the way it does. . ..
This kind of explanation is usually called mechanistic. I prefer to
call it mechanismic, because most mechanisms are not mechan-
ical” (Bunge, 2004, p. 203). Without a mechanism (modeled as
a specification equation), a Rasch model is unsatisfyingly func-
tional and descriptive rather than mechanismic and explanatory.
If editors embraced this position, attention might shift to expli-
cations of the mechanisms that underlie the human and social
science instrumentarium.

The role of causal inference in human science measure-
ment theory has been underdeveloped in part because causal
inference is philosophically complex and more specifically the
so-called mechanismic interpretation of measurement (Stenner
et al., 2009) has lived in the shadow of sampling-based frame-
works such as facet theory (Guttman, 1971), generalizability
theory (Brennan, 2011), true score theory (Lord and Novick,
1968) and behavior domain theory (McDonald, 2009).

ILLUSTRATING THE TRADEOFF PROPERTY
In adopting the tradeoff property as a useful test for quantity in
the human and social sciences, we reasoned that the symmetry
of a Rasch model lends itself to thought about offsetting manip-
ulations on the r.h.s. of equation (3) producing no change to
the l.h.s. Concretely, a manipulation that increases text complex-
ity by 200 L, if offset by an increase of 200 L in reader ability,
should yield no change in observed comprehension rate. So,
offsetting manipulations in two distinct attributes, text com-
plexity and reader ability, can be experimentally shown to hold
constant a third attribute (comprehension). If this tradeoff prop-
erty holds up and down the scales for all three variables in the
Lexile equation, the attributes (text complexity, reader ability, and

comprehension) we conjecture must be quantitative attributes of
text, reader, and the reader-text encounter, respectively. As we
have seen, a particularly attractive feature of this approach to test-
ing the quantitative hypothesis is that one can perform the test
within-person with no reference to any between-person relations.
Specifically, over a 13-year period (grades K-12), a reader is grow-
ing in reading ability and the computer trades off growth for new
texts that have just the right amount of added complexity to hold
the comprehension rate constant. Over the 13 years, the reader
may read thousands of articles and millions of words, but the
whole history can be summarized by the expected minus observed
count correct. We assert without proof that only if text com-
plexity, reader ability, and comprehension are quantitative, will
we consistently observe a close correspondence between expected
(under the theory) and observed count correct on machine-
generated cloze items. Because one always wants the quantitative
hypothesis to be sustained within-person over time, it seems best
to test the hypothesis at the individual level and not resort to
cross-level inferences (e.g., attempts to infer from between-person
relationships something about within-person processes), which
often find dubious rationales (Molenaar and Newell, 2010).

Figure 1 is an individual-centered growth trajectory for read-
ing ability denominated in Lexiles. Student 1528 is a seventh grade
male who read 347 articles (138,695 words) between May 2007
and April 2011. Each solid dot corresponds to a monthly aver-
age Lexile measure. The growth trajectory fits the data quite well,
and this young man is forecasted (big dot on the far right of the
figure) to be a college-ready reader when he graduates from high
school. The open dots distributed around O on the horizontal axis
are the expected performance minus observed performance for
each month. Expected performance is computed using the Rasch
model and inputs for text complexity and the reader’s ability
measure. Given these inputs, the apparatus forecasts a percent-
age correct. The observed performance is the observed percentage
correct for the month. The difference between what the substan-
tive theory (Lexile Reading Framework) in cooperation with the
Rasch model expects and what is actually observed is plotted by
month. The upper left-hand corner of the graphic summarizes
the expected percentage correct (73.5%) and observed percentage
correct (71.7%) across the 3342 items taken by this reader during
4 years. What may not be immediately obvious is that the appa-
ratus is dynamically matching text complexity to the developing
reader’s ability to hold comprehension (percentage correct) at
75%. So, this graphic describes a within-person (intra-individual)
test of the quantitative hypothesis: Can the apparatus trade off a
change in reader ability for a change in text complexity to hold
constant the success rate (comprehension)?

