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The paper presents a robotics-based model for choice reaching experiments on visual atten-
tion. In these experiments participants were asked to make rapid reach movements toward
a target in an odd-color search task, i.e., reaching for a green square among red squares
and vice versa (e.g., Song and Nakayama, 2008). Interestingly these studies found that
in a high number of trials movements were initially directed toward a distractor and only
later were adjusted toward the target. These “curved” trajectories occurred particularly
frequently when the target in the directly preceding trial had a different color (priming
effect). Our model is embedded in a closed-loop control of a LEGO robot arm aiming to
mimic these reach movements. The model is based on our earlier work which suggests
that target selection in visual search is implemented through parallel interactions between
competitive and cooperative processes in the brain (Heinke and Humphreys, 2003; Heinke
and Backhaus, 2011). To link this model with the control of the robot arm we implemented
a topological representation of movement parameters following the dynamic field theory
(Erlhagen and Schoener, 2002).The robot arm is able to mimic the results of the odd-color
search task including the priming effect and also generates human-like trajectories with a
bell-shaped velocity profile. Theoretical implications and predictions are discussed in the
paper.
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INTRODUCTION
Recent experimental evidence in cognitive psychology suggests
that choice reaching tasks can shed new light on cognitive
processes, such as visual attention,memory,or language processing
(see Song and Nakayama, 2009; for a review). In these experiments
participants are asked to make rapid visually guided reach move-
ments toward a target. The trajectories of these movements often
reflect important characteristics of the cognitive processes nec-
essary to determine the target. The current paper will present a
model for these empirical findings focusing on evidence for visual
attention from reach movements in a visual search task (Song and
Nakayama, 2006, 2008).

In classical visual search tasks, participants see a number of
items on the screen and are asked to indicate whether a pre-defined
target item is present or absent by a pressing a designated button
on the keyboard. Typically, the speed with which they produce
this response (reaction time) is interpreted as a signature for the
way selective attention is influenced by visual characteristics of the
search displays. For instance, a red square among green squares
is faster detected/attended than a red vertical bar among green
vertical bars and red horizontal bars (see Wolfe, 1998; Muller and
Krummenacher, 2006; for reviews).

Recently Song and Nakayama (2006, 2008, 2009) published a
series of experiments in which they asked participants to make
rapid reach movements toward the search target instead of but-
ton presses. In their experiments the search displays consisted
of a green square among red squares and vice versa and the
participants’ task was to reach for the odd-color square. Note

that the target could be easily reached with straight trajectories.
Despite this, Song and Nakayama found that in a high number of
trials, movements were initially directed toward a distractor and
only later were adjusted toward the target. These “curved” tra-
jectories occurred particularly frequently when the target in the
directly preceding trial had a different color (see also Tipper et al.,
1998 for similar evidence, albeit for a reaching and grasping task
with targets and distractors as wooden blocks placed on a hori-
zontal board). Song and Nakayama’s explanation of these findings
can be summarized as follows. They stipulated that the selection
process operates in parallel to the execution of the movement and
that the selection process is implemented as a dynamic competi-
tion between search items. Hence, initially the target color from
the preceding trials preactivates or primes distractors directing
the competition toward the distractors. Consequently the reach
movement is guided toward a distractor. Their interpretation was
supported further by the fact that the initial latency (time between
search display presentation and start of the movement) was shorter
in curved trajectories compared to the initial latency in trials with
straight trajectories. Hence because the movements started earlier
they are influenced by the erroneous selection due to the priming
effect. The model presented in the current paper will follow Song
and Nakayama’s interpretation of their findings.

In fact, Song and Nakayama’s view of the selection process as a
dynamic competition process is also held by one of the most popu-
lar theory on visual attention (e.g., Chelazzi et al., 1993; Desimone
and Duncan, 1995; Duncan, 2006). Computational modeling work
in our lab has also contributed to the development of this theory
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of visual attention. There we developed a computational model
of visual selective attention termed SAIM (Selective Attention for
Identification model; Heinke and Humphreys, 2003; Heinke and
Backhaus, 2011). SAIM implements translation-invariant object
identification in multiple object scenes. A crucial element of this
implementation is the usage of dynamic competition processes
to select an object and ignore others. With this model we were
able to simulate a broad range of experimental evidence on selec-
tive attention, such as visual search tasks, object-based attention,
spatial attention, etc. For instance, Heinke and Backhaus (2011)
showed that reaction times in visual search tasks (target detection)
can be explained by the time it takes the dynamic competition
process to complete the target selection. For the purpose of the
current paper we simplified SAIM to focus on the odd-one detec-
tion. On the other hand, to model Song and Nakayama’s reaching
tasks we extended our modeling approach to attention by adding
a motor control stage. Moreover, to mimic the visually guided
movements, we embedded our extension in a closed-loop con-
trol of a robot arm (see Webb, 2009 and Ziemke, 2011 for similar
approaches utilizing robotics to advance understanding of human
behavior). Finally to link the selection process with the control of
the robot arm we integrated the dynamic field theory by Erlhagen
and Schoener (2002) into our modeling approach. The dynamic
field theory assumes that movement parameters are topologically
represented in the brain. Like SAIM, the dynamic field theory also
postulates that the dynamic neural processes of competition are
crucial for understanding human behavior albeit for the prepa-
ration of movements. In fact, for the sake of simplicity, our new
model implements the competition processes in both stages, the
attention stage and the motor control stage, with the mathematical
formalism used in the dynamic field theory.

