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The regulation of gene expression is crucial for biological plant growth and

development, with transcription factors (TFs) serving as key switches in this

regulatory mechanism. GOLDEN2-LIKE (GLK) TFs are a class of functionally

partially redundant nuclear TFs belonging to the GARP superfamily of MYB TFs

that play a key role in regulating genes related to photosynthesis and chloroplast

biogenesis. Here, we summarized the current knowledge of the pleiotropic roles

of GLKs in plants. In addition to their primary functions of controlling chloroplast

biogenesis and function maintenance, GLKs have been proven to regulate the

photomorphogenesis of seedlings, metabolite synthesis, flowering time, leaf

senescence, and response to biotic and abiotic stress, ultimately contributing

to crop yield. This review will provide a comprehensive understanding of the

biological functions of GLKs and serve as a reference for future theoretical and

applied studies of GLKs.
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Introduction

GOLDEN2-LIKEs (GLKs) are plant-specific transcription factors (TFs) involved in

multiple biological processes in plants (Chen et al., 2016; Lambret-Frotte et al., 2023). GLKs

are members of the GARP superfamily, containing a nuclear localization signal, a DNA-

binding domain (DBD), a proline-rich domain and a GLK/C-terminal (GCT) box

(Riechmann et al., 2000; Safi et al., 2017). The DBD consists of three a-helices followed
by a highly conserved motif of AREAEAA, which confers specific characteristics to GLKs

and distinguishes GLKs from other GAPR members (Fitter et al., 2002). To date, GLKs are

widespread in land plants, and the last common ancestor of GLKs might be from

Embryophyta (Wang et al., 2013; Hernández-Verdeja and Lundgren, 2023). GLKs are

demonstrated to be the key regulators for chloroplast biogenesis from lower plants to

higher plants (Table 1; Figure 1). Additionally, mounting evidence shows that the GLKs
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TABLE 1 Informations and functions of GLKs in plants.
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Function Plant souce Gene name
Defend

against targets
Method

Chloroplast development

Zea mays
(Maize)

ZmGLK1/2

/

OE, KO

Arabidopsis thaliana
(Arabidopsis)

AtGLK1/2 OE, KO

Physcomitrium patens
(Moss)

PpGLK1/2
Homologous
recombination

Oryza sativa
(Rice)

OsGLK1/2 OE, KO

Solanum lycopersicum
(Tomato)

SlGLK1/2 OE, KO

Capsicum annuum
(Pepper)

CaGLK2 Co-localized with p

Brassica napus
(Rapeseed)

BnaGLK1 OE

Arachis hypogaea
(Peanut)

AhGLK1 OE, RNAi

Prunus persica
(Peach)

PpGLK1 OE, VIGS

Actinidia chinensis
(Kiwifruit)

AchGLK OE

Malus domestica
(Apple)

MpGLK1 OE

Betula platyphylla × B. pendula
(Hybrid birch)

BpGLK1 OE, RNAi

Lactuca sativa
(Lettuce)

LsGLK
CACTA

transposon occurr
Complementation

Populus alba × P.berolinensis
(Hybrid poplar)

PabGLKs OE, RNAi
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TABLE 1 Continued

expression
st plants

Governance
mode

Reference

Barley + (Taketa et al., 2021)

Tomato + (Wang et al., 2022)

Liverwort + (Yelina et al., 2024)

rabidopsis + (Ying et al., 2023)

/ + (Cole-Osborn et al., 2024)

rabidopsis + (Qu et al., 2024)

Tomato + (Nguyen et al., 2014)

Rice + (Li et al., 2022c)

Tomato + (Li et al., 2018)

to, Arabidopsis
(Powell et al., 2012; Sun

et al., 2022)

Tomato + (Wang et al., 2022)

rabidopsis –
(Waters et al., 2009; Susila

et al., 2023)

rabidopsis – (Qu et al., 2024)

rabidopsis – (Rauf et al., 2013)

Rapeseed – (Zhang et al., 2024a)
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Function Plant souce Gene name
Defend

against targets
Method

Hordeum vulgare
(Barley)

HvGLK1/2 OE, KO

Camellia sinensis
(Tea plant)

CsGLK1/2 OE

Marchantia polymorpha
(Liverwort)

MpGLK1 OE, KO

Raphanus sativus
(Radish)