When a wide range of data fit a causal Rasch model, does the
model assume the status of a law such as F = MA? Although
the lines of demarcation between invariant generalizations and
laws are difficult to draw, one feature seems paramount. How
phenomena relate to one another must be independent of the
particular mechanism used to measure each phenomenon. This
independence presumes that multiple mechanisms exist for mea-
suring each phenomenon that figures in the law. F = MA would
not be a law if it mattered how exactly mass were measured
(what kind of weighing apparatus was employed) and similarly
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FIGURE 1 | Growth in reading ability relative to the reading demands of adulthood.

for acceleration and force. In fact, the very claim for existence
of a phenomenon (reader ability or text complexity) depends
upon the fact that different calibrated mechanisms return the same
amounts. Without demonstrated invariance of a phenomenon
over measurement mechanisms, a counterclaim remains open
that the hypothesized phenomenon is artifactually dependent on
one particular instrument or measurement mechanism. We con-
jecture that laws are laws, in part, because they are invariant under
changes in measurement mechanism(s).

So, what does it mean to claim that the r.h.s. of equation (3) is
causal on the l.h.s. and thus, that the causal operator (=:) should
be used in place of (=). Borrowing from Woodward (2003), we
mean that an intervention or manipulation of the measurement
mechanism and/or the attribute measure changes the observed
outcome. The mathematical model explains how observed out-
comes (counts correct on a reading test) are dependent on the
measurement mechanism (text complexity and task type) and
measured attribute (reader ability). The substantive theory spec-
ifies precisely what kinds of interventions on the object of mea-
surement and measurement mechanism will change the observed
outcome and, by omission, what interventions should have no
effect on the observed outcome. In this sense, measurement as
envisioned in the standard measurement model is about manip-
ulation and control and not about correlation, description, and
classification.

Figure 2 presents the results of a 5-year study of the rela-
tionship between theoretical text complexity as provided by a
computer based text complexity engine (Lexile Analyzer) and
empirical text complexity as provided by the EdSphere™ plat-
form. The Lexile Analyzer computes the semantic demand of a
text proxied by the log transformed frequency of each word’s

FIGURE 2 | Predicted vs. observed text complexity measures.

appearance in a multibillion word corpus of published text and
the syntactic demand of each text proxied by log transformed
mean sentence length. The text preprocessing, what constitutes a
word and what constitutes a sentence ending, involves thousands
of lines of code. Modern computing enables the measurement
of Tolstoy’s War and Peace in a couple of seconds. The Lexile
Analyzer has taken 25 years to build and optimize and is freely
available for non-commercial use (Lexile.com).

The EdSphere™ platform enables students to select articles of
their choosing from a vast range of content. Selected articles are
targeted to ±100 L of each student’s developing reading ability.
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Thus, as students’ reading ability grows, the machine adjusts the
text complexity of the articles from which the student chooses the
next reading. The target success rate is 75%. The machine gen-
erates a reading comprehension item on the fly about every 70
words such that two students sitting side by side at computers and
reading the same article will respond to different items.

Because only very rarely will more than one student take any
particular item, a new kind of Rasch model was needed. The
ensemble Rasch model exploits the raw score sufficiency property
of Rasch models to convert counts correct on unique sets of items
into Lexiles (Stenner et al., 2006; Lattanzio et al., 2012). The text
complexity measure for the present article is 1480 L, which also
is the mean difficulty of all the allowable cloze reading items that
could be machine constructed for this article. Given this ensemble
mean and a theory-specified ensemble variance, counts correct
can be converted into a Lexile measure by sampling item cali-
brations from the ensemble and using these item calibrations to
solve the Rasch equation. The key intuition that makes this pos-
sible is that it does not matter which particular sampled item
calibrations are attached to which particular machine-generated
items because a consequence of raw score sufficiency is that there
is no information in the pattern of rights and wrongs about the
reader parameter; thus, it does not matter how the sampled item
calibrations are attached to individual items.

