
www.frontiersin.org March 2011 | Volume 2 | Article 42 | 1

Original research article
published: 11 March 2011

doi: 10.3389/fpsyg.2011.00042

Real-time measurement of face recognition in rapid serial 
visual presentation
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Event-related potentials (ERPs) have been used extensively to study the processes involved 
in recognition memory. In particular, the early familiarity component of recognition has been 
linked to the FN400 (mid-frontal negative deflection between 300 and 500 ms), whereas the 
recollection component has been linked to a later positive deflection over the parietal cortex 
(500–800 ms). In this study, we measured the ERPs elicited by faces with varying degrees of 
familiarity. Participants viewed a continuous sequence of faces with either low (novel faces), 
medium (celebrity faces), or high (faces of friends and family) familiarity while performing 
a separate face-identification task. We found that the level of familiarity was significantly 
correlated with the magnitude of both the early and late recognition components. Additionally, 
by using a single-trial classification technique, applied to the entire evoked response, we were 
able to distinguish between familiar and unfamiliar faces with a high degree of accuracy. The 
classification of high versus low familiarly resulted in areas under the curve of up to 0.99 for some 
participants. Interestingly, our classifier model (a linear discriminant function) was developed 
using a completely separate object categorization task on a different population of participants.
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the recognition response change with the level of experience? And, 
does this change affect both early and late components in a similar 
fashion? Here, to manipulate level of experience with the stimuli, we 
used color photographs of faces from three distinct categories: novel 
individuals, famous persons or celebrities selected by the partici-
pant, and personal friends and family provided by the participant. 
In this way, we were able to quantify the effect of experience or 
knowledge of the depicted individual on the recognition response. 
While this study does not explicitly dissociate the neural proc-
esses involved in familiarity and recollection, the magnitude of the 
evoked responses (within the early and late integration windows) 
do have implications for the competing models of recognition.

In addition to this conventional analysis of the ERP, we also 
wanted to determine how accurately the recognition response could 
be classified on a single-trial basis. To accomplish this, we integrated 
the face stimuli into a real-time system that classifies the evoked 
response elicited by each stimulus, based on a linear model of the 
neural response pattern. The motivation for this approach stems 
from a potential application of the recognition response toward 
a novel brain–machine interface (BMI). BMI technologies often 
utilize the visual categorization response for binary output or clas-
sification (Parra et al., 2002; Sellers et al., 2006). An example of this 
is a rapid presentation of images or letters for which each P300 
is classified as a “yes” or “no” response. This response can then 
be used to identify relevant objects in a stream of imagery or to 
select letters for building a word or phrase. Here, we sought to use 
a similar experimental paradigm to further quantify the recognition 
response. Specifically, can the recognition response be identified 
in a continuous presentation of faces where explicit recognition of 
each face is not required?

IntroductIon
The neural substrates of recognition, an essential aspect of declara-
tive memory, have been extensively studied with the use of event-
related potentials (ERPs). Many of these studies attempt to dissect 
the two phenomenologically distinct processes involved in recogni-
tion: familiarity and recollection (Yonelinas, 2002; Yovel and Paller, 
2004; Guo et al., 2005; Curran and Hancock, 2007; MacKenzie 
and Donaldson, 2007). A commonly accepted definition of famili-
arity is the sense of having previous experience with the probe 
stimulus (e.g., person, object, word) without any accompanying 
contextual information as to the nature of the previous encoun-
ter. Recollection, on the other hand, is when the memory of the 
probe stimulus is accompanied by contextual or associative detail. 
The neural correlates of familiarity have been linked to the early 
mid-frontal negativity (FN400) in the ERP. Specifically, the ampli-
tude of the negative deflection between 300 and 500 ms is less for 
familiar as compared to novel stimuli (Rugg et al., 1998; Curran, 
2000). Recollection, by contrast, has been linked to a later positive 
component over the central–parietal cortex. This positive deflec-
tion, between 500 and 800 ms, is greater for stimuli that have been 
consciously recollected (Smith, 1993). However, there is still an 
ongoing debate as to whether or not these ERP components are a 
reflection of two distinct neural processes (Yonelinas, 2002; Paller 
et al., 2007). In addition, the influences of conceptual priming (Voss 
and Paller, 2006; Voss et al., 2008, 2010) make some prior research 
on this question difficult to interpret.