The dynamic field theory will be introduced in more detail
in the next section of this paper. After that we will describe
the hardware setup and the model in more detail. Note
that this paper gives little details on the mathematics of the
model. Instead we will focus on a qualitative explanation of
the inner working. We decided that this emphasis is justi-
fied as the mathematical details are not relevant for the the-
oretical implications of the model reported here. Nevertheless,
the mathematical details and the code of the model can be
downloaded from www.comp-psych.bham.ac.uk/Supplementary
info/Frontiers2012. After the description of the model we will
present results from three experiments. In the first experiment
we demonstrate that the new model successfully guides the robot
arm to a target in a single target setup. This also shows that the
motor control stage produces human-like trajectories, i.e., the tra-
jectories have bell-shaped velocity profile (e.g., Jeannerod, 1984).
The second experiment shows that the new model can mimic Song
and Nakayama’s findings. The third experiment will contrast two
possible mechanisms of how distractors influence the reaching
movements. Finally, in the general discussion we will discuss the
theoretical implications of our results.

DYNAMIC FIELD THEORY
The motor control stage of our model is based on the dynamic field
theory (Erlhagen and Schoener, 2002; Erlhagen and Bicho, 2006).
The theory stipulates that the brain topographically represents

movement parameters in a neural layer (field). In such a rep-
resentation, similar parameter values are encoded in a spatial
neighborhood whereas very different values are represented at
locations that are far apart in the neural field. The output acti-
vation of the neural field indicates how likely it is that a particular
parameter value influences the movement. Figure 1 illustrates this
theory for encoding the direction of movements. There is biologi-
cal evidence that some parameters are encoded in a similar way. For
instance there exist motor cortex cells representing the movement
direction in monkeys (Bastian et al., 2003) or the head-direction
cells in rats (Taube and Bassett, 2003). Also for the purpose of
this paper, it is important to note that the dynamic field theory
implicitly assumes a linear relationship between the spatial repre-
sentation of a parameter value and the value itself. For instance
for the difference of a movement direction of 10˚ the two cor-
responding peaks should be 10 neurons apart (if we assume a
spatial discretization of a neuron per degree) at all locations in the
dynamic field. In the first experiment we will demonstrate that the
arm movements improve if we use a non-linear encoding schema
for the encoding of velocity.

In addition, Erlhagen and Schoener (2002) assumes that the
neural dynamics in the neural fields are governed by a simple
mathematical model proposed by Amari (1977):

τ u̇(x , t ) = −u(x , t ) + s(x , t ) + h +
∫

w(x − x ′)f [u(x ′, t )]dx ′

Hereby τ > 0 defines the time scale, f a sigmoidal output func-
tion, u the internal field activity, s an external stimulus, h < 0 the
resting level of the field, x represents the positions of neurons in
the neural field and time respectively, and w(x) the field’s interac-
tion kernel, defining the interaction between neurons within the
field:

w(x) = wexcite · exp
−(x)2

2σ 2
w

− w inhibit

Hereby wexcite defines the strength of excitatory connections
and σ w their spread. w inhibit parameterizes the strength of the
inhibition between neurons. Hence the dynamic neural field

FIGURE 1 | Example of a dynamic neural field. The top graph shows the
topological encoding of a movement direction in degrees of heading
(0–360). The bottom graph illustrates a possible output activation (see also
neuron colors in top graph) that could be the result of the neural field
dynamics. In this particular case the output activation represents a
movement heading of approximately 150˚ as the neuron corresponding to
this direction has the highest output activation.
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(DNF) follows the biologically plausible principles of local excita-
tion and global inhibition (competition). Erlhagen and Schoener
(2002) showed that with the DNF it is possible to model a broad
range of empirical findings on movement initiation, e.g., stimulus
uncertainty effect, Simon effect, etc.

For the purpose of our model there are three points to
note. First, the model employs DNFs not only for the motor
control stage but also for the target selection stage. Sec-
ond, a DNF can also encode two-dimensional parameters,
e.g., speed in x- and y-direction in planar space, by using
a two-dimensional layer. Such two-dimensional DNFs play
an important role in our model. More technical details on
the implementation of the DNF can be found in the sup-
plementary info (www.comp-psych.bham.ac.uk/Supplementary
info/Frontiers2012). Third, the exact behavior of the DNF depends
on the parameters of the kernel w(x) (see Amari, 1977 for a math-
ematical analysis). For instance, the kernel can be chosen so that
with little or no external input, the DNF drifts toward the resting
level h. With a large enough input activation at a certain location,
the field can establish a single activation peak at this location which
can be maintained even after the input is removed. Moreover, if
there are many regions with input activations, a DNF with the
appropriate parameter setting chooses the largest region. Finally
and most important for our model, Amari (1977) showed that
DNFs can exhibit a “moving blob” behavior. In this type of behav-
ior an already-established activation peak can move around in a
layer in a continuous fashion. The movements of the peak are
guided by the gradient of the input activation. The direction of
the peak’s movement at a specific location is given by the direction
of the steepest gradient in the input activation at this location.
The speed of the movement is proportional to the steepness of
the gradient. The moving blob behavior will be used in the motor
control stage to ensure jerk-free arm movements.

