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Alpinia officinarum, commonly known as Galangal, is not only widely used as a

medicinal plant but also holds significant ornamental value in horticulture and

landscape design due to its unique plant structure and floral aesthetics in China.

This study evaluates the impact of current and future climate change scenarios

(ssp126, ssp245, ssp370, and ssp585) on the suitable habitats for A. officinarum in

China. A total of 73 reliable distribution points for A. officinarum were collected,

and 11 key environmental variables were selected. The ENMeval package was used

to optimize the Maxent model, and the potential suitable areas for A. officinarum

were predicted in combination with Biomod2. The results show that the optimized

Maxent model accurately predicted the potential distribution of A. officinarum in

China. Under low emission scenarios (ssp126 and ssp245), the suitable habitat area

increased and expanded towards higher latitudes. However, under high emission

scenarios (ssp370 and ssp585), the suitable habitat area significantly decreased,

with the species distribution range shrinking by approximately 3.7% and 19.8%,

respectively. Through Multivariate environmental similarity surface (MESS) and

most dissimilar variable (MoD) analyses revealed that increased climate variability

under high emission scenarios, especially in ssp585, led to large-scale habitat

contraction due to rising temperatures and unstable precipitation patterns.

Changes in the center of suitability location showed that the current center of A.

officinarum’s suitable habitat is located in Guangxi, China. Under low emission

scenarios, the center of suitability gradually shifts northwest, while under high

emission scenarios, this shift becomesmore pronounced. These findings provide a

scientific basis for the conservation of A. officinarum germplasm resources and the

management strategies in response to climate change.
KEYWORDS

Alpinia officinarum, climate change, Maxent model, biomod2, species distribution
prediction, suitability area
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1 Introduction

Global climate change is one of the most critical environmental

challenges of the 21st century. Over the past 100 years, global

temperatures have gradually increased, with the rate of warming

accelerating over the past 30 years, profoundly affecting ecosystems

and biodiversity (Khan and Verma, 2022; Huang et al., 2024).

Climate change directly affects plant growth and distribution,

particularly as shifts in temperature and precipitation patterns drive

plant habitats to gradually migrate towards higher latitudes and

elevations in response to the increasing environmental pressures

(Heckathorn et al., 2020; Pareek et al., 2020). Climate change not

only affects the biogeographical patterns of plants but may also

significantly alter ecosystem services (Camille and Hanley, 2015).

In recent years, changes in plant distribution patterns have

become a research focus in the fields of ecology and conservation

biology (Gurung et al., 2024). Research has shown that climate

change may lead to habitat contraction or migration for plant

species, thereby threatening species diversity and the stability of

ecosystems (Tang et al., 2021). Particularly, species with high

ecological sensitivity and narrow distribution ranges are more

vulnerable to adverse effects in the face of climate change

(Porfirio et al., 2014). Global warming has caused significant

changes in plant distribution in tropical and temperate regions,

with extreme weather events such as droughts and floods further

intensifying these shifts (Qazi et al., 2022). Climate change has also

altered ecosystem functions and services. For example, the decline

in plant diversity in certain regions has led to reduced ecosystem

productivity and stability, which in turn weakens the ability of

ecosystem to adapt to climate change and increases its ecological

risks (Correia and Lopes, 2023). Therefore, understanding the

mechanisms by which plants respond to climate change,

especially predicting future distribution pattern changes based on

global climate models, is crucial for developing effective ecological

conservation strategies (Parmesan and Hanley, 2015).

Species Distribution Models (SDMs) have become one of the

primary tools for studying the impact of climate change on plant

distribution. These models integrate known species distribution

data with environmental variables (such as temperature,

precipitation, and soil type) to effectively predict the potential

suitable habitats for plants under different future climate

scenarios (Srivastava et al., 2019). Among these models, the

Maximum Entropy Model (Maxent) was chosen for its ability to

handle small sample sizes while maintaining high predictive

accuracy Maxent (Xu et al., 2024), is especially suitable for species

with limited distribution data, such as A. officinarum. Its global

application has demonstrated that Maxent can provide reliable

predictive results even in cases of limited sample data, making it

particularly suitable for assessing the potential habitat ranges of

plant species (Chahouki and Sahragard, 2016; Wang et al., 2024c).

In addition, the Biomod2 package integrates multiple models, such

as Generalized Linear Models (GLM), Generalized Additive Models

(GAM), Artificial Neural Network (ANN), Classification Tree

Analysis (CTA), Flexible Discriminant Analysis (FDA), Surface

Range Envelope (SRE) and Random Forest (RF), to optimize

predictive results and improve accuracy (Wang et al., 2024a).
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This integration enhances the robustness and reliability of

predictions, generating more reliable and optimized results, and

making it a valuable tool for this study (Thuiller et al., 2009; Zhao

et al., 2021). The Maxent and Biomod2 provide a powerful multi-

model approach for studying how plants respond to future climate

change, aiding scientists in developing effective ecological

conservation and resource management strategies (Huang et al.,

2023; Gu et al., 2024).

Alpinia officinarum is a perennial herbaceous plant widely

distributed in the humid, low-altitude regions of southern China.

It holds significant medicinal and ornamental value, along with

substantial market demand (FOC, E.C.o, 1981). Since the beginning

of the 21st century, wild populations of A. officinarum have been

critically endangered, with most commercially available products

now derived from cultivated sources. Xuwen County in Guangdong

Province is one of the key production areas for this species. A.

officinarum is native to tropical and subtropical regions and thrives

in warm, humid climates. It is drought-tolerant but sensitive to

waterlogging and frost. The species grows optimally within a

temperature range of 38.8°C (maximum) to 2.2°C (minimum)

and annual precipitation levels between 1,100 and 1,803 mm.