The 719 articles in this study were chosen because they were
the first articles to meet the dual requirements of at least 50
readers and at least 1000 item responses. Well-estimated reader
measures were available prior to an encounter between an arti-
cle and a reader. The ensemble Rasch equation (not given) was
rearranged to solve for text complexity given a count correct, a
reader ability, and an ensemble variance. Thus, each of the 719
articles had a theoretical text complexity from the Lexile Analyzer
and an empirical text complexity from EdSphere™. The cor-
relation between theoretical text complexity and empirical text
complexity is r = 0.968 (r2 = 0.938). Reliability of the empirical
text complexity measures is rtt = 0.997 and the RMSE = 89.6 L.
The RMSE is the square root of the average squared difference
between the empirical and theoretical text complexities. Work has
been ongoing for two decades to isolate new linguistic variables
that might account for the 6% of uncontrolled variance. More
recent work has shifted to a focus on possible artifacts (mea-
surement error, range restriction, text preprocessor variation,
and task specificity) that might account for the small remaining
uncontrolled variation.

When data fit a descriptive Rasch model, relative differ-
ences between objects of measurement on the attribute of
interest are independent of the instrument. When data fit a
causal Rasch model in which instrument calibrations (item dif-
ficulty estimates) come from theory, then absolute measures are
independent of instrument. Rasch called the former specific objec-
tivity, and we called the latter general objectivity (Stenner, 1994).
Both the temperature and reading attributes used as illustrations
in this paper have available, well-developed, generally objective
measurement systems. Equation (3) is an individual-centered
measurement model (token causal model) and can be distin-
guished from SEM models and much philosophical discussion on
causation that focuses on type causal models.

There is an unfortunate tendency in reading research and psy-
chometrics to equate changes in measurement mechanism (e.g.,
task type) with change in the attribute being measured. For exam-
ple, it is asserted that multiple-choice tests of reading must mea-
sure something other than short-answer, constructed responses
because the former measure superficial, fact-based understand-
ing and the latter measure higher level inferences. Thirty years
ago, reading part scores were reported for subtests that mistakenly
were thought to measure something else because the questions
focused on different levels of Bloom’s taxonomy. The idea that
a reader constructs a meaning model and that all reading items
interrogate that meaning model (Kintsch, 1974) and that differ-
ent item types might measure the same attribute (reader ability)
but with different added easiness or difficulty relative to some
standard task type was a foreign notion. Adoption of the Lexile
Reading Framework was resisted in part because it appeared to
be too simple. The assertion that reading ability, like tempera-
ture, is a unidimensional attribute that can be measured with
many mechanisms that appear different has been slow to take
hold. That said, some measurement mechanisms may confound
two or more attributes. Mercury in a tube thermometer with-
out a top confounds the measurement of temperature with the
measurement of atmospheric pressure. To seal the top of the ther-
mometer eliminates the confound. Similarly, to ask readers to
summarize in writing what they have just read may confound
reading ability and writing ability. Both attributes of language
facility are important, but for purposes of measurement, it is
important to have mechanisms that transmit only one kind of
variation and not a confounded mixture of two or more distinct
kinds of variation.

INSTRUMENT VALIDITY AND INSTRUMENT VALIDATION
Consider the following statements about validity and ponder
the theoretical and practical implications that might follow
for the measurement, respectively, of temperature and reading
ability:

Validation of an instrument calls for an integration of many types
of evidence. The varieties of investigation are not alternatives any
one of which would be adequate. The investigations supplement
one another.... For purposes of exposition, it is necessary to subdi-
vide what in the end must be a comprehensive, integrated evaluation
of the test. (Cronbach, 1971, 445; emphasis in original)

[Validity is] an integrated evaluative judgment of the degree
to which empirical evidence and theoretical rationales support
the adequacy and appropriateness of inferences and actions based
on test scores or other modes of assessment. (Messick, 1989, 13;
emphasis in original)