SETUP
Figure 2 shows the experimental setup. As the main effects of
the targeted experiments occurred in a horizontal plane we used
a planar robot arm with two joints. The robot arm was built
with the LEGO Mindstorms NXT kit and the LEGO Education
set. The sensors, motors, and the programmable brick of these
kits offer a flexible and inexpensive way to design programmable
robots. We tested several robot designs inspired by Bagnall (2007)
and we eventually settled for the construction shown in the two
photos in Figure 2B). The configuration is mechanically very sta-
ble and the joints have only a little slack. The total length of the
arm is approximately 36 cm (forearm 19 cm, upper arm 17 cm).
We use the Java leJoS API (Bagnall, 2007) to interface with the
programmable brick.

The robot arm and its environment is filmed with the Bumble-
bee XB3 stereo camera (using only one camera) from a birds-eye
view (see top right corner in Figure 2A). The distance between
camera and table is 90 cm. The photo also shows that we used a
normal desk light (gray object next to the camera) to keep the
lighting roughly constant. For an easier detection of the robot arm
blue markers are attached to the arm base and to the end effector.
For the search items red and green colored markers are used (see
bottom of the photo in Figure 2A).

THE CONTROL ARCHITECTURE
OVERVIEW
Figure 3 gives an overview of the control architecture. The input
to the control architecture is the images from the Bumblebee cam-
era. The outputs set the speed values of the robot arm joints. The
control architecture continually updates the speed values based on

FIGURE 2 | (A) Lego Mindstorms robot arm with the environment
consisting of camera and lamps. (B) Details of robot arm.

FIGURE 3 | Overview of the control architecture. The light gray box
contains the model. Dark gray boxes are the modules of the model. White
boxes symbolize DNFs. In the text the blue abbreviations are used for the
respective DNFs.
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the input images so that the robot arm is controlled in a closed-
loop fashion. The control architecture is made up of five modules.
The module Image Preprocessing detects the blue, red, and green
markers in the camera images. The ArmDetection determines the
location of the arm’s end effector by using the blue markers. The
Target Selection finds the odd-color marker. The Movement Veloc-
ity Control combines the location of the end effector with the
target location and determines the speed and direction of the
movement for the arm in Cartesian coordinates. These movement
parameters are then converted into the speed of the robot arm
joints in the Inverse Kinematics.

It is important to note that the modules fall into into two
categories. The first type of modules (Image Preprocessing, Arm
Detection, and Inverse Kinematics) implements technical solu-
tions which were necessary for successfully controlling the robot’s
behavior. However we do not claim that the implementations of
these modules model human behavior. Moreover, these mod-
ules are not crucial for the implementation of the theory we
fleshed out in the introduction nor for modeling the experimental
data of choice reaching tasks. The second type of modules (Tar-
get Selection and Movement Velocity Control) constitutes “the
model” implementing the theoretical assumptions explained in
the introduction. These assumptions are: The processes in the tar-
get selection stage and the motor control stage use competitive and
excitatory interactions between neurons. These are implemented
with dynamic neural fields (DNFs). Both stages, the motor stage
and the selection stage, operate in parallel. (Indeed all modules
operate in parallel but this is not of theoretical significance.)

IMAGE PREPROCESSING
The Image Preprocessing detects the three markers, blue, red, and
green in the camera images and encodes their location in the
respective color maps, the blue map, the red map, and the green
map. This is achieved by first transforming the camera image
from the RGB color space to the HSV color space. In the next
step the Hue (H-dimension) is used to detect the markers’ color.
Note that the usage of Hue improves the robustness of the control
architecture against changing lighting conditions. The detection is
implemented by testing each pixel if it falls into an interval around
a pre-set H value. If this is true, the color map is set to one at
the corresponding location. The pre-set H value takes on a dif-
ferent value, a “blue-,” “green-,” or “red”-value, for the different
color maps. But if the pixels have an extreme saturation (S) or
brightness (V) the activation is set to zero in order to avoid the
detection of white or black areas. Finally, an erosion filter is applied
to the maps to decrease the likelihood of isolated pixels in order
to remove artifacts, e.g., isolated pixels, undesired reflections etc.
(Jähne, 2008).

ARM DETECTION
The detection of the robot arm encodes the locations of the arm’s
base and the end effector in two separate DNFs. It exploits the fact
that the marker on the base is slightly larger than the one on the
end effector. So the first DNF (base map) receives the blue color
map as input and selects the larger marker, as the DNF’s para-
meters ensure that an activation peak is only formed at the larger
region. The output of the base map is topologically subtracted

from the blue color map. The subtraction leaves activation at the
location of the end effector but removes activation at the arm’s
base. Subsequently a second DNF (end effector map) detects the
location of the end effector. The parameters of the end effector
map are set so that the output peak follows the movements of the
end effector with only a slight delay.