During its seedling stage, A. officinarum is not adapted to strong

sunlight and requires some degree of canopy cover, but mature

plants can tolerate higher light intensities. While the species is not

particularly demanding in terms of soil, it thrives best in deep, loose,

fertile, humus-rich soils with slightly acidic to acidic pH. In recent

years, the suitability of its habitat has been severely impacted by

both anthropogenic activities and climate change, especially with

increasing temperatures, altered precipitation patterns, and a rise in

extreme climate events (Yang et al., 2012). Therefore, studying the

habitat characteristics, climate sensitivity, and adaptive responses of

A. officinarum is essential for evaluating its vulnerability in the

context of ongoing climate change. With global warming and the

increasing frequency of extreme climate events, the natural habitat

of A. officinarum may face risks of contraction and migration,

posing a threat to the long-term stability of its populations. Existing

research has primarily focused on the physiological and ecological

characteristics as well as the chemical composition of A. officinarum

(Van et al., 2021; Youn et al., 2024), but there is a lack of systematic

research on its distribution dynamics under future climate change

scenarios. Understanding and predicting the adjustment trends of

A. officinarum’s suitable habitat under climate change is crucial for

developing conservation plans and ensuring its sustainable

utilization. We can assess the suitable habitat distribution of A.

officinarum under different climate scenarios and identify potential

areas of habitat expansion and contraction by applying species

distribution models (Roy et al., 2022). This provides a scientific

basis for the conservation of A. officinarum germplasm resources

and its sustainable utilization.

Climate change will continue to profoundly impact the survival

environments and geographical distribution patterns of plants

(Kosanic et al., 2018). Conducting adaptive research on plants

like A. officinarum, which hold significant ecological and

economic value, not only aids in understanding the long-term

effects of climate change on biodiversity but also provides

scientific support for future ecological conservation and resource
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management strategies. To effectively analyze the dynamic changes

in suitable habitats for A. officinarum under various climate change

scenarios, this study employed the ENMeval package to optimize

Maxent model parameters and used Biomod2 in combination with

Maxent to compare the predictive performance of different

algorithms. Finally, the optimized models were then applied to

forecast the potential distribution of A. officinarum under current

and future climate conditions. The main objectives of this study are:

1) To predict the trends in suitable habitat changes of A. officinarum

under different climate scenarios based on Maxent and Biomod2

models; 2) To assess the impact of climatic factors on the habitat of

A. officinarum using MESS and MoD analyses, identifying potential

areas of habitat expansion or contraction; 3) To predict the

migration trends of habitat centers under future climate

scenarios, providing scientific support for the conservation and

sustainable use of A. officinarum. Maxent.
2 Materials and methods

2.1 Distribution area

A. officinarum , a perennial herbaceous plant in the

Zingiberaceae family, is one of the widely distributed

representative species of the ginger family in southern China

(Figure 1). It primarily grows in regions such as Guangdong,

Guangxi, and Hainan, commonly found in low-altitude

mountainous areas, forest edges, and moist areas along rivers.
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The species exhibits strong ecological adaptability and

environmental tolerance. In this study, by analyzing the

geographic data of its growing environment and distribution

range, we identified that the primary distribution area of A.

officinarum is located between 100°51’36” to 117°10’48” E and 18°

30’00” to 27°23’60” N.
2.2 Collection and screening of
sample data

A total of 84 distribution records of A. officinarum were collected

by reviewing published literature and retrieving data from global

biodiversity information repositories, including the Global

Biodiversity Information Facility (GBIF, http://www.gbif.org),

Chinese Virtual Herbarium (CVH, http://www.cvh.org.cn), and

Chinese Field Herbarium (CFH, http://www.cfh.ac.cn). During

the data processing, the collected distribution records were

rigorously filtered to exclude points with unclear geographic

information, duplicates, or outliers. After careful organization and

validation, 73 reliable natural distribution points of A. officinarum

within China were confirmed for use in the study.
2.3 Screening of environmental variables

In total, 28 environmental factors were selected for the study,

including 19 bioclimatic factors, 1 elevation factor, and 8 soil
FIGURE 1

Alpinia officinarum. (A) Flower, (B) Whole plant, (C) Leaf.
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factors. The bioclimatic data used in this study includes 19 key

climatic factors from the current period (1970-2000), as well as

environmental projection data for the future periods of the 2050s

(2041-2060) and the 2090s (2081-2100). These climate data and the

1 elevation factor were obtained from the global climate database

WorldClim (http://www.worldclim.org), with a spatial resolution of

30 arc-seconds (approximately 1 kilometer), which accurately

reflects regional climate change characteristics. For future climate

data, this study utilized the CMCC-ESM2 model, which is part of

the Coupled Model Intercomparison Project Phase 6 (CMIP6).

CMCC-ESM2 is particularly suitable for simulating climate change

in tropical and subtropical regions, including China and

surrounding areas, where it has demonstrated high accuracy in

climate predictions. The model effectively captures regional climate

patterns, particularly changes in temperature and precipitation.

CMIP6 data provides climate projections for four different Shared

Socioeconomic Pathways, including a sustainable development

scenario (ssp126), a moderate development scenario (ssp245), a

medium-high emission scenario (ssp370), and a traditional high

emission scenario (ssp585). Compared to the previous generation

CMIP5 data, the SSP scenarios in CMIP6 offer higher precision and

differentiation, allowing for better integration of socio-economic

factors in regional predictions, thus providing a more scientific basis

for future climate change assessments. The 8 soil factors were

obtained from the Harmonized World Soil Database (HWSD) of

the Food and Agriculture Organization (FAO) (http://www.fao.org/

faostat/en/#data), while the vector maps of China were obtained

from the Ministry of Natural Resources of China (http://

www.mnr.gov.cn/). The environmental variables selected in the

preliminary stage of this study are shown in Table 1.
2.4 Model calibration

In this study, the ENMeval and biomod2 packages in R were

employed to optimize and construct the environmental distribution

models. ENMeval helps optimize the key parameter settings of the

Maxent (v.3.4.4) model, thereby enhancing the predictive accuracy

of model (Bai et al., 2024). Through the ENMeval package, two

Maxent parameters were adjusted: the regularization multiplier

(RM) and the feature combination (FC). Maxent offers five

feature types: linear (L), quadratic (Q), hinge (H), product (P),

and threshold (T). By default, the RM parameter is set to 1, and the

FC combination is LQHPT. To optimize model performance, the

RM parameter was adjusted between 0.5 and 4, in increments of 0.5.