For the purpose of this study we used the early (300–500 ms) 
and late (500–800 ms) windows, associated with familiarity and 
recollection respectively, as a means to quantity the gradations in 
the recognition response. Specifically, how does the magnitude of 
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variation in block number was due to the dynamics of the real-time 
system. If the response corresponding to a particular face presenta-
tion contained EEG artifacts (blinks, eye movement, etc.) that face 
was then re-queued for subsequent presentation. The experiment 
was complete when all faces were shown to the participant, artifact 
free, at least four times. Participants were instructed to fixate at the 
center of the monitor and respond, via button press, when they 
saw a target face (Presidents Obama, Clinton, or Bush). There was 
a pause at the end of each block and the participant started the 
next block at their discretion. Thus, the participants experienced 
approximately 2 min of RSVP, followed by a self-paced rest period.

EEG rEcordInG
Scalp EEG was collected with a 128-channel HydroCel Geodesic 
Sensor Net™ (Electrical Geodesics, Inc., Eugene, OR, USA) con-
nected to an AC-coupled 128-channel, high-input impedance 
amplifier (200 MΩ, Net Amps™, Electrical Geodesics, Inc.). 
Individual sensors were adjusted until impedances were less than 
50 kΩ. Amplified analog voltages (0.1–100 Hz bandpass) were 
digitized at 250 Hz and then low-pass filtered at 40 Hz. Recorded 
voltages were initially referenced to a vertex channel. Trials were 
excluded from analysis if they contained eye movements (vertical 
electro-oculogram channel differences greater than 70 μV) or more 
than five bad channels (changing more than 100 μV between sam-
ples, or reaching amplitudes over 200 μV). Data from individual 
bad channels were replaced using a spherical-spline interpolation 
algorithm. An average-referenced transform was then used for sub-
sequent ERP analysis. All ERPs were baseline-corrected to a 100 ms 
pre-stimulus recoding interval.

rEal-tImE classIfIcatIon
The real-time classification of the EEG signal was accomplished 
through analysis of the evoked response following the presentation 
of each face. The goal was to find a linear combination of the com-
ponents of the signal that most reliably discriminated between the 
responses to familiar or recognized versus novel faces. Classification 
was initially performed using a standard or general model. This 
linear model was developed from the responses of multiple par-
ticipants in a prior study (Curran et al., 2009; Touryan et al., 2010) 
examining the P300 object classification signal (Thorpe et al., 1996). 
Individualized or custom models were also developed for each par-
ticipant using only that participants data. Below we describe the 
feature selection process (Perkins et al., 2003) we implemented to 
develop the linear models (both general and custom) used in the 
real-time EEG classification.

For each trial, N features are generated, giving a feature vec-
tor x ∈ RN. The basic machine learning approach is to find a dis-
criminant function f : RN  R that maps the features x into the 
probability that the trial was caused by one of two stimulus classes. 
For recognition, we define the classes as familiar and unfamiliar. 
Here, the probability of recognition, given the data vector x and a 
discriminant function f(x), is

p
e f

( ) .
( )

familiar |x
x

=
+ −

1

1  
(1)

The probability of non-recognition is

This unorthodox approach to measuring the recognition 
response utilized the rapid serial visual presentation (RSVP) par-
adigm (Chun and Potter, 1995). In this paradigm the participant 
viewed a continuous stream of rapidly presented faces for several 
minutes. The task was simply to identify, via button press, a small 
number of target faces from amongst the ensemble of images. There 
was no explicit study phase beyond the imagery that was provided 
by the participant. Likewise, there was no explicit test phase where 
the participants indicated which faces they recognized. Despite the 
less controlled nature of this study (relative to the prior research) 
we were able to clearly identify the recognition response both at 
an aggregate and trial-by-trial level.