RsGLK2.1 OE, KO

Catharanthus roseus
(Catharanthus roseus)

CrGLK
VIGS, Chloroplast retrograde

signaling inducers

Liriodendron chinense × L.
tulipifera

(Liriodendron hybrids)
LhGLK1 OE

Fruit quality

Solanum lycopersicum
(Tomato)

SlGLK1/2 OE

Oryza sativa
(Rice)

OsGLK1/2 OE

Actinidia chinensis
(Kiwifruit)

AchGLK OE

Arabidopsis thaliana
(Arabidopsis)

AtGLK1/2 OE

Camellia sinensis
(Tea plant)

CsGLK1/2 OE

Flowering

Arabidopsis thaliana
(Arabidopsis)

AtGLK1/2 OE, KO

Liriodendron chinense × L.
tulipifera

(Liriodendron hybrids)
LhGLK1 OE

Leaf senescence

Arabidopsis thaliana
(Arabidopsis)

AtGLK1/2 OE, KO

Brassica napus
(Rapeseed)

BnaGLK1a OE, RNAi
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TABLE 1 Continued

ethod
Overexpression

host plants
Governance

mode
Reference

OE

Arabidopsis

+ (Savitch et al., 2007)

OE, KO + (Murmu et al., 2014)

OE, KO + (Savitch et al., 2007)

KO – (Wang et al., 2017a)

KO + (Han et al., 2016)

OE Peanut + (Ali et al., 2020)

OE Tobacco + (Sukarta et al., 2020)

OE, KO Rice + (Li et al., 2022a)

OE

Arabidopsis

+ (Nagatoshi et al., 2016)

OE, KO
+ (Zeng et al., 2023; Li

et al., 2023b)

OE, KO – (Ahmad et al., 2019)

OE Arabidopsis + (Liu et al., 2018)

OE Arabidopsis + (Liu et al., 2021)

OE Rice +
(Li et al., 2023a)

(Li et al., 2020b)
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Function Plant souce Gene name
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against targets
M

Biotic
stress responses

Arabidopsis thaliana
(Arabidopsis)

AtGLK1/2

Fusarium
graminearum

Botrytis cinerea

Hyaloperonospora
arabidopsidis Noco2

Pseudomonas
syringae pv. tomato

Cucumber
mosaic virus

Arachis hypogaea
(Peanut)

AhGLK1b
Pseudomonas

syringae pv. tomato

Nicotiana benthamiana
(Tobacco)

NbGLK1 Potato virus X

Oryza sativa
(Rice)

OsGLK1
Rice black-streaked

dwarf virus

Abiotic stress responses

Arabidopsis thaliana
(Arabidopsis)

AtGLK1/2

Ozone

High light

Osmotic
and dehydration

Arachis hypogaea
(Peanut)

AhGLK1 Drought

Gossypium hirsutum
(Cotton)

GhGLK1 Cold, drought

Zea mays
(Maize)

ZmGLK1/2
Drought

High light

OE, Overexpression; RNAi, RNA interference; VIGS, Virus-induced gene silencing; KO, Gene knockout; “+”, Positive regulation; “-”, Negative regu
l
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also function in multiple aspects through the entire lifetime of

plants, including seedling photomorphogenesis, hormone

signalling, leaf senescence, flowering, fruit nutrition and bio- or

abiotic stress responses (Table 1; Figures 1, 2). GLKs might be a

node of signaling networks in plants, which are valuable to research

for crop improvement in molecular breeding.
Frontiers in Plant Science 05
GLKs control chloroplast biogenesis
and function maintenance