Note that the arm detection implements a technical solution
for the simple fact that humans need to keep track of the arm
position. Alternatively or in addition we could have used pro-
prioceptive information (joint angles). However, how humans
determine the arm position is not relevant to the current research
question. Therefore we simply used the camera images as they
were necessary for the central research question anyway.

TARGET SELECTION
This module is designed to detect the odd-color object. Two
characteristics are important to determine the target: color and
location. Therefore, the module consists of two DNFs, encoding
target color (Tcol map) and target location (Tloc map). The Tcol

map uses two neurons representing the two colors, red and green.
As input, the Tcol map receives the total activations of the red color
map and the green color map. The parameters of the Tcol map
ensure that the neuron with the higher input is activated while
the other neuron is deactivated. Consequently the Tcol map estab-
lishes a high activation in the neuron which represents the more
frequent color.

The input to the Tloc map is the topologically summed acti-
vation from the green color map and the red color map. The
summation is weighted by the output of the Tcol map whereby
the colors are swapped to implement the odd-one detection.

PREACTIVATION
In order to simulate the color priming effects, the Tcol map in the
target selection module receives an external input that activates the
maps before the robot arm starts moving. After starting the move-
ment of the robot arm this input is switched off. Nevertheless,
the external input preactivates the Tcol map thereby influencing
the early phase of the reaching process. Hence the preactivation
can potentially decrease the initial latency as found in Song and
Nakayama (2008). In addition we also implemented a preactiva-
tion for the Tcol map as there is also evidence for spatial priming
from standard visual search tasks (e.g., Maljkovic and Nakayama,
1996).

MOVEMENT VELOCITY CONTROL
The aim of this module is to generate arm movements toward
the selected target item. This aim is achieved with two DNFs.
The first DNF (T HC

loc map) represents the target in end effector-
centered (hand-centered) coordinates. This representation is gen-
erated through a spatial correlation between the end effector map
and the target selection map. The spatial correlation is performed
in a way that the origin of the effector-centered coordinates are
in the center of the T HC

loc map. Note that a biologically plausible
implementation of the spatial correlation can be achieved with
sigma-pi units. Sigma-pi units were first proposed by Rumel-
hart and McClelland (1986) (see Heinke and Humphreys, 2003
for another example of an application). Now with the effector-
centered coordinates the T HC

loc map can encode how far the arm is
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from the target and what the direction of the movement should
take. Therefore the T HC

loc map could successfully direct the robot
arm to the target.

However if the T HC
loc map was directly used to encode the arm’s

velocity the movement would be jerky, as the selection of the target
would result in a sudden encoding of a high speed (proportional
to the distance from the target). Therefore we introduced a second
DNF (V map) that converts the representation of the movement
direction in the T HC

loc map to an encoding of movement velocity.

The representations of the T HC
loc map and the V map are aligned

accordingly, meaning that the center of the T HC
loc map encodes zero

distance from the target and the center of the V map encodes zero
speed while activation peaks far away from the center of the T HC

loc
map correspond to a large speeds in the V map (see Figure 4
for an illustration). In order to achieve more smooth, human-like
movements, the V map realizes a “moving blob” behavior in the
following way. At the beginning of a reach movement the V map
has a peak at its center, thereby encoding zero speed. Then the
peak moves toward the direction of the target (as encoded in the
T HC

loc map), ramping up the arm’s speed in the direction of the
target. While the arm is getting closer to the target the activation
peak in the T HC

loc map is moving closer to the center of the map,
eventually aligning its location with the output peak of the V map
and moving in parallel. Once this situation is achieved the V map
guides the arm in the target by way of the closed-loop control. To
be more specific, the arm moves closer to the target and subse-
quently the peaks in the T HC

loc map and the V map move closer
to the center, thereby lowering the speed of the arm. This process
continues until the arm reaches the target and stops.

To realize this behavior the gradient in the input activation had
to be designed appropriately as the gradient determines the “mov-
ing blob” behavior. We created an input activation that is made
up of two parts (see Figure 4 for an illustration). One part is the
output of the T HC

loc map but convolved with Gaussian function
with a large sigma. Note that this convolution is a biologically
plausible operation as it models how spatial activation diverges
when traveling from one neural layer to the next neural layer.
The purpose of the large sigma is explained at the end of this
section. The second part is added to this activation and consti-
tutes a Gaussian-distributed activation at the center of the V map.
Without a target selection (before the start of the reach movement)
this second part induces a peak at the center of the V map (see top
of Figure 4). Once the target selection begins the first part of the
input activation forms a gradient directing the peak toward the tar-
get location (see bottom of Figure 4). Hence the peak moves and
subsequently the arm smoothly increases its movement velocity
toward the target.