Validation involves the evaluation of the proposed interpre-
tations and uses of measurements. The interpretive argument
provides an explicit statement of the inferences and assumptions
inherent in the proposed interpretations and uses. The validity
argument provides an evaluation of the coherence of the inter-
pretive argument and of the plausibility of its inferences and
assumptions. It is not the test that is validated and it is not the
test scores that are validated. It is the claims and decisions based
on the test results that are validated. Therefore, for validation to
go forward, it is necessary that the proposed interpretations and
uses be clearly stated. (Kane, 2006, 59–60)
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So, from the above, validity calls for synthesis or integration of
diverse sources of evidence. It is useful, for purposes of exposition,
to group these sources. Not mentioned in the quotes above but
described elsewhere are dozens of validity categories [face, crite-
rion, concurrent, convergent, discriminant, predictive, construct,
and 200 more documented by Shaw and Newton (2012) and
Newton and Shaw (2012)]. For Cronbach, Messick, and Kane
validity does not apply to the instrument (thermometer or read-
ing test) nor just to the numbers produced by these instruments
but rather to the claims and decisions that are made by users based
on these numbers.

Even a casual reading of the history of science reveals a
stunning disconnect between the quotations above and how
instruments are invented, improved, and justified in the physical
sciences. What holds center stage in physical science measurement
is substantive theory (Maraun, 1998; Sherry, 2011) followed by
intense focus on precision of measurement and to a lesser degree
by an imperative for readable technologies (directly perceivable
quantities for the latent variable being measured). Great care is
taken in physics, for example, to separate what is being measured
by an instrument from the uses to which measurements might be
put and from the consequences of these uses. It is not that these
consequential considerations are unimportant but that they have
nothing to do with what an instrument measures. Validity, for us,
is all about what an instrument measures.

Contrast the quotes from Cronbach, Messick, and Kane with
those of Stenner et al. (1983) and Borsboom (2005):

The notion that a test is valid if it measures what it purports to
measure implies that we have some independent means of making
this determination. Of course, we usually do not have an inde-
pendent standard; consequently, validation efforts devolve into
circular reasoning where the circle generally possesses an uncom-
fortably small circumference. Take, for example, Nunnally’s (1978)
statement, “A measuring instrument is valid if it does what it is
intended to do” (p. 86). How are we to represent intention inde-
pendent of the test itself? In the past, educators and psychologists
have been content to represent intentions very loosely, in many
cases letting the construct label and its fuzzy connotations recon-
struct the intentions of the test developers. Unfortunately, when
intentions are loosely formulated, it is difficult to compare attain-
ment with intention. This is the essence of the problem faced by
classical approaches to validity. Until intentions can be stated in
such a way that attainment can be explicitly tested, efforts to assess
the adequacy of a measurement procedure will be necessarily char-
acterized by post hoc procedures and interpretations. (Stenner
et al., 1983, 31)

Thus, validity theory has gradually come to treat every impor-
tant test-related issue as relevant to the validity concept, and aims
to integrate all these issues under a single header. In doing so,
however, the theory fails to serve either the theoretically oriented
psychologist or the practically inclined tester; the theoretically
oriented are likely to get lost in the intricate subtleties of valid-
ity theory, while the practically oriented are unlikely to derive a
workable conceptual scheme with practical implications from it.
(Borsboom, 2005, 150)

If we follow this thread, where does it lead? First, let’s observe that
the past 400 years of successful physical science have managed

with only the rudiments of a formal measurement theory.
Progress in every physical science measurement armament has
been realized from improved theory and improved engineering
in the service of ever-increasing precision of measurement, and
that is about it. Human science measurement, in contrast, has
expended virtually no energy on substantive theory development,
nor on increasing, say by an order of magnitude, the precision of
ability, personality, or attitude measurement. Rather, we psycho-
metricians expend much energy on mathematizing everything
we do in a kind of caricature of physical science measurement
without grasping the significance of just what physical science is
accomplishing (Maraun, 1998; Sherry, 2011).

At present, much of the human science is too frequently
actuarially driven rather than theory-driven. Consider the mul-
titrillion dollar insurance industry as an analogy. The founda-
tions of the industry are highly mathematized and predictions
in the aggregate are highly precise, but there is no body of
increasingly integrated substantive theory. Actuarial science has
given us some wonderfully useful mathematics and in turn has
found uses for some elegant pure mathematics. This sophisti-
cated mathematization operates in the service of a simple crite-
rion: prediction of how a population (humans, container ships,
orange trees) will fare next year or next decade. As useful as this
may be within the limits of the insurance industry’s interests,
theory-driven science optimizes a completely different kind of
criterion.