matErIals and mEthods
PartIcIPants
Twenty-two individuals participated in the experiment for payment 
of $20 per hour. The participants (17 female and 5 male) ranged in 
age from 22 to 53, with a mean age of 28. Participants were both 
right-handed and left-handed (19 right-handed, 3 left-handed). 
Five of the 22 individuals participated in a second, experimen-
tally identical session roughly a week after the initial session. None 
of the participants were excluded from the analysis due to noise 
(bad channels), movement artifacts, or low behavioral accuracy. 
However, the real-time classification system did exclude individual 
trials based on pre-defined noise and movement artifact thresholds.

stImulI
Stimuli consisted of 256 × 320 pixel color photographs of single 
faces that were manually centered, scaled, and cropped. The eyes 
were centered just above the midline and the entire face was con-
tained within the cropped region. Photographs were excluded from 
the experiment if the face was obscured by sunglasses, hats, or 
costumes. Novel faces, both male and female, were obtained from 
the Flickr Creative Commons database1. All 447 novel faces were 
used in every experiment. Famous faces of movie stars, singers, or 
celebrities were obtained from Getty Images2. There were 79 famous 
females and 80 famous males in total. Participants were allowed to 
select the 20–30 most familiar individuals, roughly balancing for 
gender. The average number of faces selected by the participant 
was 24.6 ± 4.5 (std). Personal faces were obtained from each par-
ticipant prior to the experimental session. On average, 15.7 ± 4.1 
faces provided by the participant met the above criteria and were 
included in the experiment. The target faces were the three most 
recent presidents (Obama, Bush, and Clinton), which were shown 
to the participant prior to the experiment.

ProcEdurE
The participants were seated in front of a computer monitor at 
a distance of approximately 100 cm. All images were displayed at 
the center of the monitor and subtended a visual angle of about 
7° horizontally and 9° vertically. The experiment consisted of 
10–14 blocks, each containing roughly 200 faces presented in rapid 
sequence (i.e., the RSVP paradigm). Each face was presented in ran-
dom order for 500 ms and there were no breaks between faces. The 

1http://www.flickr.com/creativecommons
2http://www.gettyimages.com
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only w
0
 to vary, then iteratively finding the zero weight with the 

largest |∂L/∂w
i
| to add to the empirical risk function. This process 

is repeated until no more weights can be added. The purpose of the 
λ

0
 term (for this study λ

0
 = 10−6) is to force any w

i
 that is very near 

zero to be precisely zero. Conveniently, L(w
k
) is a convex function 

(ignoring the λ
0
 term), so the only minimum is a global minimum.

classIfIEr fEaturEs
For each evoked response, a large number of features are generated by 
first linearly transforming the raw EEG signal using principal com-
ponents analysis (PCA), and then calculating windowed fast Fourier 
transforms (FFT) for a variety of window sizes and starting times 
relative to the stimulus onset. We typically include window sizes of 
w = 128, 256, and 512 ms in the feature set. For memory capacity 
reasons, features corresponding to frequencies greater than 25 Hz are 
discarded. All other non-zero frequency components are split into real 
and imaginary parts. For each epoch, the features for all times, window 
sizes and frequencies are assembled into a large feature vector x ∈ RN.

rEsults
The experimental task used in this study (Figure 1) is a simple 
extension of the traditional RSVP target-detection paradigm (Chun 
and Potter, 1995). Here, participants had little difficulty detect-
ing the target faces (Presidents Obama, Bush, and Clinton) from 
amongst the other faces, both familiar, and novel. However, due to 
the presentation speed (2 Hz) and block duration (2 min), partici-
pants reported difficulty in responding to a target face in time (i.e., 
before the next face appeared). This is likely the primary reason that 
behavioral performance was not at ceiling. Over the population of 
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Thus if f(x) is large and positive, the probability of recognition 
is near one, and if f(x) is large and negative, the probability of 
recognition is near zero. The midpoint  f(x) = 0 corresponds to a 
probability of recognition of 1/2 and is used as the dividing line 
between the classes.