For feature combinations, six different settings were tested,

including L, LQ, H, LQH, LQHP, and LQHPT. Parameter

combinations were tested using ENMeval, and the best

combination was selected based on the delta value of the

corrected Akaike Information Criterion (AICc). The AIC is used

to assess model complexity and fit, and the model selection was

based on the combination with the lowest AICc delta value

(delta.AICc=0), indicating the optimal balance between model

complexity and goodness of fit (Chen et al., 2024). Additionally,

the study referenced the mean area under the curve (avg.diff.AUC)

of the optimized model and the average 10% test omission rate
Frontiers in Plant Science 04
(avg.test.or10pct) to evaluate the fit of model to the local species

distribution points (Muscarella et al., 2014).

The second step involved using the Biomod2 package in R to create

the models. This study applied eight algorithms: Artificial Neural

Network (ANN), Classification Tree Analysis (CTA), Flexible

Discriminant Analysis (FDA), Generalized Additive Model (GAM),

Generalized Linear Model (GLM), Random Forest (RF), Surface Range

Envelope (SRE), and Maximum Entropy (Maxent). These models were

chosen for their ability to handle different types of ecological data and

their strengths in modeling species distributions. Each algorithm was

selected for its unique strengths, including capturing non-linear
TABLE 1 Environmental variables.

Factor Description Unit

bio1 Annual Mean Temperature °C

bio2
Mean Diurnal Range (Mean of monthly (max temp -

min temp)) °C

bio3 Isothermality (BIO2/BIO7) (×100) %

bio4 Temperature Seasonality (standard deviation ×100) °C

bio5 Max Temperature of Warmest Month °C

bio6 Min Temperature of Coldest Month °C

bio7 Temperature Annual Range (BIO5-BIO6) °C

bio8 Mean Temperature of Wettest Quarter °C

bio9 Mean Temperature of Driest Quarter °C

bio10 Mean Temperature of Warmest Quarter °C

bio11 Mean Temperature of Coldest Quarter °C

bio12 Annual Precipitation mm

bio13 Precipitation of Wettest Month mm

bio14 Precipitation of Driest Month mm

bio15 Precipitation Seasonality (Coefficient of Variation) %

bio16 Precipitation of Wettest Quarter mm

bio17 Precipitation of Driest Quarter mm

bio18 Precipitation of Warmest Quarter mm

bio19 Precipitation of Coldest Quarter mm

Elevation Height above sea level
meters
(m)

Aspect Slope direction
degrees
(°)

Slope Terrain steepness
degrees
(°)

t_clay Clay content %

t_gravel Gravel amount %

t_oc Soil fertility indicator %

t_pH Soil acidity/alkalinity pH value

t_ref Light reflection %

t_sand Sand content %
fron
tiersin.org

http://www.worldclim.org
http://www.fao.org/faostat/en/#data
http://www.fao.org/faostat/en/#data
http://www.mnr.gov.cn/
http://www.mnr.gov.cn/
https://doi.org/10.3389/fpls.2025.1517060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kang et al. 10.3389/fpls.2025.1517060
relationships, handling large datasets, and providing accurate

predictions for species distributions in varying environmental (Bi

et al., 2022; Wang et al., 2023b). Except for Maxent, all other models

used the default model settings in Biomod2. During the modeling

process, 75% of the 73 distribution points for A. officinarum were

randomly selected as training data, with the remaining 25% designated

as test data. To better simulate actual distribution and minimize spatial

bias, 1,000 pseudo-absence points were randomly selected. The selection

of 1,000 pseudo-absence points was crucial to ensure a balanced

representation of both suitable and unsuitable environmental

conditions, which helps reduce spatial bias, particularly in areas with

sparse distribution data. This approach enhances the model’s reliability

by providing sufficient data for distinguishing between suitable and

unsuitable habitats. The model construction was repeated 10 times to

further minimize spatial bias and account for potential variability,

ensuring more robust and accurate predictions.

Using the optimized model, simulations were performed to

predict the suitable areas for A. officinarum under both current and

future climate conditions. The Area Under the Curve (AUC) was

used to assess the accuracy of the Maxent predictions, with AUC

values ranging from 0 to 1.0. The larger the AUC value, the more

accurate the prediction. An AUC value between 0.5 and 0.7

indicates poor predictive performance, 0.8 to 0.9 indicates good

performance, and values between 0.9 and 1.0 represent excellent

predictive accuracy (Phillips et al., 2006; Hao et al., 2020). In this

study, ArcGIS 10.2 was used to convert the model outputs, and the

natural breaks method was applied to classify the results into habitat

suitability gradients. These were divided into four categories: 0-0.10

indicating unsuitable areas, 0.10-0.30 as low suitability areas, 0.30-

0.60 as moderately suitable areas, and 0.60-1.0 representing highly

suitable areas. The area of suitable habitat under different climate

scenarios was calculated using ArcGIS 10.2.
2.5 Spatial pattern changes in suitable
areas for A. officinarum

Spatial units with a species presence probability value ≥0.30

were considered suitable areas for A. officinarum, while units with a

probability value <0.30 were classified as unsuitable. Based on this

classification, presence/absence (0,1) matrices were established to

represent the potential geographic distribution of A. officinarum

under both current and future climate change scenarios. Suitable

areas were assigned a value of 1 (presence), while unsuitable areas

were assigned a value of 0 (absence). Using these matrices, the

spatial pattern changes of suitable areas for A. officinarum under

current and future climate scenarios were further analyzed. Four

types of suitability changes were defined: newly suitable areas, lost

suitable areas, retained suitable areas, and unsuitable areas. The

changes in the area of suitability were calculated based on the

current and projected future suitable habitat areas. The spatial

pattern changes in potential suitable areas under current and

future climate conditions were defined as follows: a matrix value

change from 0→1 indicates newly suitable areas, 1→0 indicates lost

suitable areas, 1→1 represents retained suitable areas, and 0→0

represents unsuitable areas (Huang et al., 2019; Zhang et al., 2022).
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2.6 Multivariate environmental similarity
surface and most dissimilar
variable analyses

The Multivariate Environmental Similarity Surface (MESS)

represents the degree of similarity between a set of predictor

variables (V1, V2, Vi…) and a reference set of points. In the

reference layer, mini and maxi refer to the minimum and

maximum values of the environmental variable Vi, respectively,

and pi is the value of the environmental variable Vi at point P in

the reference layer during a specific period. The variable fi represents

the percentage of points in the study area where the environmental

variableVi is less than pi. When fi = 0, the MESS value is calculated as

100 × (pi - mini)/(maxi - mini); when 0 < fi ≤ 50, the MESS value is

2fi; when 50 < fi < 100, the MESS value is 2(100 - fi); and when fi =

100, the MESS value is calculated as 100 × (maxi - pi)/(maxi - mini).