The notion that validity is about the conformance of what an
instrument actually measures to what the developers intended
or what they purport to measure is vacuous unless intent can
be independently formulated as, for example, in a specifica-
tion equation. Too often in practice the instrument is offered
as evidence both of intent and attainment of that intent. The
specification equation breaks the relationship between inten-
tion and attainment by independently formalizing intent as
an equation that can produce item calibrations or ensem-
ble means that are in close correspondence with empirical
estimates. Instruments are designed to detect variation of a
kind. The specification equation specifies the kind and pro-
vides a means by which to test whether the variation detected
by the instrument aligns with that specified by the construct
theory:

The construct specification equation affords a test of fit between
instrument-generated observations and theory. Failure of a the-
ory to account for variation in a set of empirical item scale values
invalidates the instrument as an operationalization of the con-
struct theory and limits the applicability of that theory. Competing
construct theories and associated specification equations may be
suggested to account for observed regularity in item scale val-
ues. Which construct theory emerges (for the time) victorious,
depends upon essentially the same norms of validation that govern
theory evaluation in other sciences. (Stenner et al., 1983, 307)

Everything important to instrument justification cannot be sub-
sumed under the validity banner. Validity is not constituted by
a bucket of correlations. It was these realizations among other
deficiencies in the concept that led us to reformulate validity as
a correspondence between intent and attainment where intent
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is formalized as a specification equation. Borsboom (2005) said
it best:

The argument to be presented is exceedingly simple, so simple,
in fact, that it articulates an account of validity that may seem
almost trivial. It is this: if something does not exist, then one can-
not measure it. If it exists, but does not causally produce variations
in the outcomes of the measurement procedure, then one is either
measuring nothing at all or something different altogether. Thus,
a test is valid for measuring an attribute if and only if (a) the
attribute exists, and (b) variations in the attribute causally produce
variations in the outcomes of the measurement procedure.

The fact that the crucial ingredient of validity involves the
causal effect of an attribute on the test scores implies that the
locus of evidence for validity lies in the processes that convey this
effect. This means that tables of correlations between test scores
and other measures cannot provide more than circumstantial evi-
dence for validity. What needs to be tested is not a theory about the
relation between the attribute measured and other attributes, but
a theory of response behavior. Somewhere in the chain of events
that occurs between item administration and item response, the
measured attribute must play a causal role in determining what
value the observed outcomes will take; otherwise the test cannot
be valid for measuring the attribute. Importantly, this implies that
the problem of validity cannot be solved by psychometric tech-
niques or models alone. On the contrary, it must be addressed by
substantive theory. (151)

It is often difficult to conduct experimental manipulation (in the
short term) of the latent variable (e.g., reader ability) of interest.
We can and do, however, exploit the symmetry in the Rasch model
and experimentally manipulate the items (e.g., text complexity)
to produce the observed outcome (e.g., success rate or compre-
hension) expected under the construct theory. Manipulation of
the text by the use of the specification equation results in changes
consistent with theoretical expectations. The specification equa-
tion is one vehicle by which to introduce substantive theory into
a psychometric model. The potential of this approach can per-
haps be grasped most easily by setting up an equivalence relation.
Suppose one wants to set the observed outcome (e.g., count cor-
rect on a reading test) equal for two readers who differ in reading
ability. One could use the specification equation to build and
calibrate items for the better reader that are just enough more
difficult than the easier items given to the less able reader to can-
cel the way the first reader’s ability surpasses that of the second
reader. This trade off, or cancellation property, characterizes addi-
tive conjoint measurement frameworks (Michell, 2005; Kyngdon,
2008). In the Lexile Framework for Reading, a difference in reader
ability of 200 L can be traded off for a difference in text readabil-
ity of 200 L to hold constant the comprehension rate (Burdick
et al., 2006). Relying only on substantive theory, the specification
equation enables these causal manipulations.