We use the following linear discriminant function to distin-
guishing between recognized and unrecognized trials:

f w w xi i
i

N

( ) ,x = +
=
∑0

1  
(3)

where N is the number of features and w
i
 is the weight of the ith 

feature. This collection of weights represents the linear model that 
separates the two classes by means of a hyperplane. The goal then is 
to find the collection of weights that maximally separates the two 
classes. To accomplish this, a dataset is built from the initial experi-
mental session. These sessions include repeated presentations of all 
faces (novel, famous, and personal) in random order. The session 
data is decomposed into a set of feature vectors: xa

r
ra N, , ,= 1…  

for the familiar or recognized faces, and xa
u

ua N, , ,= 1…  for the 
unfamiliar faces. The session is then randomly and iteratively split 
into separate training and validation portions. The training data is 
used to find a set of weights which are then applied to the feature 
vectors in the validation data. The linear model is then applied to 
any subsequent experimental session for that participant.

An important factor to consider with dense array EEG (128 
channels at 250 Hz) is the large number of features in each evoked 
response. Since every channel contains some noise, it is easy to find 
a set of weights that perfectly fits the training data, but gives poor 
results on the validation data or subsequent sessions. Thus, a model 
is more robust if the majority of weights w

i
 are zero, so that only 

the most important (and stable) features are used. The approach 
described by Perkins et al. (2003) is to penalize any non-zero w

i
. 

Specifically, the weights are found by minimizing the regularized 
empirical risk function
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where λ
1
 and λ

0
 are regularization constants. The first two terms in 

the empirical risk function are the logarithms of the probability that 
the training set is correctly classified. The λ

1
 term favors features 

where small values of w
i
 distinguish well between the classes. The 

λ
0
 term simply counts the number of non-zero weights.
Given a fixed set of non-zero weights, L(w

k
) can be minimized 

using standard function minimization, while ensuring that any 
weight that was initially zero remains at zero. A concurrent greedy 
strategy decides which of these zero weights (if any) should be 
allowed to vary by choosing the weight with the largest value of 
|∂L/∂w

i
|. This weight is then added to the set of non-zero weights, 

and L(w
k
) is again minimized. The algorithm begins by allowing 

Time
500 ms

~2 min

Figure 1 | Schematic representation of experimental design. Color 
photographs of faces were presented in a rapid serial sequence (500 ms per 
face). Participants were asked to respond, via button press, only when a target 
face (Presidents Obama, Bush, and Clinton) appeared. Besides the target 
face, the stimulus ensemble included faces of novel individuals, famous 
persons selected by the participant and personal friends and family provided 
by the participant.
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p < 0.001] as well as between personal and novel/famous faces 
[F(1,21) = 58.13, p < 0.001]. There was no significant hemispheric 
difference in the LAS and RAS mean amplitudes [F(1,21) = 3.67, 
p = 0.07]. Likewise, there was no significant interaction effect 
between condition and hemisphere [F(2,42) = 2.33, p = 0.11]. 
This result confirms previous research describing the effect of face 
familiarity on ERP amplitudes over the frontal cortex during the 
300–500 ms time window (Curran and Hancock, 2007).