TheMESS value for point P is the minimum similarity score across all

environmental variables, also known as the “Most Dissimilar

Variable” (MoD) (Clarke, 2013). A negative MESS value indicates

that at least one variable falls outside the environmental range

observed in the reference point set for a given period, a condition

known as a climate anomaly. This means that the environmental

conditions at point P are beyond the ecological adaptability of species,

highlighting potential regions where the species may struggle to

survive under future climate conditions. A MESS value of 100

indicates that the climate environment is fully consistent with the

reference layer, representing normal climate conditions. These

thresholds for climate anomalies play a crucial role in

understanding the environmental limits of species’ habitats,

allowing researchers to identify areas where species may face

ecological stress or habitat loss due to climate change. The Maxent

(v.3.4.4) software tool density.tool.novel was used to compute MESS

and MoD values (Elith et al., 2010; Wang et al., 2024b).
2.7 Migration analysis of suitable habitat
center point

In this study, ArcGIS 10.2 software was used to calculate the

center point of the current and future suitable areas forA. officinarum

and analyze the trends of change. The suitable habitat of

A. officinarum was treated as a single entity, simplified into a

central point, and the movement of this center was used to reflect

changes in the size and direction of the suitable habitat. The

migration distance of suitable areas in terms of latitude and

longitude can be assessed by analyzing the center of A. officinarum

under different periods and climate conditions (Jin et al., 2023).
3 Results

3.1 Correlation and multicollinearity
analysis of environmental variables

Spearman correlation analysis was performed on 28

environmental factors using R 4.3.3, and 11 factors with a
frontiersin.org
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correlation coefficient <0.7 were selected for further analysis. These

included 4 climatic variables (bio5, bio7, bio15, bio18), 3

topographical variables (Elevation, Aspect, Slope), and 4 soil

variables (t_clay, t_gravel, t_oc and t_pH) (Figure 2). Using bio5

as the independent variable, linear regression and multicollinearity

analysis (Variance Inflation Factor, VIF) were conducted with the

other 10 environmental factors as dependent variables. The results

indicated no multicollinearity among the 11 environmental factors

(VIF < 10) (Table 2). Therefore, 11 environmental factors including

bio5, bio7, bio15, bio18, Elevation, Aspect, Slope, t_clay, t_gravel,

t_oc and t_pH, were ultimately selected for further analysis in

this study.
3.2 Model optimization

In this study, based on 73 distribution points of A. officinarum

and 11 environmental variables, the Maxent model was optimized

using the ENMeval package in R 4.3.3 to simulate the potential

habitat distribution of A. officinarum. Under the default parameter

settings (RM=1, FC =LQHPT), the analysis results showed a delta

AICc of 111.06, an average AUC difference (auc.avg.diff) of 0.034,

an AUC difference standard deviation (auc.diff.sd) of 0.179, and an

average 10% test omission rate (or.10p.avg) of 0.353. After

optimization with ENMeval, the Maxent model parameters were
Frontiers in Plant Science 06
adjusted to RM=4.0 and FC=L. In this case, the delta AICc was

reduced to 0, indicating the optimal balance between model

complexity and fit, ensuring accurate predictions. Additionally,

the auc.avg.diff was 0.037, the auc.diff.sd was 0.160, and the

or.10p.avg decreased to 0.147, demonstrating enhanced

performance (Figure 3). Overall, the optimized parameter settings

significantly improved the fit of model and enhanced its ability to

predict species migration. Therefore, RM=4.0 and FC=L were

adopted as the final parameter settings for this study.
3.3 Response curve analysis

The occurrence probability curves of the optimized model

under various environmental factors exhibited a more stable

trend compared to the default model (Figure 4). For variables

such as Slope and Soil Organic Carbon (t_oc), the optimized

model showed a gradual increase in probability as the factor value

increased, stabilizing at higher values, whereas the default model

exhibited sharp fluctuations in certain ranges. In the case of the

annual maximum temperature (bio5) and the seasonality of annual

mean temperature (bio7), the optimized model showed a

continuous upward trend as temperature increased, displaying a

smoother pattern compared to the steep rises observed in the

default model in certain intervals. Additionally, for variables like
FIGURE 2

Spearman correlation analysis of the 28 environmental variables.
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Soil pH (t_pH) and Precipitation Seasonality (bio15), the optimized

model demonstrated more linear and uniform changes, reducing

the multiple fluctuations seen in the default model. As a result, the

response curves of the optimized model were more consistent

across most environmental factors.
3.4 Potential suitable habitat for
A. officinarum under current
climate conditions

The eight species distribution models generated by biomod2

show some variation in the predicted distribution of A.

officinarum (Figure 5). Among these, the optimized Maxent

model exhibited the best fit with the actual distribution points.

Therefore, the Maxent model optimized using the ENMeval

function was selected for the final modeling. Under current

climate conditions, the highly suitable habitat for A. officinarum

covers an area of 8.71×104 km², accounting for 0.91% of the land

area of China; the moderately suitable habitat covers 43.01×104
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km², accounting for 4.48%. And the generally suitable habitat

covers 105.98×104 km², accounting for 11.04% of the land area of

China. In total, the suitable habitat area for A. officinarum is

157.70×104 km², representing 16.43% of China total area.