Chloroplast is an important place for photosynthesis in plants

(Jarvis and López-Juez, 2014). Solid evidence indicated that GLKs

control chloroplast biogenesis by transcriptionally targeting
FIGURE 1

The signaling pathways of GLKs in regulating chloroplast biosynthesis, photomorphogenesis, flowering, and metabolite synthesis. For chloroplast
biogenesis, GLKs activate the expression of PhANGs to promote the development of chloroplast. TKN2 and TKN4 activate the expression of GLK2,
while BEL2 negatively regulates the expression of GLK2 to promote the establishment of the ‘green shoulder’ in tomato fruits. ARF10 directly induces
the expression of GLK1 and ARF4 inhibits the transcription of GLK1. For photomorphogenesis, activated phytochromes (Phys) repress PIF and DET1
under light conditions. DET1 promotes the stability of PIF1 proteins, meanwhile, it mediates the proteasome degradation of GLK by interacting with
CUL4 and DDB1 to form a ubiquitin ligase complex. The PIF1/PIF3-HDA19-MED25 complex reduces transcriptional repression of GLK1 under light
conditions. Activated BIN2 phosphorylates and thus stabilizes GLKs under light conditions. BPG4 suppress the transcription activity of GLKs via
inhibition to their DNA-binding ability. HY5 binds the promoter of GLKs, inducing their activities to promote chloroplast development. Under dark
conditions, PIFs can directly bind to the GLK1 promoter to repress the expression of GLK1. Moreover, PIFs activate the expression of RPGEs. RPGEs
interact with GLKs to disrupt the DNA-binding activity of GLKs. In photodamaging conditions, the activity of GUN1 appears to down-regulate the
expression of GLK1 when plastids are dysfunctional. For flowering, GLKs directly activate the expression of BBX14, BBX15 and BBX16, and the BBX
proteins physically interact with the circadian clock regulator protein CO in the nucleus, which prevents CO-mediated FT transcription from
repressing flowering. For metabolite synthesis, GLK1 interacts with the MBW complexes MYB75/90/113 and activates the transcriptional activity to
enhance the expression of genes related to anthocyanin-specific biosynthetics including LBGs. Arrows and lines with end lines indicate positive
regulation and negative regulation, respectively. Grey lines indicate interaction. Dashed arrow represents indirect effects through unknown
intermediate factors.
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photosynthesis-related nuclear genes (PhANGs), including

chlorophyll biosynthesis and photosynthesis-related genes (Waters

et al., 2009; Martıń et al., 2016). Constitutive expression of GLKs

could increase chloroplast numbers and chlorophyll content in

photosynthetic tissues, such as leaves or fruits (Nguyen et al.,

2014), and even in non-photosynthetic tissues such as roots and

callus in Arabidopsis (Arabidopsis thaliana) (Nakamura et al., 2009;

Kobayashi et al., 2012). In tomato (Solanum lycopersicum), the

expression of GLK2 gradiently reduced from the shoulder to the

base in fruit, which influences a gradient of chloroplast development

of fruit forming the ‘green shoulder’ fruits (Powell et al., 2012;

Nguyen et al., 2014). The TFs KNOTTED1-like Homeobox

(KNOX) TKN2 and TKN4 activate the expression of GLK2 to

promote the establishment of ‘green shoulder’ fruit in tomato

(Nadakuduti et al., 2014). However, BEL1-like HOMEODOMAIN

2 (BEL2) affects the formation of ‘green shoulder’ in tomato fruits by

negatively regulating the gradient expression of GLK2 (Niu et al.,

2022). In addition, GLKs were affected by AUXIN RESPONSE
Frontiers in Plant Science 06
FACTORs (ARFs) in regulating chlorophyll accumulation in

tomato fruit (Sagar et al., 2013; Yuan et al., 2018). In rice (Oryza

sativa), a member of the nuclear factor Y (NF-Y) TF family, OsNF-

YB7, inactivates the transactivation activity of GLK1 at multiple

regulatory layers to inhibit chlorophyll accumulation in the embryo

of rice (Yang et al., 2024). In radish (Raphanus sativus), GLK2

interacts with NUCLEAR FACTOR Y, SUBUNIT A 9a (NF-YA9a)

to increase the expression of the chlorophyll biosynthesis

gene, RsHEMA2, which improves the chloroplast development

(Figure 1; Ying et al., 2023).

Interestingly, GLKs are functionally redundant in C3 plants. In

Arabidopsis and rice, the glk1 or glk2 single mutant has no

phenotypic difference from the wild type (WT), and the glk1/glk2

double mutant displayed pale green leaves and abnormal

chloroplast structure (Fitter et al., 2002; Wang et al., 2013).