One important difference with our results is the exaggerated 
effect due to level of familiarity with the particular individual in 
each stimulus (i.e., faces of friends and family elicited the largest 
response). To quantify this we calculated the Pearson’s correlation 
coefficient between mean amplitude and stimulus type. Specifically, 
we calculated the correlation coefficient between stimulus type, sorted 
from least to most familiar (i.e., novel–famous–personal), and mean 
amplitude across all participants and each channel group: r = 0.445, 
p < 0.001. This indicates that a substantial part of the variance in the 
mean response is due to stimulus type, or level of familiarity with 
the stimulus, in addition to individual differences and scalp topogra-
phy. Typically, familiarity with the stimulus set is carefully controlled 
during a study phase where participants associate a novel face with 
some attribute (Yovel and Paller, 2004; Curran and Hancock, 2007; 
MacKenzie and Donaldson, 2007). This process constrains familiarity 
with the stimulus to that specific laboratory setting, thereby limiting 
the strength of subsequent recognition. By using faces of individuals 
previously known to the participant, we have maximized the ampli-
tude effect and validated the phenomenon in a more realistic context.

The mean amplitudes of the parietal LPS and RPS channel groups 
were compared over the later 500–800 ms window. Again, a repeated-
measure ANOVA with condition (novel, famous, personal) *hemi-
sphere indicated a main effect of stimulus type [F(2,42) = 50.68, 
p < 0.001]. Within-subjects contrasts were also significant at all levels 
[novel versus famous F(1,21) = 24.37, p < 0.001; personal versus 

22 participants, the average accuracy for the behavioral response 
was 81% with high and low scores of 92 and 60.4%, respectively. 
The average reaction time was 598 ± 53 ms (std).

ErP rEsults
Initial analysis focused on spatial regions of interest (ROIs) that 
were used in previous studies (Yovel and Paller, 2004; Curran and 
Hancock, 2007). In particular, we analyzed the same channel groups 
as Curran and Hancock (2007). The two anterior, superior channel 
groups located near the standard F

3
 and F

4
 sites were labeled LAS and 

RAS (see Figure 2 montage overlays). The two posterior–superior 
channel groups, which included the standard P

3
 and P

4
 sites, were 

labeled LPS and RPS. Both the familiarity response, or FN400, and 
recollection response we analyzed over all channel groups. Here the 
early familiarity response was analyzed from 300 to 500 ms, whereas 
the recollection response was analyzed from 500 to 800 ms. The 
increased time window (300 ms) for the recollection response was to 
compensate for the initial visual response elicited from the following 
stimuli (presented 500 ms after stimulus onset). Figure 2 shows the 
average ERPs for each channel group. In agreement with previous 
studies (Curran and Hancock, 2007; MacKenzie and Donaldson, 
2007), the anterior groups (LAS and RAS) showed a greater differ-
ence in the early familiarly response as a function of stimulus class 
(novel, famous, personal) relative to the posterior groups (LPS and 
RPS). For the later recollection response, all channel groups showed 
a clear differentiation with stimulus class. Average amplitudes for 
each channel group are detailed in Table 1.

We compared the mean amplitudes of the frontal LAS and RAS 
channel groups during the 300–500 ms window. A repeated-meas-
ures analysis of variance (ANOVA) with condition (novel, famous, 
personal) *hemisphere indicated a main effect of stimulus type 
[F(2,42) = 46.23, p < 0.001]. A within-subjects contrast confirmed a 
significant effect between novel and famous faces [F(1,21) = 23.57, 
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Figure 2 | Averaged-referenced, grand-averaged erPs for depicted channel groups. L, left; R, right; A, anterior; P, posterior; S, superior. Thick overlaid bars in the 
left column indicate the early (upper) and late (lower) temporal integration widows.
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linear discriminant function that was applied to the evoked response 
to generate a score for each face. Figure 3 shows the grand-average 
topographic ERP for personal faces and the general classifier model 
overlaid on the same ERP. Essentially, the model is a set of linear 
weights applied to each channel at each time point in the evoked 
response. The weighted evoked response is then summed to generate 
the score. Here, the general model (used in every participant’s initial 
session) primarily isolates regions over the parietal cortex during 
the later epoch of the evoked response (500–600 ms). These spatial–
temporal regions align well with the maximal recognition response 
shown in Figure 2. Interestingly, the general model was built from 
a prior target-detection experiment (Curran et al., 2009; Touryan 
et al., 2010). In that experiment participants were asked to detect 
targets (people and vehicles) in an RSVP sequence of natural images. 
A machine learning algorithm (Perkins et al., 2003) was then used 
to identify features in the evoked response that maximally separated 
target from background images. Data from all participants, both 
right- and left-handed, was used to build this general classifier model, 
which captured the relevant components of the P300 complex.