According to the results shown in Figure 5, the total suitable

habitat for A. officinarum in China is primarily distributed in the

river basins south of the Yangtze River, including provinces such

as Guangxi, Guangdong, and Hainan.
3.5 Dynamic changes in suitable habitat for
A. officinarum under different
climate scenarios

The suitable habitat area for A. officinarum shows significant

fluctuations and changes over time under different climate

scenarios. The current total suitable area is 157.7×104 km².

Between 2041-2060 period, under low-emission scenarios (ssp126

and ssp245), the suitable area increases to 169.7×104 km² and

164.7×104 km², with an increase of 4.4% to 7.6%. In contrast,
TABLE 2 VIF values between bio5 and other environmental factors.

Variable bio7 bio15 bio18 Elevation Aspect Slope t_clay t_gravel t_oc t_pH

VIF 1.94 2.64 3.12 2.40 1.44 5.97 2.72 1.94 3.81 4.19
fr
FIGURE 3

Maxent model optimization for delta.AICc, avg.diff.AUC, and avg.test.or10pct.
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under high-emission scenarios (ssp370 and ssp585), the suitable

area decreases to 151.9×104 km² and 126.5×104 km², representing a

reduction of 3.7% to 19.8%. By 2081-2100 period, the suitable area

under ssp245 reaches a peak of 174.6×104 km², an increase of 10.7%

compared to the present. However, under ssp585, the area decreases

to 169.6×104 km², reflecting a 7.5% increase compared to the

current area (Table 3).

The expansion and contraction of suitable areas exhibit marked

variation. Between 2041-2060 period, under ssp126 and ssp245

scenarios, the expansion areas are larger, with 11.90×104 km² and

7.59×104 km², respectively, while contraction areas are minimal,

ranging from 0.22×104 km² to 0.81×104 km². Under high-emission

scenarios such as ssp370 and ssp585, the expansion areas are

significantly reduced to 3.61×104 km² and 1.96×104 km², while

contraction areas increase sharply to 9.49×104 km² to 32.32×104

km², indicating rapid expansion of unsuitable areas in high-

emission scenarios.

By 2081-2100 period, the expansion area under the ssp126

scenario decreases to 3.54 × 104 km², with contraction areas

increasing to 10.87×104 km². Under ssp245, the expansion area

reaches its maximum of 16.76×104 km², with the smallest

contraction area of only 0.25×104 km². However, under ssp370

and ssp585, the expansion areas decrease to 2.34×104 km² and

12.53×104 km², respectively, while contraction areas rise to

10.87×104 km² to 12.38×104 km² (Figure 6).
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3.6 Analyzed the multivariate
environmental similarity surface and most
dissimilar variable

This study analyzed the multivariate environmental similarity

and climate anomaly levels under different gas emission scenarios

(ssp126, ssp245, ssp370, ssp585) to reveal the environmental change

trends for A. officinarum in China in the future (Figure 7). The

results show that by 2050s, the mean values across the scenarios are

quite close (around 10.60-11.00), indicating high multivariate

environmental similarity and relatively small climate differences.

However, by 2090s, the mean value in the high-emission scenario

(ssp585) significantly drops to 7.53, suggesting an increase in

environmental variability, with conditions in different regions

significantly deviating from the training data of model, leading to

reduced prediction reliability. The spatial distribution maps further

show that under high-emission scenarios (ssp370 and ssp585),

particularly in the 2081-2100 period predictions, the degree of

climate anomalies increases, indicating a heightened risk of future

extreme climate events. In contrast, low-emission scenarios (ssp126

and ssp245) exhibit higher environmental similarity and more

moderate impacts from climate change, with a lower risk of

climate anomalies.

Based on the MoD results, this study analyzed the primary

driving factors of environmental changes in China under different
FIGURE 4

Response curves of 11 environmental factors in the habitat distribution model of A. officinarum. (A) Aspect, (B) Slope, (C) t_clay, (D) t_gravel, (E)
t_oc, (F) t_pH, (G) bio5, (H) bio7, (I) bio15, (J) bio18, (K) Elevation.
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emission scenarios (ssp126, ssp245, ssp370, ssp585) (Figure 8). The

results show that in high-emission scenarios (ssp370 and ssp585),

temperature-related factors (e.g., bio5 and bio15) dominate,

especially in the 2081-2100 period, where the trend of increasing

temperatures is significant, affectingmost of the suitable habitat areas.
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Precipitation factors (e.g., bio18) also show noticeable changes. The

influence of topographic and soil factors (e.g., Elevation, pH, Slope) is

more scattered. In contrast, under low-emission scenarios (ssp126

and ssp245), changes in temperature and precipitation are smaller,

and environmental conditions remain more stable.
FIGURE 5

Spatial distribution records of A. officinarum and predicted potential geographic distribution by eight species distribution models.
TABLE 3 Area changes of suitable habitats under different climate scenarios.

Period
Climate
scenario

Unsuitable
area

(* 104 km2)

Low-grade suitable
area (* 104 km2)

Moderately suitable
area (* 104 km2)

Highly suitable
area (* 104 km2)

Total suitable
area (* 104 km2)

current – 802.30 105.98 43.01 8.71 157.70

2041-
2060

ssp126 790.26 111.71 35.82 22.21 169.74

ssp245 795.28 103.44 38.15 23.13 164.72

ssp370 808.14 100.26 33.27 18.33 151.86

ssp585 833.49 80.93 32.04 13.54 126.51

2081-
2100

ssp126 809.79 97.50 34.27 18.44 150.21

ssp245 785.37 112.03 39.30 23.30 174.63

ssp370 812.46 95.78 34.23 17.53 147.54

ssp585 790.41 108.24 37.73 23.62 169.59
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3.7 Migration trends of the center point of
A. officinarum suitable habitat under
climate change

The spatial distribution of the current point and the points

under different emission scenarios in Guangxi and Guangdong

can be visually observed in the Figure 9. By connecting the current

point with future points (2050s and 2090s) under different

emission scenarios (ssp126, ssp245, ssp370, ssp585), the spatial

relationships are illustrated. In the ssp126 scenario, 2050_ssp126

and 2090_ssp126 are located northwest of the current point. The

distance from the current point is 104.45 km in 2050s, decreasing

to 60.59 km by 2090s, indicating a significant trend of

convergence. In the ssp245 scenario, 2050_ssp245 and

2090_ssp245 are relatively close, located slightly north-northeast

of the current point, with minor changes in distance (107.25 km

and 100.04 km), suggesting a high level of geographical stability.