In summary, validity is a straightforward concept with a spe-
cific meaning; it is not an amalgamation of dozens of kinds
of evidence. Validity does not reduce to the scientific method
and there is nothing in need of unification in the concept. The
usefulness of measures and the consequences (intended and unin-
tended) of their use, although important, have nothing to do with
validity. In fact, “validity is not a judgment at all. It is the property

being judged” (Borsboom, 2005, p. 154). When asserting that an
instrument is a valid measure of an attribute, one makes an onto-
logical claim that the attribute exists (a realist stance), that the
instrument detects variation in the attribute, and that experimen-
tal manipulation of the attribute or the instrument (mechanism)
will cause theoretically expected changes in the observed outcome
(count correct).

If a measurement instrument’s primary purpose is to detect
variation of a kind then the paramount validity question is what
causes the variation detected by the instrument. The specification
equation provides an answer to this question by formalizing what
it means to move up and down a scale for an attribute.

How well empirical item difficulties or ensemble means align
with theoretical calibrations is a matter of degree (Stenner et al.,
2006). Alternative construct theories and their attendant formal-
izations as specification equations compete in accounting for the
variation detected by an instrument. As such, we adopt a causal
rather than a correlational view of validity. We accentuate the role
of substantive theory in our approach and have advanced the term
theory-referenced measurement to label the method (Stenner et al.,
2009).

CONCLUSION
Causal Rasch models expose the mechanism that transmits
attribute variation to the observed outcome. Specification equa-
tions are one useful way to expose and express a mechanism’s
action. Although a specification begins its life as a local descrip-
tive account of specifically objective item/instrument variation
on a single form of a test, it can evolve into a universal causal
account of the behavior of items/instruments previously used to
measure an attribute and all items and instruments that might yet
be manufactured. The specification equation bridges the here and
now of the test in hand and the infinity of possible instruments
that can be engineered and manufactured for the measurement
of an attribute. The equation provides not only a specification for
instrument manufacture but also yields the calibrations that can
be used to convert counts into quantities.

So, an early use of the specification equation is to operational-
ize Rasch’s (1960) notion of a frame of reference in a way that
extends the frame beyond the specific objectivity obtained in the
context of one or two tests for an attribute to an indefinitely
large collection of actual and imagined instruments. Theory-
based instrument calibration eliminates the need to use data both
to calibrate instruments and to measure persons. The payoff of
using theory instead of data to calibrate instruments is large and
immediate. When data fit a Rasch model, differences among per-
son measures are free of dependencies on other facets of the
measurement context (i.e., differences are specifically objective).
When data fit a causal Rasch model, absolute person measures
are free of the conditions of measurement (items, occasions, con-
texts) and thus, absolute measures are objective. Under a causal
Rasch model, attribute measures (temperature or reading ability)
are individually centered statistics precisely because no reference
to other person(s) data figures in their estimation.

Applications of descriptive Rasch models have (over the last 50
years) identified thousands of data sets that fit. For only a handful
of these has there been an attempt to explicate the mechanism that
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transmits attribute variation to the observed outcome. We do
not, however, want to miss the real possibility that there exist
mechanisms for a non-negligible subset of these applications and
that some mechanisms will explain observed outcomes across
multiple applications. A starting point for this search might begin
with the question, “How does this instrument work?” What are
the characteristics of the items/instrument that, if experimentally
manipulated, could be expected to change the observed outcome?
Even tentative answers to these questions will move psycho-
metrics into a closer alignment with the standard measurement
model (Fisher and Stenner, 2011, 2012).

There has been a groundswell of negativity regarding the
potential of psychology to realize measurement as that term is
understood in the physical sciences (Cliff, 1992; Schönemann,
1994; Michell, 2000; Barrett, 2008; Grice, 2011). More recently,

Trendler (2009) concluded, “Psychological phenomena are not
sufficiently manageable. That is, they are neither manipulable
nor are they controllable to the extent necessary for an empiri-
cally meaningful application of measurement theory. Hence they
are not measurable” (592). For Trendler, psychology cannot have
measurement because it cannot manipulate and control its con-
structs. This paper offers a demonstration that psychological
measurement might be possible. Furthermore, a roadmap is pre-
sented for the realization of measurement for those attributes
that, like early conceptions of temperature, are today merely
ordinal.
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