However, the functional redundancy of GLKs does not exist in

the C4 plant. For instance, maize (Zea mays) glk2 single mutant

showed yellow leaves with abnormal chloroplast structure (Rossini
FIGURE 2

The signaling pathways of GLKs in stress response and senescence. For biotic stresses, SA-mediated NPR1 activation leads to the expression of SIB1.
SIB1 proteins are targeted to both the nucleus and chloroplasts. SIB1 interacts with SIG1 to inhibit PhAPGs expression in chloroplasts, and SIB1
activate GLKs to induce the expression of PhANGs in the nucleus. The uncoupled expression of PhANGs and PhAPGs leads to an increase of 1O2 and
PQH2 levels in chloroplasts. The reactive oxygen species (ROS) burst contributes to cell death. LSD1 antagonistically regulate the expression of GLKs
with SIB1 and functions in cell death. For abiotic stress, For abiotic stress, SIBs are induced by ABA and interact with WRKY75 to inhibit its
transcriptional function. WRKY75 directly binds to the promoters of GLKs to repress their expression. ATAF1 responds to ABA and suppresses the
expression of GLK1 by directly binding to the promoters of GLK1 and ORE1. ORE1 interacts with GLK1 to inhibit its transcriptional activity. ATAF1
expression is regulated by unknown upstream TFs. ABA activates GLKs via core ABA signalling components PYL/PYRs-PP2Cs-SnRKs, and
subsequently GLKs induce the expression of WRKY40. Arrows and lines with an end line indicate positive regulation and negative regulation,
respectively. Grey lines indicate interaction. Dashed arrows represent indirect effects through unknown intermediate factors.
frontiersin.org
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et al., 2001). It is well known that the chloroplasts become different

between the C3 and the C4 plants, the former has only one type of

chloroplast in mesophyll cells (MC), while the latter has two types

of chloroplasts in the bundle sheath cells (BSC) and the MC,

respectively (Majeran et al., 2009). The development of

chloroplasts in the BSC provides an anatomical basis for efficient

photosynthesis in C4 plants (Miyake, 2016). In C4 plants such as

maize and sorghum (Sorghum bicolor), GLK1 expressed much more

in MC than that in BSC, while GLK2 expressed more in BSC

contrarily (Wang et al., 2013; John et al., 2014). In addition, the

tissue-expression pattern of GLK1 and GLK2 are almost similar in

Arabidopsis (Supplementaryray Figure S1), but different in maize

(Supplementary Figure S2). It was considered that both GLK

orthologs retained the ability to induce chloroplast biogenesis and

play important roles in regulating the differentiation of chloroplast

development in C4 plants (Rossini et al., 2001), but recent studies

showed that GLK2 adopted a more prominent developmental role,

particularly in relation to chloroplast activation in BSC (Lambret-

Frotte et al., 2023).

To maintain the functional stability of chloroplasts in plants,

the chloroplast-to-nucleus retrograde signalling (RS) is essential for

coordinating the expression of PhANGs and photosynthesis-

associated plastid genes (PhAPGs; Pogson et al., 2008). Defective

chloroplasts in mutants of plastid protein emphasize coordination

between chloroplastic protein processing and nuclear transcription

(Chan et al., 2016). GENOMES UNCOUPLED1 (GUN1), a

chloroplast-localized pentatricopeptide-repeat protein, is a central

integrator participating in multiple RS pathways. In photodamaging

conditions, the activity of GUN1 appears to down-regulate the

expression of GLK1 when plastids are dysfunctional (Kakizaki et al.,

2010); GUN1/GLK1 module represses the expression of B-box

structural domain PROTEIN16 (BBX16) to regulate the well-

established expression of PhANGs (Figure 1; Veciana et al., 2022).

However, aside from the GUN1/GLK1 module, studies also showed

that the ubiquitin-proteasome system participates in the

degradation of Arabidopsis GLK1 in response to plastid signals in

a GUN1-independent manner (Tokumaru et al., 2017).
GLKs modulate the
photomorphogenesis of seedlings

Seedling photomorphogenesis is coordinately processed as

inhibition of hypocotyl elongation, the opening of cotyledon, and

chloroplast development when exposed to light. In Arabidopsis,

GLKs are induced by light (Fitter et al., 2002). The glk1/glk2 double

mutant displayed decreased chlorophyll content, longer hypocotyls

and less separated cotyledons (Martıń et al., 2016; Alem et al., 2022).