The ssp370 scenario shows 2050_ssp370 and 2090_ssp370 to the

northeast of the current point, with both points maintaining a

distance of 82.99 km from the current, demonstrating a high

degree of spatial stability. In the ssp585 scenario, 2050_ssp585 and

2090_ssp585 are positioned northwest of the current point, with

slight displacement and an overall greater distance, indicating

spatial variation.
4 Discussion

4.1 Maxent model optimization and
improvement in predictive accuracy

To minimize error in this study, eight regularization multiplier

parameters were set, ranging from 0.5 to 4.0, combined with six
Frontiers in Plant Science 10
feature combinations (L, LQ, H, LQH, LQHP, and LQHPT). These

parameter combinations were tested using the ENMeval package

in R 4.3.3. Previous studies have rarely combined the ENMeval

package (Kass et al., 2021) with the Biomod2 package (Thuiller

et al., 2009). Under the default parameter settings (RM=1,

FC=LQHPT), the model results showed a delta AICc of 111.06.

After optimization, the model parameters were adjusted to

RM=4.0 and FC=L, and the delta AICc was reduced to 0. This

reduction in delta AICc indicates that the optimized model

achieved an optimal balance between model fit and complexity,

leading to more accurate species distribution predictions. In fact,

the results of this study show that the optimized Maxent model

(with parameters FC = L and RM = 4.0) performed the best

(Figure 3). While the default Maxent parameters generally

perform well in terms of model complexity and fit, many

researchers have noted that these settings can sometimes lead to

overfitting, particularly when multiple factors are incorporated,

such as climate, topography, and soil (Li et al., 2020). Overfitting

can compromise prediction accuracy and often results in

fluctuating environmental response curves that are difficult to

interpret. Therefore, the optimized parameters used in this study

were crucial in avoiding such issues and improving model

performance. By using the optimized Maxent model, overfitting

can be effectively reduced, enhancing prediction accuracy, while

the response curves become smoother, showing a trend closer to a

normal distribution (Yan et al., 2021). Among the eight models

tested, the Maxent model provided the best fit to the actual

distribution. When comparing the response curves of key

environmental variables with different parameter settings, the

optimized model displayed considerably more stable curves than

the default settings (Figure 4). The optimized Maxent model

successfully and reliably predicted the potential distribution of

A. officinarum in China.
FIGURE 6

Expansion, contraction, and unchanged areas of A. officinarum suitable habitats under different climate scenarios.
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4.2 The relationship between changes in
suitable habitat area for A. officinarum and
environmental factors under low and high
emission scenarios

This study analyzed the expansion and contraction of A.

officinarum habitats under various climate change scenarios. By

comparing low-emission scenarios (ssp126 and ssp245) and high-

emission scenarios (ssp370 and ssp585), significant dynamic

changes in habitat area were revealed.

Under low-emission scenarios (ssp126 and ssp245), the habitat area

for A. officinarum exhibited a notable expansion trend. As shown in

Table 3, the current suitable habitat area is 157.7×104 km². Under the

ssp126 scenario, by the 2050s, the suitable habitat expands to 169.7×104

km², reflecting an increase of approximately 7.6%. By the 2081-2100

period, although the habitat area slightly decreases to 150.2×104 km², the
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overall expansion trend remains evident. The expansion trend is even

more pronounced under the ssp245 scenario. By the 2050s, the suitable

habitat area increases to 164.7×104 km², an expansion of approximately

4.4%. By the 2090s, the suitable habitat area further increases to

174.6×104 km², a 10.7% expansion. The expansion of suitable habitats

for A. officinarum is closely related to the combined effects of rising

temperatures, improved precipitation, as well as soil and topographic

conditions. Specifically, under the ssp126 scenario, the expansion is

relatively stable, with moderate climate changes leading to optimized

habitat conditions through steady temperature increases and moderate

precipitation improvements. In contrast, under the ssp245 scenario, the

expansion is more pronounced, reflecting not only significant

temperature increases and enhanced precipitation but also the

combined influence of soil nutrients and topographic factors, which

provide stronger support for the species to expand to higher latitudes

and elevations. This trend aligns with recent studies over the past decade
FIGURE 7

Analysis of multivariate environmental similarity surface for A. officinarum suitable habitats under different climate scenarios.
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on the effects of climate change on plant distribution (Lin et al., 2024).

Global warming has provided many plant species with opportunities to

migrate northward or expand to higher altitudes (Telwala et al., 2013).

Rubenstein et al. noted that climate warming drives plant distribution

toward higher latitudes or elevations, particularly increasing habitat

suitability in marginal areas (Rubenstein et al., 2023). Under low-

emission scenarios, species with strong climate adaptability often see

their suitable habitats expand inmarginal regions (Tian et al., 2023). The

expansion trend ofA. officinarum habitat observed in this study strongly

supports this conclusion.

In contrast, under high-emission scenarios, the suitable habitat for

A. officinarum significantly contracts. In the ssp370 scenario, the
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suitable habitat shrinks to 151.86×104 km² by 2050s (a reduction of

3.7%) and further decreases to 147.54×104 km² by 2090s (a reduction

of 6.4%). Under the most extreme ssp585 scenario, the habitat shrinks

to 126.51×104 km² by 2050s (a 19.8% reduction), with a slight recovery

to 169.59×104 km² by 2090s. The contraction of suitable habitats for A.

officinarum is associated with extreme temperature increases, unstable

precipitation patterns, and changes in soil and topographic conditions.