We quantified the performance of the general classifier model 
in the face recognition task with receiver operating characteristics 
(ROC) analysis (Green and Swets, 1966). For each participant, we 
calculated the areas under the curve (AUC) for two conditions. 
First, famous and personal faces were combined and considered 
as familiar and compared against novel faces. Second, only per-
sonal faces were compared against novel faces. Figure 4 shows 
the performance of each participant using these two calcula-
tions. The classifier performed well for the majority of partici-
pants with an average AUC for the familiar versus novel of 0.827 
(min. = 0.583, max. = 0.957). The comparison between personal 
and novel was even more compelling with and average AUC of 
0.858 (min. = 0.580, max. = 0.998). This difference was statistically 
significant (p < 0.05, paired t-test).

Overall, the classifier performance was not correlated with behav-
ioral accuracy (r = −0.17, p = 0.46; Pearson’s correlation), rather 
it reflected the individual differences in the underlying response. 
Figure 5 illustrates this diversity in the recognition response over 
the right-parietal electrodes (RPS channel group). This area in par-
ticular, is critical to the general classifier model (see Figure 3). Not 
surprisingly, the performance of the general model was good for 
the first participant (participant 121, AUC = 0.91) but not for the 
second (participant 107, AUC = 0.69). It is clear from the average 
ERPs that the first participant had a large recognition response by 
500 ms, whereas the second participant’s recognition response was 
substantially delayed. The general classifier model, built from mul-
tiple participants, is heavily weighted toward the earlier response 

novel and famous F(1,21) = 58.48, p < 0.001]. The parietal channel 
groups did show a significant hemispheric difference [F(1,21) = 5.38, 
p < 0.05] with a larger mean amplitude over the right (RPS) channel 
group. However, there was no significant interaction effect between 
condition and hemisphere [F(2,42) = 2.34, p = 0.11]. Again, this result 
confirms and extends the prior work on the recollection response. As 
with the earlier FN400, the magnitude of the later parietal response is 
significantly correlated with level of familiarity (r = 0.554, p < 0.001; 
Pearson’s correlation). Importantly, this parietal recognition response 
was preserved even with the addition of the early visual response 
elicited from the following stimulus.

To compare the broad topography between the early and later 
windows, we again computed the mean amplitudes within the four 
channels groups shown in Figure 2. In this instance however, we 
used vector normalization (McCarthy and Wood, 1985) and only 
considered the ERPs associated with the personal stimulus cate-
gory. Specifically, the average amplitudes for each participant were 
calculated for the early and late windows described above. These 
amplitude distributions were normalized, creating 128 dimensional 
vectors with unit length. The montage averages were then re-cal-
culated using these normalized distributions. Repeated-measures 
ANOVA indicated that the early and late scalp distributions were 
significantly different. Both the time (300–500, 500–800 ms) *hemi-
sphere interaction, F(1,21) = 12.85, p = 0.002, and time *anterior/
posterior interaction, F(1,21) = 53.78, p < 0.001, show a significant 
effect. This result is consistent with separate-source theory of famili-
arity and recollection (Yonelinas, 2002; Curran and Hancock, 2007).

lInEar classIfIEr
In addition to the post-experiment ERP analysis described above, 
the participant’s neural response was scored via a classification algo-
rithm, in real-time, after each stimulus presentation (see Materials 
and Methods for details). In our case, the classifier consisted of a 

Table 1 | Amplitude means and Se.