PHYTOCHROME-INTERACTING FACTORs (PIFs) are central

regulators of photomorphogenesis in plants (Leivar and Monte,

2014). PIFs can form a complex with the histone deacetylase

HDA19 and the Mediator subunit MED25, thus attenuating the

transcriptional repression of GLK1 by binding to the PBE motif

(CACATG) on GLK1 promoter in darkness (Martıń et al., 2016;

Guo et al., 2023), while light-activated phytochrome reverses this

activity, thereby inducing GLKs expression (Martıń et al., 2016).
Frontiers in Plant Science 07
Interestingly, PIFs can also induce the expression of the

REPRESSOR OF PHOTOSYNTHETIC GENES 1 (RPGE1) and

RPGE2 in darkness, and then the RPGEs inhibit the DNA-

binding activity of GLK1 by disrupting its dimerization, revealing

another mechanism of PIF-mediated GLK repression (Kim et al.,

2023). Besides, rice Phytochrome-Interacting Factor-Like1

(OsPIL1), a basic helix-loop-helix transcription factor, is also

involved in the promotion of chlorophyll biosynthesis (Sakuraba

et al., 2017). Moreover, DEETIOLATED 1 (DET1), a repressor of

light-induced photomorphogenesis, not only promotes the protein

stability of PIF1 (Shi et al., 2015), but also interacts with GLKs and

promotes the degradation of GLK proteins by ubiquitination (Tang

et al., 2016; Zhang et al., 2024b). Another regulator of

photomorphogenesis, ELONGATED HYPOCOTYL5 (HY5) not

only directly activates the expression of GLKs, but also interacts

with the GLK proteins, suggesting that HY5 might first activates the

expression of GLKs promote chlorophyll biosynthesis and

photosystem formation, and then interacts with GLK proteins to

inhibit hypocotyl elongation (Zhang et al., 2024b). Furthermore,

indole-3-acetic acid (IAA) and cytokinin (CK) regulate GLK2 in the

opposing directions at the transcriptional level in a HY5-dependent

manner to regulate chlorophyll biosynthesis in Arabidopsis roots

(Kobayashi et al., 2012).

Additionally, the transcription factor, TEOSINTE BRANCHED

1, CYCLOIDEA, and PROLIFERATING CELL FACTOR 15

(TCP15), participates in the expression of PhANGs and binds to

the same promoter regions of target genes as GLK1. It is postulated

that GLK1 helps to recruit TCP15 for coordinating the expression of

cell expansion genes with that of genes involved in the development

of the photosynthetic apparatus (Alem et al., 2022). A regulator

involved in BR signalling, BRASSINOSTEROID INSENSITIVE2

(BIN2), regulates physically interacts with and phosphorylates

GLKs, and this phosphorylation stabilizes and activates GLKs to

promote chloroplast development and photomorphogenesis (Zhang

et al., 2021). Conversely, BRZINSENSITIVE-PALE GREEN 4

(BPG4) inhibits the transcriptional activity of GLKs by interacting

with the GCT-box of GLKs and plays an inhibitory role in regulating

chloroplast development and homeostasis (Figure 1; Tachibana

et al., 2024).
GLKs participate in the synthesis
of metabolites

Photosynthetic products of chloroplasts generally contribute to

the accumulation of carbohydrates, lycopene, carotenoids or other

nutrient related substances in fruits (Klee and Giovannoni, 2011;

Jia et al., 2020). Interestingly, GLKs can interact with the G-box

Binding Factor (GBF) and activate the transcription of PHYTOENE

SYNTHASE (PSY), promoting the biosynthesis of carotenoids

(Sun et al., 2022). Overexpression of the exogenous GLKs increases

the contents of carbohydrates, carotenoids, and tocopherol (vitamin

E) in fruits of tomato (Powell et al., 2012; Nguyen et al., 2014; Lupi

et al., 2019). Endosperm-specific overexpression of rice GLK1

promotes the biosynthesis of carotenoids in the endosperm

(Li et al., 2022c). Ectopic overexpression of the GLK homolog from
frontiersin.org
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pepper (Capsicum annuum), kiwifruit (Actinidia chinensis), and tea

(Camellia sinensis) in tomato resulted in higher levels of carotenoids

and sugar in the ripened fruits (Brand et al., 2014; Li et al., 2018;

Wang et al., 2022). In addition, GLKs induce the biosynthesis of

secondary metabolites including catechin and anthocyanin. CsGLKs

are also involved in light-regulated catechin accumulation in tea

plants by regulating the expression of CsMYB5b (Wang et al., 2022).