In these scenarios, rising temperatures may exceed the species’ optimal

range, especially during the warmest months, while enhanced

precipitation seasonality and more frequent droughts could disrupt

water resource balance, thereby limiting habitat suitability to some

extent. Additionally, changes in soil conditions, such as reduced soil
FIGURE 8

Analysis of most dissimilar variables for A. officinarum suitable habitats under different climate scenarios.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1517060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kang et al. 10.3389/fpls.2025.1517060
organic carbon content, and alterations in slope or topography in

certain regions may also pose challenges to habitat sustainability.

Currently, the primary cultivation region for A. officinarum in China

is located in Xuwen, Guangdong. However, with the increasing

impacts of high-emission scenarios, cultivation areas may gradually

shift northward to adapt to the changing environmental conditions.

These results align with findings in various studies. For example, high-

emission scenarios suggest that tropical plant habitats may sharply

decrease due to rapid temperature increases and more frequent

extreme weather events, particularly for species sensitive to climate

change (Lei et al., 2024). Extreme heat and drought scenarios threaten

the survival of many plants by reducing their habitats (Niggli et al.,

2022), consistent with the contraction trends observed for A.

officinarum in high-emission scenarios. Additionally, research

indicates that under high-emission scenarios, A. officinarum habitats

may migrate northward, but its original southern habitats will shrink

significantly, increasing ecological pressure. Extreme climate

conditions pose a major threat to tropical plant habitats (Hollenbeck

and Sax, 2024), further supporting the findings of this study.

Under different climate scenarios, the suitable habitat expansion

and contraction of A. officinarum show significant dynamic changes

(Figure 6). In low-emission scenarios (such as ssp126 and ssp245),

the expansion areas increase substantially, particularly under the

ssp245 scenario, where the expansion area reaches 16.76×104 km²

by 2081-2100 period. This expansion trend is consistent with recent

research on plant distribution expansion. As temperatures have

risen in recent years, many plant species have expanded towards

higher latitudes or altitudes, providing them with new ecological

niches and habitats (Jump and Peñuelas, 2005). Furthermore,

studies have also found that climate change offers opportunities

for plants to expand their boundaries, especially under relatively

mild climate scenarios, where habitat expansion is particularly

notable (Mao et al., 2024).However, under high-emission
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scenarios (such as ssp370 and ssp585), A. officinarum habitats

undergo significant contraction. According to the data, by 2081-

2100 period, the contraction area reaches 12.38×104 km² under the

ssp370 scenario, while in the ssp585 scenario, the contraction area is

0.95×104 km². Under high emission scenarios, increased

greenhouse gas emissions intensify global temperature rise,

leading to more frequent and severe extreme climate events,

particularly in tropical regions. These extreme events, such as

high temperatures and droughts, directly impact the habitat of A.

officinarum. High temperatures may exceed the heat tolerance of A.

officinarum, limiting growth and shortening the flowering period,

while drought exacerbates water shortages, threatening habitat

sustainability. Additionally, extreme climate events may indirectly

cause habitat contraction by affecting other species. The migration

trend of the center point of A. officinarum’s suitable habitat shows

that, under high emission scenarios, its suitable habitat is also

shifting northward (Figure 9). As temperatures rise and extreme

climate events increase, many plant species will face severe habitat

loss, particularly in tropical regions (Sentinella et al., 2020). Habitat

contraction under high-emission scenarios is a widespread

phenomenon, especially under conditions of unstable

precipitation patterns and extreme heat, where tropical plants

face significant survival pressure (GushChina et al., 2023).

Therefore, although the habitat expansion of A. officinarum

under low-emission scenarios offers potential opportunities for

habitat expansion, the contraction trend under high-emission

scenarios suggests that its survival faces severe threats in the

future. The response of plants to climate change involves not only

temperature variations but also complex ecological factors such as

water availability and land use (Sentinella et al., 2020). Thus, to

ensure the long-term survival of A. officinarum, future conservation

strategies need to integrate these factors and prioritize the

protection of areas most impacted by climate change.
FIGURE 9

Migration path of A. officinarum suitable habitat centers under current and future climate scenarios.
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4.3 Impact of climate change revealed by
multivariate environmental similarity
surface and most dissimilar variable

Through MESS and MoD analysis, the dynamic changes in A.

officinarum suitable habitats under different climate scenarios

clearly reveal the impacts of future climate change. In low-

emission scenarios (ssp126, ssp245), the effects of climate change

are relatively mild. The MESS analysis results for 2050s and 2090s

indicate that environmental similarity remains at a high level, with

low climate variability. Under low-emission scenarios, the climate

adaptability of biological communities is strong, the frequency of

extreme climate events is lower, and there are minimal changes in

habitat suitability (Chong, 2014). Seddon et al. also support this

view, suggesting that the impact of climate change on ecosystems is

relatively small in low-emission scenarios, allowing species to

maintain stable habitats (Seddon et al., 2020).

However, under high-emission scenarios (ssp370, ssp585), MESS

analysis shows a significant increase in areas with climate anomalies

and a substantial rise in environmental variability. The MoD analysis

further indicates that temperature-related factors (such as bio5) and

precipitation-related factors (such as bio15) will become key drivers

affecting A. officinarum habitats in the coming decades. This is

consistent with the findings of Deb et al., who emphasized that

changes in temperature and precipitation patterns will have profound

impacts on the distribution of tropical plants, with extreme

temperature events likely leading to a significant reduction in

species distribution (Deb et al., 2018). Climate warming will alter

the survival environment of tropical plants, particularly under high-

emission scenarios, where increased climate variability will result in a

dramatic reduction in species habitats (Sun et al., 2022).

The risks under high-emission scenarios are evident, particularly

in the ssp585 scenario, where MoD analyses indicate that extreme

climate conditions will significantly increase in the future. Under

high-emission scenarios (such as ssp585), significant changes in key

environmental variables can be visually observed through the colors

in Figure 8, particularly in the areas represented by the blue bio5 and

purple bio15, clearly reflecting the intensification of temperature and

precipitation changes. Firstly, the color distribution of bio5 under the

ssp585 scenario shows a substantial regional expansion, indicating a

significant increase in the range and intensity of high temperatures,

especially in tropical and subtropical regions. This persistent

temperature rise exceeds the ecological tolerance range of A.

officinarum, thereby inhibiting its growth and survival. Secondly,

the distribution of bio15 under the ssp585 scenario also exhibits

notable changes, with enhanced precipitation variability in multiple

regions. This variability may lead to more frequent droughts and

heavy rainfall events, further increasing environmental instability.