A final important point of the “moving blob” behavior is that
the speed of the peak’s movement is proportional to the steepness
of the gradient, as mentioned in the section on the dynamic field
theory. Now since the input activation of V map is based on a
Gaussian distribution with a large sigma, the gradient is steeper
when the arm is far away from the target compared to when the
arm is closer to the target (see red line in the bottom left graph
of Figure 4). Hence, when the arm is far away from the target
the acceleration of the arm is high while when the arm is getting

closer to the target the acceleration is getting lower. In general this
implements a good control strategy, since on the one hand it is
efficient to move the arm as fast as possible when the arm is far
away so that it reaches the target as fast as possible, while on the
other hand if the target is close the arm should slowly maneuver
toward the target so that it does not overshoot it. Moreover and
interestingly this qualitative description is also reminiscent of the
left part of the bell-shaped velocity profile. Hence it is conceivable
that the arm exhibits this bell-shaped velocity profile. However as
the Movement Velocity Control is embedded in a control-loop,
ultimately this needs to be tested in experiments, e.g., is it success-
ful in a noisy environment; what happens when the arm gets close
to the target, will it reach the target, etc.

INVERSE KINEMATICS
The output of the Movement Velocity Control (V map) encodes
the speed of the end effector in Cartesian coordinates. However
in order to generate the actual movements of the robot arm, the
Cartesian speed needs to be transformed into the speed of the
robot arm joints. Here we follow the standard approach of using
an approximation of the inverse of the Jacobian matrix (e.g.,
Siciliano and Khatib, 2008; see www.comp-psych.bham.ac.uk/
Supplementary info/Frontiers2012 for detail). Future versions will
consider a more biologically motivated approach.

SINGLE TARGET EXPERIMENT
The single target experiment aimed to demonstrate that the con-
trol architecture is able to reach successfully for objects in a noisy
real world environment. We also wanted to show that the model
generates human-like reach trajectories, i.e., the arm moves in a
straight trajectory to the target and the velocity profile of the tra-
jectory is bell-shaped (e.g., Jeannerod, 1984). These experiments
also provided a baseline for second set of experiments, the choice
reaching task.

Since this experiment used only single targets, the control archi-
tecture was simplified. As the target color did not play a role the Tcol

map was removed and the input for Tloc consisted of the combined
red and green map.

METHODS
The target objects were square colored markers (red or green) with
a size of 3.5 cm × 3.5 cm. Targets were located on a virtual circle
with the radius of 22 cm at 0˚, 45˚, 90˚, 135˚, and 180˚ (from left
to right). The center of this circle was the starting position of the
robot arm’s end effector. The starting position was located 9 cm in
front of the arm’s base (shoulder). Before the experiment began
the parameters of the image preprocessing were adapted to the
current lighting conditions. After starting a trial the position of
the end effector was recorded until the target was reached. The
arm was considered to have reached the target when it was in a
6 cm × 6 cm area around the center of the target (see shaded area
in Figure 6) and when its speed was less than 0.7 cm/s. For each
possible target location five trajectories were recorded.

Since the sampling rate varied during each trial the data points
for each trajectory (50–80 data points) were not recorded at the
same points in time. In order to obtain an averaged trajectory we
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FIGURE 4 | “Moving blob” behavior in the V map. The top graphs show
the behavior of the V map without a target being selected. The input
activation for the V map is the Gaussian activation with its maximum in the
center of the field causing the output activation of the V map to establish a
peak at the center. With a target present (bottom graphs) its activation

(dashed green line) is added to the activation around the center (blue line)
resulting in a combined activation (red dashed line). This new input
activation causes the output activation to move toward the new input
maximum leading to an increase of the end effector’s speed (“Moving
blob” behavior).

pre-processed each trajectory with the following steps. A spline
function was fitted to each trajectory, then the resulting function
was sampled with 100 equal time steps. Since the trajectories were
fairly noisy, we smoothed the result with a moving average over
10 time steps. Finally, the averaged trajectory was obtained by
averaging across the same time slice.

RESULTS AND DISCUSSION
Our first experiments with the robot arm showed that, in prin-
ciple, the arm exhibited the desired straight trajectories and the
bell-shaped velocity profiles. This was expected from the design of
the Movement Velocity Control. However the behavior turned out
to be fairly unstable and noisy. For instance, even though the arm
was able to move close to the target it had problems fully reaching
the target. We therefore chose to modify the V map. Originally
the V map followed the linear encoding schema commonly used
in DNFs (see Figure 1 for an illustration). In the new version the
neural layer is mapped onto the parameter space in a non-linear
fashion in which many neurons map onto low speeds whereas
only a few neurons map into high speeds. We expected that this
encoding should lead to a better behavior of the arm as it rep-
resents a good compromise between two objectives. On the one
hand it leads to more precise movements when the end effector is
close to the target, while on the other hand it allows the arm move
more coarsely while it is still far away from the target. Indeed, this

encoding schema led to better behavior of the arm (see Figure 5
for a comparison). Overall, the movement was less noisy and more
bell-shaped. The peak velocity was higher but in the vicinity of the
target the velocity was lower which resulted in a better target reach-
ing behavior. It is also interesting to note that the maximum speed
was reached later in the movement (at around 40%) which fits
better to the experimental findings with humans (e.g., Jeannerod,
1984).