Channel group Latency (ms) Novel Famous Personal

LAS 300–500 0.0 (0.0) 1.1 (0.1) 2.5 (0.1)

 500–800 0.6 (0.1) 1.1 (0.1) 2.6 (0.2)

RAS 300–500 0.2 (0.0) 1.4 (0.1) 3.1 (0.2)

 500–800 0.9 (0.1) 1.7 (0.2) 3.6 (0.2)

LPS 300–500 0.0 (0.0) −0.1 (0.1) 0.9 (0.2)

 500–800 0.6 (0.1) 1.6 (0.1) 3.5 (0.1)

RPS 300–500 0.3 (0.0) 0.1 (0.2) 1.1 (0.3)

 500–800 1.0 (0.1) 2.1 (0.1) 4.3 (0.1)

Figure 3 | Topographic maps of the evoked response. Upper column: grand-averaged ERP for personal (faces of friends and family) stimulus class. Lower 
column: same grand-averaged ERP weighted by the general classifier model (linear discriminant function).
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models, we again calculated the AUC for the familiar versus novel 
condition (Figure 6). In each case, the customized model resulted 
in a substantial improvement in classifier performance. Here, the 
average AUC was 0.945 (min. = 0.868, max. = 0.991) a significant 
improvement over the general model (p < 0.001, paired t-test). For 
an additional validation of these customized models, a subset of 
participants (n = 5) returned for a second experimental session. 
During this second session, the custom model was used for the real-
time classification of the evoked response. Again, the customized 
model significantly improved classifier performance (p < 0.05, paired 
t-test) with an average improvement of 0.06 AUC. The separate ses-
sions controlled for any effects of over-fitting or sensitivity to exact 
electrode placement. In sum, while the general model was able to 
capture the universal neural correlate of the recognition response, 
the customized models improve the performance by accounting for 
some of the individual variations in the evoked response.

dIscussIon
In this study we quantified the neural correlates of recognition 
evident the evoked response (Yovel and Paller, 2004; Curran and 
Hancock, 2007; MacKenzie and Donaldson, 2007). Unlike previ-
ous studies, the components of recognition, namely familiarity, 
and recollection, were not independently manipulated. However, 
it is clear from these results that both the mid-frontal FN400 
(familiarity) and later parietal component (recollection) are influ-
enced by knowledge of the individual depicted in the photograph 
(Paller et al., 2007). A common hypothesis describes familiarly as 
a sub-threshold process that does not achieve the level of contex-
tual memory recall associated with recollection (Yonelinas, 2002; 
Wixted, 2007). If this is the case, one might expect this process 
would saturate once recollection is achieved. Our results, however, 
indicate that the frontal FN400 is significantly larger for individuals 

(500–600 ms) and is thus negatively affected by this type of delay. 
These types of individual variations in the evoked response are a pri-
mary reason for the suboptimal performance of the general model.