In Arabidopsis, GLK1 interacts with theWD40-BHLH-MYB (MBW)

complexes MYB75/90/113 and activates the transcriptional activity to

enhance the expression of genes related to anthocyanin-specific

biosynthetic including late biosynthesis genes (LBGs) (Li et al.,

2023b). Meanwhile, GLK2 activates the expression of LBGs and

TRANSPARENT TESTA GLABRA 1 (TTG1) through AtHY5-

mediated light signalling and positively regulates anthocyanin

biosynthesis in Arabidopsis (Figure 1; Liu et al., 2022; Zeng

et al., 2023).
GLKs negatively regulate flowering
time and leaf senescence

The flowering time of plants is tightly controlled by endogenous

or exogenous signals (Bouché, et al., 2016). It was reported that

chloroplasts RS regulated flowering mediated by the floral repressor

FLOWERING LOCUS C (FLC) in Arabidopsis (Feng et al., 2016).

GLK1 and GLK2 act as downstream components of the chloroplast

RS pathway that negatively regulates flowering time. The glk1/glk2

double mutant of Arabidopsis displays early flowering, and

overexpression of AtGLK1, AtGLK2 or LhGLK1 in Arabidopsis

delayed flowering time (Waters et al., 2009; Qu et al., 2024). GLKs

directly activate the expression of BBX14, BBX15 and BBX16, and

these BBXs proteins physically interact with the circadian clock

regulatory CONSTANS (CO) in the nucleus, which prevent CO-

mediated FLOWERING LOCUST (FT) transcription and repress

flowering (Figure 1; Susila et al., 2023).

The chloroplast displays early signs of senescence symptoms,

including a decrease in chlorophyll and a decline in photosynthetic

efficiency (Soudry et al., 2005). PIF3, 4, and 5 are up-regulated

during age-triggered and dark-induced leaf senescence, and the

accumulation of PIFs protein inhibits the expression of GLKs to

impair chloroplast development and chlorophyll biosynthesis,

leading to leaf senescence (Song et al., 2014). In addition, GLKs

also respond to abscisic acid (ABA) in regulating plant senescence.

The ABA pathway generally promotes leaf senescence, while GLKs

negatively modulate ABA-mediated leaf senescence. Both SIBs and

WRKY75 are upregulated during leaf senescence and induced by

ABA. SIBs interact with WRKY75 and thereby repress its

transcriptional function, thus negatively regulating ABA-induced

leaf senescence in a WRKY75-dependent manner. In contrast,

WRKY75 positively modulates ABA-mediated leaf senescence in

a GLK-dependent manner by directly binding to the W-box (T/

CTGACC/T) in the GLKs promotor and inhibits their expressions

(Zhang et al., 2022a; Lee et al., 2023). In addition, ABA can activate

a NAC transcription factor ATAF1, which activates ORESARA1

(ORE1) and represses GLK1 expression by directly binding to the
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promoters of both genes. ORE1 also interacts with GLKs to inhibit

the transcriptional activity of GLK1, resulting in impairing the

expression of GLK target genes and leaf senescence (Figure 2; Rauf

et al., 2013; Garapati et al., 2015). In Brassica napus, GLK1a has also

been shown to directly influence the ABA signalling pathway.

Overexpressing BnGLK1a delayed the leaf senescence upon ABA

treatment (Zhang et al., 2024a).
GLKs are involved in biotic and abiotic
stress response

Current studies have shown that GLKs participate in the

defence response of plants. The glk1/glk2 double mutant of

Arabidopsis showed enhanced resistance to Pseudomonas syringae

pv. tomato and Hyaloperonospora arabidopsidis (Wang et al.,

2017a). However, overexpression of AtGLK1 contributes to

inducing the expression of pathogenesis-related (PR) genes, which

in turn confers resistance to Fusarium graminearum (Savitch et al.,

2007). Additionally, overexpression of AtGLK1 enhances the

resistance to Botrytis cinerea in a jasmonic acid (JA)-independent

manner, while increasing the susceptibility to Hyaloperonospora

arabidopsidis Noco2 in a JA-dependant manner (Savitch et al.,

2007; Murmu et al., 2014). GLKs play positive roles in resistance to

cucumber mosaic virus (CMV), the Potato virus X (PVX), the rice

black-streaked dwarf virus (RBSDV) and the maize rough dwarf

disease (MRDD) (Han et al., 2016; Sukarta et al., 2020; Li et al.,

2022b; Xu et al., 2023). Nevertheless, the virulence protein P69 of

Turnip yellow mosaic virus (TYMV) interacts with GLKs and

suppresses GLKs transcriptional activity, affecting the normal

growth of plants and causing disease symptoms (Ni et al., 2017).