Figure 6 shows the mean trajectories toward the five target
markers. The trajectories were almost straight with only a little
curvature. These results are comparable with experimental find-
ings on humans. For example Haggard and Richardson (1996)
found that humans reach with similar (almost straight) paths in
different regions of the workspace. Also Desmurget et al. (1999)
support the model’s approach that compliant movements in the
horizontal plane are planned in the extrinsic space, which results
in straight hand trajectories. Taking together the results of this
experiment gave support for the implementation of the Movement
Velocity Control module.

For an additional verification of our model we compared the
arm’s behavior with a mathematical model for velocity profiles.
In fact, there are several mathematical models for velocity profiles
such as the Minimum Hand Jerk model, the Minimum Com-
manded Torque Change model, etc. A recent review by Petreska
and Billard (2009) suggested that a modified vector integration to
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FIGURE 5 | Velocity profiles of the simulated movements to the top

center position of Figure 6. The profiles are shown with their standard
deviation (light blue area) and the point where the initial latency end and the
movement starts (black line). Negative time values represent the initial
latency. The movement ended at 100%, the time scale goes slightly higher
than this value, because the dark blue line represents the moving average of

10 time slices of the movement. The result on the right side was produced
with a standard topological encoding in the V map of the Movement Velocity
Control module. On the left a non-linear encoding was used. This encoding
schema let to better reaching movements. The red line documents the
outcome of the VITE-model fitted to the robot arm behavior (see main text for
detailed discussion). Both velocity profiles are the average of 25 trials.

FIGURE 6 |Trajectories of the single target experiment. Targets of the
reach movements are shown in red. When the arm reached at least the
shaded area around the targets it was deemed to have reached the target.
The gray square illustrates the size of the tip of the end effector. The base of
the robot arm (shoulder) was positioned approximately 9 cm under the
starting point of the end effector. The end effector itself was located in the
origin of the trajectories (35 cm, 35 cm). The robot arm was able to follow a
quasi straight path to the target. All trajectories are mean trajectories of 5
trials.

endpoint (VITE) model (Bullock and Grossberg, 1988) yields the
best fit to human movement trajectories. In the current paper we
used the VITE-model as the reference model for our model. The
VITE-model is described with the following equations:

ẏ(t ) = α
(−y(t ) + xtarget (t ) − x(t )

)
(1)

ẋ(t ) = βt v y(t ) (2)

The parameters α, β, and v are real positive constants and
control the changing rate of the acceleration. xtarget and x are

the position of the target and the end effector respectively. y is a
secondary variable and related to the speed of the end effector.

To compare the VITE-model with the robot arm’s velocity pro-
file we used the average velocity profile shown in Figure 5. For each
time step in this profile we determined whether the VITE-model
produced a velocity value that fell within the one standard devi-
ation interval. Then we calculated that percentage of time steps
which fulfilled this criterion. For the following parameters 98% of
time steps fulfilled this criterion: xtarget = 10, α = 0.058, β = 0.01,
and v = 0.0286 (see Figure 5 for the resulting velocity profile). In
other words for these parameters the VITE-model and the robot
arm’s velocity profile were very close in 98% time steps providing
further support for our model.

ODD-COLOR EXPERIMENT
After having shown that the model is able to reproduce human
reaching trajectories, the next aim was to replicate the odd-color
experiment by (Song and Nakayama, 2008). Here the aim was two
fold: The model should be able to direct the robot arm to the odd-
color and second, the model should reproduce the effects of color
priming, i.e., the curved trajectories with longer movement times
and the reduction of the initial latency.

As pointed out in the introduction of the preactivation mod-
ule there is also evidence for spatial priming from standard search
tasks (e.g., Maljkovic and Nakayama, 1996). Even though there is
no evidence from choice reaching tasks it seems plausible to expect
spatial priming effects similar to the color priming effects. Since
the model also allows us to implement spatial priming we will
also present these experiments here and compare them to color
priming.

METHODS
The setting of this experiment is similar to the single target exper-
iment except that similar to the setup in Song and Nakayama’s
(2008) experiment we used an odd-color display. There were three
markers placed in the workspace: either two red and one green
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or two green and one red marker (see Figure 2 for an example).
Both colors can be easily distinguished by the Image Preprocessing.
The possible locations for the marker were at 45˚, 90˚, and 135˚, the
three central locations in the single target experiment. All modules
of the model were used including the non-linear encoding of the
velocity DNF developed in Experiment 1, so the target selection
should be able to perform the odd-color search task. Moreover, and
importantly, the preactivation module should be able to induce the
priming effects in the model.

The data analysis followed the same steps as in Experiment 1
using spline function and moving average to obtain smoothed tra-
jectories. In addition the following durations were extracted from
the smooth trajectories: the initial latency (IL) and the movement
duration (MD). The beginning of the movement (and the end of
the IL) was determined at the point in time when the velocity was
higher than 0.3 cm/s for the first time. These times allowed us to
relate our results to Song and Nakayama’s (2008) findings.