To accommodate the individual variations in the evoked 
response, we built customized models for each participant after their 
initial session. The custom models were built in the same manner 
as the general model described above (see Materials and Methods 
for details). To compare classification performance between the 
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Figure 4 | receiver operating characteristics analysis of classifier 
performance. Scatter plot of the area under the curve (AUC) for each 
participant. The x and y axes represent the two comparison conditions: familiar 
(personal and famous) versus novel and personal versus novel. Red diamonds 
indicate the individual participants whose ERPs are shown in Figure 5.
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Figure 5 | Averaged-referenced erPs for two individual participants. Top 
panel: ERP for participant 121 with high AUC (0.91). Bottom panel: ERP for 
participant 107 with low AUC (0.69). The AUC values were calculated using the 
general classifier model. Inset: the RPS channel group.
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Figure 6 | receiver operating characteristics analysis of classifier 
models. Scatter plot of the AUC for each participant. All AUC values were 
calculated for the familiar (personal and famous) versus novel condition. The x 
and y axes represent the two model conditions: a general model (same for all 
participants) and a custom model (unique to each participant). Blue diamonds 
indicate the individual participants whose custom model was validated with a 
second, independent experimental session.
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Brain–machine interfaces are one of the more common applica-
tions that utilize the evoked response (Sellers et al., 2006). Many 
BMI technologies rely on classification of the occipital–parietal 
P300 signal, similar to the ERPs shown here (Krusienski et al., 2006). 
While this classification is typically designed to identify stimuli 
that are task-relevant (e.g., a particular letter or type of object), 
the recognition response produces a similar signal. While the BMI 
applications of spelling out letters to form words (Krusienski et al., 
2006; Klobassa et al., 2009) or finding relevant targets in imagery 
is clear (Luo and Sajda, 2009; Touryan et al., 2010), one can also 
imagine applications that employ the recognition response as either 
a memory probe or a metric for learning (i.e., what items has the 
participant committed to memory). This study indicates that, not 
only is the recognition response distinguishable within single-
trials (Parra et al., 2002), but that EEG classification techniques 
developed for visual categorization tasks can be easily adapted to 
recognition tasks.

Likewise, the differential neural activity based on memory 
(referred to as Dm) could be adapted for the same purpose. Previous 
studies have shown an enhanced posterior positivity in the ERP 
(with latency similar to the recognition response) for word stim-
uli that are subsequently remembered (Paller and Wagner, 2002). 
Yovel and Paller (2004) showed a similar Dm effect during a face-
occupation memory task. Here there was a clear distinction in the 
evoked response for faces that were later remembered as opposed 
to faces later forgotten. In other words, the evoked response elicited 
from the initial exposure to a stimulus is predictive of subsequence 
memory for that stimulus. This intriguing signal offers the prospect 
for applications that directly measure memory encoding. Ideally, 
such an application could use this signal to identify information 
that will either be remembered or forgotten. In addition, this type 
of tool could be useful for exploring the neural mechanisms of 
memory at the level of a single object, word or atom of information. 
Such a memory encoding tool could be useful when designing BMI 
systems that seek to maximize or augment human performance.

personally known by the participant than for celebrities selected 
by the participant. Here, the entire recognition response is a not a 
binary operation but rather a process that reflects the participant’s 
level of experience with the stimulus. While this study does not 
resolve the debate over neural correlates of familiarity and recol-
lection, it supports the conclusion that the early and late compo-
nents of the recognition response behave in a similar continuous 
or graded fashion.

Our results also indicate that magnitude and time course of the 
recognition response remains robust even when the stimuli, color 
photographs of faces, are much less controlled relative to previous 
studies. In our experiment, faces were of different genders and 
ethnicities, with large variations in lighting, angle, background, and 
resolution. Indeed, this diverse ensemble was necessary to control 
for the variation in participant-provided imagery. Likewise, the ERP 
associated with each stimulus category clearly shows the early and 
late components of the recognition response, even though the fol-
lowing stimulus was presented before the complete evolution of the 
response. These results offer an increased level of ecological validity 
to the previously described recognition response and demonstrate 
the utility of the signal for applications outside the laboratory.

In previous studies the level of familiarity was carefully con-
trolled within the laboratory session. Typically, participants would 
encode novel stimuli (words or faces) during an explicit study 
phase. This process mitigates, to some degree, influences external 
to the experimental session and is often necessary for controlling or 
counterbalancing various cognitive processes (Gabrieli, 1998; Paller 
et al., 2007). However, one consequence of this is an attenuation 
of the recognition signal due to the capacity or limits of human 
memory. In the real world, recognition is often clear and unam-
biguous, especially the recognition of individuals we encounter 
on a daily basis (friends, coworkers, family members, etc.). For 
applications that seek to use the recognition signal, evidenced in 
the evoked response, it is important to quantify the magnitude of 
the effect in a more realistic setting.
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