Salicylic acid (SA) is an important hormone that regulates the

defence responses to environmental stresses and against pathogens

in plants (Kunkel and Brooks, 2002). LESION-SIMULATING

DISEASE 1 (LSD1) is an SA-induced cell death regulator and a

negative regulator that inhibits the DNA-binding activity of GLK1

towards its target promoters, and SIB1 proteins appeared to

interrupt the LSD1-GLK interaction, and the subsequent SIB1-

GLK interaction activated EX1-mediated singlet oxygen (1O2)

signalling, leading to cell death and stress response in plants

(Li et al., 2022a).

In addition, GLKs actively participate in the response to abiotic

stresses. AhGLK1 upregulates the expression of AhPORA during

recovery from drought in peanuts (Arachis hypogaea), stimulating

chlorophyll biosynthesis and photosynthesis to increase the survival

rate from drought (Liu et al., 2018). Virus-induced silencing of

GhGLK1 in cotton (Gossypium hirsutum) leads to a great impact on

growth and yield under drought and cold stress, and GhGLK1 helps

to increase the adaptability of Arabidopsis in drought and cold

stress (Liu et al., 2021). Overexpression of maize GLK genes in rice

improves light harvesting efficiency via Photosystem II (PSII), thus

buffering the adverse effects of photoinhibition under high or

fluctuating light conditions (Li et al., 2023a). In addition, GLKs

affect ABA sensitivity and ion channel activity of plants to regulate

stomatal movements under stresses. The ABA-responsive genes
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WRKY40 is regulated by GLKs to increase the sensitivity of

seedlings to osmotic stress, and the core ABA signalling

components, PYL/PYRs-PP2Cs-SnRKs, possibly act as the

intermediary in GLKs-induced WRKY40 expression (Ahmad

et al., 2019). In Arabidopsis, the chimeric repressors for GLKs

(GLKs-SRDX) downregulate the genes for inwardly rectifying K+in

channels and K+in channel activity to close the stomata to enhance

the tolerance to ozone (Nagatoshi et al., 2016). Recently, the role of

GLKs in various abiotic stress responses has been predicted in

multiple species through genome-wide analysis, including soybean

(Glycine max), millet (Setaria italica), bamboo (Phyllostachys

edulis), orange (Citrus sinensis) and western balsam poplar

(Populus trichocarpa) (Alam et al., 2022; Chen et al., 2022; Wu

et al., 2022; Xiong et al., 2022; Wu et al., 2023). These facts indicate a

broad and conserved function in the abiotic stress response of GLKs

in plants, which awaits further validation.
Molecular breeding application of
GLKs in crops

Improving plant photosynthesis efficiency is an effective

strategy for high-yield breeding in crops. Mounting evidence

indicates that manipulation of GLKs achieves yield improvement

in plants. In Arabidopsis, leaf-specific and silique wall-specific

promoters were used to drive high expression of AtGLK1,

resulting in enhanced leaf and silique wall photosynthesis and

increased seed oil content by 2.88% and 10.75%, respectively

(Zhu et al., 2018). In B. napus, overexpression of BnGLK1a

resulted in a 10% increase in the thousand-seed weight of

rapeseed (Zhang et al., 2024a). These results suggest that GLKs

are promising tools for improving seed yield and oil production in

oilseed crops.

Since the photosynthesis efficiency of C4 plants is much higher

than that of C3 plants (von Caemmerer et al., 2012), the ectopic

expression of maize (C4 plant) ZmGLKs was carried in rice (C3

plant) to improve its yield. The engineering rice plants induced

chloroplast development in BSC accompanied by the accumulation

of photosynthetic enzymes and intercellular connections (Wang

et al., 2017b; Yeh et al., 2022). Overexpression of the ZmGLK1 and

ZmGLK2 in rice increased the yield by 30% to 40% (Li et al., 2020b),

while expression of ZmGLKs driven by its native promoter in rice

increased the yield by 47% to 70% (Yeh et al., 2022).
Discussion

GLK is a key regulator of chloroplast development. Knockout of

GLKs lead to abnormal chloroplast structure but not complete

distortion of chloroplast biogenesis (Fitter et al., 2002; Wang et al.,

2013), suggesting the existence of other genes which can partly

compensate for GLKs function in chloroplast development. Besides,

though GLKs are considered to play important roles in regulating

the differentiation of chloroplast development in C4 plants (Rossini

et al., 2001), the molecular mechanism remains unclear. Recently, it
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was shown that the pleiotropic role of GLKs beyond chloroplast