RESULTS AND DISCUSSION
Figure 7 shows the trajectories of the robot arm in the odd-color
experiment. To begin with the results demonstrate that the model
is able to detect the odd-color marker and successfully directs the
arm to the target marker. Moreover, with the help of the preac-
tivation module (priming) we were able to generate the curved
trajectories found by Song and Nakayama (2008). The results also
mimic Song and Nakayama’s (2008) finding that the initial latency
was shorter in the priming condition compared to the baseline and
that the movement duration of the curved trajectory was longer.
Interestingly the size of the effect depended on the type of prim-
ing, either color priming or spatial priming. For spatial priming
the effect of the initial latency was larger than for the color priming.
In contrast, the movement time was longer for the color priming
than for the spatial priming.

Taken together the results demonstrate that the model can suc-
cessfully mimic the findings by Song and Nakayama (2008). In
particular the preactivation initially directs the competition in the
target selection module toward distractors. In turn, this guides the
moving blob in the V map and the robot arm toward the distrac-
tors. However after some time the preactivation is overwritten and
the moving blob and the robot arm are directed toward the target.
In some way the priming effect in our model can be conceptual-
ized as the distractors first“pulling”the arm toward their direction.
We will return to this point in the next experiment. However, it
is also worth noting that a model by Tipper et al. (1998) pro-
poses a similar pulling effect based on a similar mechanism. Their
model suggests that the directions of movements toward the target
and the distractors are encoded with distributed representations
similar to the one postulated in the DNFs. Moreover the model
determines that resulting movement direction by calculating the
center of gravity of the combined representation of target and
distractors. Consequently the resulting movement veers toward
the distractors. However, Tipper et al.’s (1998) model does not
include a mechanism of how such distorted movement directions
are translated into actual movements and how humans eventually
reach the target.

Furthermore our model predicts that additional experiments
with humans should find a difference between spatial priming
and color priming. Even though the difference found with the
robot arm can be due to different parameter settings, e.g., the
preactivation is higher in spatial priming than in color priming,
the difference originates from an architectural difference of how
the two dimensions influence the selection process. The spatial
priming directly influences the selection map whereas the color
priming affects selection via the weighting of the two color maps.
In addition the difference between color priming and spatial prim-
ing also plays out differently for the initial latency and for the

FIGURE 7 | Example trajectories with measured time intervals of the

simulation of the odd-color experiment. The trajectories are mean
trajectories of five trials. The time intervals are also the average times from
five trials in seconds. The figures in brackets indicate the standard
deviation. The abbreviations stand for initial latency (IL) and movement
duration (MD). The results demonstrate that the model can successfully
direct to the robot arm to the odd-color target. The “curved” trajectories

result from the preactivation of the spatial map (spatial priming, on the
right) and the color map (color priming, on the left). In both conditions,
compared to the straight trajectories the initial latency decreases and the
movement times increases matching the experimental data by (Song and
Nakayama, 2008). Interestingly the effect on the initial latency is stronger
in spatial priming than in color priming. This effect is discussed in the
main text.
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curved trajectory. For the initial latency, the structural difference
is responsible for the difference. In contrast, for the movement
duration the difference nature of the features is important. In the
color priming two distractors attract movements whereas for the
spatial priming only one location distorts movements.

“CONTINUOUS” VS. “THRESHOLD” EXPERIMENT
In the previous experiment we pointed out that the curved tra-
jectories in the model are the result of the distractors pulling the
arm toward their location. In other words, the activation in the
competitive selection does not necessarily need to pass a thresh-
old for it to affect the reaching process (“continuous” hypothesis).
This contrasts with a suggestion by Song and Nakayama (2008).
They proposed that the competitive selection first has to reach a
threshold before it can direct movements toward an item, e.g., a
distractor (“threshold” hypothesis). In fact, this hypothesis can be
also simulated with our model by adding a threshold at the output
of the selection stage. The current experiment will illustrate the
different reaching movements the two hypotheses would predict.

METHODS
The settings of this experiment were similar to the ones of Exper-
iment 2. However, the color priming activation was increased
to make the illustration clearer. To implement the “threshold”
hypothesis a threshold between the Tloc map and the T HC

loc map
was introduced so that only high activations in the Tloc map can
influence the behavior of the T HC

loc map.

RESULTS AND DISCUSSION
Figure 8 depicts the results based on five trials in for each hypothe-
ses and highlights the differences. As expected, trajectories in the
“threshold” setup pointed toward one of the distractors in an
early stage of the movement, while trajectories in the “continu-
ous” condition fell somewhere between the two distractors. Hence
in order to distinguish between the two hypotheses it makes sense
to determine the orientation of the movements at their early phase.
Now for these movement orientations the “threshold” hypothesis
predicts are bimodal distribution with the two modes roughly
pointing toward the distractors. In contrast, the “continuous”

hypothesis predicts an unimodal distribution with a peak roughly
between the two distractors. Moreover Figure 8 illustrates that the
variation of the movement orientation is smaller for the “thresh-
old” hypothesis than for the “continuous” hypothesis. The large
variation in the “continuous” hypothesis is due to the fact that
the two distractors induce noise onto the movements whereas in
the threshold hypothesis only one distractor influences the move-
ments. Note that the latter point implies that we expect a variation
around each mode in the order of magnitude of the single target
displays. Future experiments with human participants will need
to test this prediction.