Based on the regional distribution in the figure, areas with more

pronounced changes in bio15 often overlap with regions of high

topographic complexity, suggesting that terrain factors such as slope

and aspect may also exacerbate variations in precipitation patterns.

The instability in temperature and precipitation will have a

devastating impact on the distribution of A. officinarum. Future

extreme climate events are expected to severely affect habitat

stability, especially in tropical and subtropical regions (Hollenbeck
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and Sax, 2024). Therefore, the threat of climate change to A.

officinarum habitats under high-emission scenarios is especially

pronounced based on the MESS and MoD analyses. Future

conservation strategies should focus on mitigating the negative

impacts of climate variability and strengthening the protection and

management of species habitats in the face of climate change.
4.4 Migration of A. officinarum habitat
centers under climate change

Under climate change scenarios, the center points of A.

officinarum suitable habitats shows significant spatiotemporal shifts,

primarily migrating northward or northwestward due to rising

temperatures and changing precipitation patterns (Figure 9). In

low-emission scenarios (such as ssp126 and ssp245), the center

points gradually move northwest in 2050s and 2090s, with the

distance to the current point shortening, indicating that the impact

of climate change on its suitable habitat is relatively small and the

overall environment tends to remain stable. Studies have shown that

suitable habitats are concentrated in areas with better climate

adaptability, which aligns with the findings of Wang, Y. et al.

suggesting that species distribution remains relatively stable under

low-emission scenarios, with strong adaptive capacity and no large-

scale habitat migration (Wang et al., 2023a). However, in high-

emission scenarios (such as ssp370 and ssp585), the shifts become

more pronounced and complex, driven by extreme events such as

droughts and heatwaves, which create greater environmental

instability and contribute to more erratic migration patterns.

Importantly, the geometric center remains relatively stable in the

ssp370 scenario, with the distance from the current points remaining

within 82.99 kilometers in both 2050s and 2090s. In some regions,

local ecological conditions can mitigate the effects of climate change

on species distribution, helping habitats remain stable in the short

term (Kosanic et al., 2018). However, under the ssp585 scenario, the

center points of A. officinarum shows significant displacement,

indicating that as extreme climate conditions intensify, its suitable

habitat may face greater pressure and a more extensive migration

trend. This phenomenon is consistent with the findings of Xu et al.,

who suggest that tropical and subtropical species will experience a

substantial reduction in habitat under high-emission scenarios,

particularly with unstable precipitation patterns and significantly

rising temperatures (Xu et al., 2023). As climate change progresses,

species distribution in biodiversity hotspots may undergo significant

changes, with the high instability of habitats affecting survival

capabilities of species (Rubenstein et al., 2023).

In summary, the findings of this study highlight the need for

targeted conservation strategies based on climate change scenarios.

Under low-emission scenarios, habitat expansion provides

opportunities for A. officinarum to extend its range, particularly

in marginal areas at higher latitudes or altitudes, which should be

prioritized for protection. Conversely, high-emission scenarios

predict significant habitat contraction, particularly in tropical

regions, due to rising temperatures and extreme climate events.

Urgent conservation measures are needed to mitigate the impacts of

these changes, focusing on protecting vulnerable habitats from
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extreme conditions such as drought and high temperatures.

Additionally, as habitats may shift under climate change,

conservation efforts should also include establishing migration

corridors to facilitate species adaptation to new climatic

conditions. For cultivated populations, it is recommended to

explore alternative planting sites in higher latitudes or altitudes to

preemptively address the impacts of habitat shifts. Furthermore,

implementing adaptive agricultural practices, such as selecting

drought-resistant varieties and optimizing irrigation systems,

could help maintain sustainable cultivation. These strategies are

essential to ensure the long-term survival of A. officinarum under

changing environmental conditions.
5 Conclusion

This study provides important insights into the future

distribution patterns of A. officinarum under different climate

change scenarios by utilizing optimized Maxent and Biomod2

models. Under the ssp126 and ssp245 scenarios, the suitable

habitat area for A. officinarum expands in both periods. By the

2050s, the area increases to 169.7×104 km² under ssp126 and

164.7×104 km² under ssp245. By the 2090s, the area changes to

150.2×104 km² under ssp126 and further increases to 174.6×104

km² under ssp245, highlighting a clear expansion trend, especially

under ssp245. These projections indicate that under low-emission

scenarios (ssp126 and ssp245), the suitable habitat for A.

officinarum will continue to expand, with stable and gradual shifts

in its geographic center towards the northwest. This trend suggests

that the species can adapt well to milder climate changes, with

potential opportunities for range expansion. The findings align with

research showing that plants with high climate adaptability can

benefit from expanded suitable habitats in moderate climate

change conditions.

Conversely, under high-emission scenarios (ssp370 and

ssp585), A. officinarum faces significant habitat contraction, with

its geographic center undergoing larger migrations and instability,

particularly in the ssp585 scenario. This contraction is driven by

increased climate variability, accompanied by rising temperatures

and greater instability in precipitation patterns, as reflected in

significant changes in key factors such as bio5 (maximum

temperature of the warmest month) and bio15 (precipitation

seasonality). These changes have contributed to the occurrence of

extreme conditions such as high temperatures and droughts, which

have become major limiting factors. These findings highlight the

substantial risks that A. officinarum and other tropical species may

face in the future, with habitat loss and ecological pressure

increasing in regions vulnerable to extreme climate events.

Overall, while low-emission scenarios offer potential

opportunities for habitat expansion, high-emission scenarios

present a clear threat to the long-term survival of A. officinarum.

Therefore, future conservation strategies should prioritize

addressing the impacts of climate change, with particular
Frontiers in Plant Science 15
emphasis on protecting areas most vulnerable under high-

emission scenarios to ensure the long-term adaptability and

survival of A. officinarum.
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