GENERAL DISCUSSION
Recently Song and Nakayama (2008) published evidence that the
process of attentional selection can influence reach movements
toward a target. In this study, the reaching target was given by an
object with the odd-color, e.g., a red square among green squares.
In this current paper we presented a robotics-based approach to
modeling the results of this choice reaching experiment. To take
into account that these experiments use human movements the
output of model is a robot arm built with LEGO Mindstorms
NXT. The first stage of the model, the attention stage, is based
on our earlier work in modeling visual attention (e.g., Heinke
and Humphreys, 2003; Heinke and Backhaus, 2011) and imple-
ments a competitive selection process of the odd-color target. In
order to link the output of this stage with the robot arm we based
the motor control stage on the dynamic field theory by Erlha-
gen and Schoener (2002). Crucially, the motor control stage uses
a “moving blob”-dynamics in a neural field to ensure jerk-free
(human-like) movements. Overall the model is consistent with
Song and Nakayama’s (2009) suggestions that there is a direct
link between target selection and movement planning, that both
processes work in parallel and that the target selection process is
implemented in a dynamic competition.

Three experiments were performed to test the model’s abilities.
The first experiment used a single target setup and demonstrated
that the model can guide the robot arm to the target in quasi
straight trajectories. Moreover, the trajectories exhibited a bell-
shaped velocity profile often found in experiments with humans.

FIGURE 8 | Comparison of “continuous” vs. “threshold” hypothesis

(Experiment 3). The result on the left shows the outcome of the threshold
hypothesis. Note that in this setting the trajectory veers toward the middle or
the right distractor randomly depending on the noise in the DNFs. For the

above figure only the trajectories toward the middle distractor were chosen.
The trajectory on the right is the effect of the “continuous” hypothesis (see
main text for detail). Each mean trajectory shows the results from 5 trials. The
broken lines documents the standard deviation.
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Crucial for the produce of the bell-shaped velocity is the “moving
blob”-behavior in the Movement Velocity Control. This imple-
ments the ramping up and down of the velocity. This behavior
was theoretically examined by Amari (1977). However, to the
best of our knowledge it has never been used to describe human
behavior in a functional model before. It also remains an open
question whether the brain employs this behavior. The second
interesting outcome of the first experiment is that we had to
introduce an inhomogeneous spatial encoding of the velocity
parameter. The inhomogeneity is such that at small velocities the
encoding has a high spatial resolution, whereas at high velocities
the encoding is coarse. This divergence from the normal linear
encoding schema in DNFs was necessary to achieve a better con-
trol of the arm in terms of robustness and higher peak speed,
but also made the speed profile similar to human velocity pro-
files. Importantly the encoding schema is reminiscent of the way
the visual cortex represents stimuli, i.e., the “cortical magnify-
ing factor” (e.g., Rovamo and Virsu, 1979). In this representation
visual stimuli are represented with a fine grain resolution in the
foveal region, while in the parafoveal region stimuli are repre-
sented with a coarse resolution. Hence it is not inconceivable
that the brain has reused this mechanism in the motor cortex
as suggested by our model. However, as with the “moving blob”
behavior, this prediction remains to be tested in physiological
experiments.

The second experiment demonstrated that the model performs
the odd-color search task by Song and Nakayama (2008), i.e., the
robot arm successfully reached the object with the odd-color. This
success also included the reproduction of the curved trajectories.
Moreover, the curved trajectories showed a lower initialization
time of the movement while the movement time increased due
the longer length of the trajectories, again mimicking Song and
Nakayama’s (2008) findings. The model also predicts that these
priming effects not only occur for color but also for space (see
Maljkovic and Nakayama, 1996 for spatial priming effects in a
standard visual search task). Moreover the model suggests that
the priming effects are stronger for space than for color. This pre-
diction is in part due to the different way the two dimensions are
processed in the model and in part due to how the two dimensions

are differently reflected in the visual search display. The latter point
refers to the fact that spatial priming may a effect a single distractor
whereas color may affect a group of distractors. This prediction
remains to be tested.

In Experiment three we illustrated a subtle but important dif-
ference in the way Song and Nakayama (2008) explain the priming
effect and in the way the model realizes the priming effect. In both
explanations it is assumed that the priming effect is the effect of
residual activation from the target in the preceding trial misdi-
recting the reach movement. However, while Song and Nakayama
(2008) suggest that the competitive selection reaches a threshold
in order for it to cause reaching toward a distractor (“threshold”-
hypothesis), our model suggests a different mechanism. It suggests
that the competitive selection does not necessarily need to pass a
threshold for it to affect the reaching process. Instead, items dur-
ing the competition process pull the reaching movements toward
their position and the strength of the attraction is related to how
much they are selected (“continuous”-hypothesis). The experi-
ment makes predictions for the directions of “curved” movements
at their early stage. The “threshold”-hypothesis predicts that the
distribution of the directions should be bimodal with the two
modes at the directions of the distractors. In contrast the “con-
tinuous” hypothesis suggests a unimodal distribution with a peak
roughly falling between two distractors. Future experiments with
humans will have to test these predictions.

Finally, it is also worth pointing out that the robotics-based
modeling approach taken here can be employed to other choice
reaching tasks concerning processing of numbers or phonology.
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