regulation, including photomorphogenesis, synthesis of secondary

metabolites, flowering, senescence and response to biotic and

abiotic stresses (Table 1). Regarding GLKs being functionally

redundant in chloroplast development in C3 plants, it’s natural to

think whether GLKs are also redundant in regulating other aspects

of life. Clarifying these questions would be helpful in understanding

the bio-function of GLK in plants.

As core regulators in plant, GLKs are involved in multiple

molecular modes of action including response to upstream genes,

binding to downstream target genes and protein-protein

interactions. However, so far, some studies only proved the

interaction relationship between GLK and target proteins. The

specific binding elements still await further research. The

expression of GLK can be regulated by the upstream regulators by

binding to specific cis-elements in the promoter, such as T/

CTGACC/T (W-box), CACGTG (G-box) or CACATG (E-box)

(Zhang et al., 2022a; Sakuraba et al., 2017). Besides, GLK can also

bind to the promotor of target genes downstream to regulate their

expression. The highly conserved motif CCAATC is considered a

widely shared cis-acting element for downstream targets of GLKs

(Waters et al., 2009). Comparative cross-species analyses of GLKs

have shown that most of the binding sites of GLKs were species-

specific (Tu et al., 2022), providing support for further exploration

of binding sites rich in downstream targets of GLKs in the future.

Furthermore, the DNA-binding domain and GCT-box of GLK

proteins are specific binding domains for most regulatory factors.

Interestingly, a few proteins also bind to proline-rich regions of

GLK proteins, such as LSD1 (Li et al., 2022a). As for the

degradation, SlGLK2 is proven a substrate of the CULLIN4

(CUL4) - UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1)

- DET1 ubiquitin ligase complex for the proteasome degradation

(Tang et al., 2016). However, the ubiquitin-proteasome system is

also shown to participate in the degradation of Arabidopsis GLK1 in

response to plastid signals (Tokumaru et al., 2017). Would it also be

a part of the ‘CUL4-DDB1-DET1 degradation pathway’? Further

research is needed to clarify their relationship.

In addition, GLKs have shown a rosy application prospect. By

regulating the gene expression of GLKs, not only can the

photosynthetic efficiency of crops be increased which in turn

improves crop yields, but leaf morphogenesis can also be changed.

It makes GLKs potentially applicable to agronomic trait

improvement, horticultural plant breeding and ornamental plant

improvement. However, overexpression of GLKs has certain

negative effects. For example, transgenic rice of ZmG1 drived by

the constitutive promoter resulted in reduced seed size and no

increase in yield (Yeh et al., 2022). Overexpression of OsGLK1 in

rice causes abnormal tapetum development and low seed setting

rates, and also increased endosperm chalkiness of rice grains (Zheng

et al., 2022; Li et al., 2022c). To mitigate the potential negative effects,

the expression level of GLKs may be tightly regulated by selecting

appropriate promoters, or ‘Knock-up’ by gene-editing techniques (Lu

et al., 2021; Wang et al., 2024). Accurate regulation of the expression

of GLKs will help improve crop overall quality and bring

breakthroughs in agricultural production.
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et al. (2013). ORE1 balances leaf senescence against maintenance by antagonizing G2-
like-mediated transcription. EMBO Rep. 14, 382–388. doi: 10.1038/embor.2013.24

Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., et al. (2000).
Arabidopsis transcription factors: genome-wide comparative analysis among
eukaryotes. Science 290, 2105–2110. doi: 10.1126/science.290.5499.2105

Rossini, L., Cribb, L., Martin, D. J., and Langdale, J. A. (2001). The maize golden 2
gene defines a novel class of transcriptional regulators in plants. Plant Cell. 13, 1231–
1244. doi: 10.1105/tpc.13.5.1231

Safi, A., Medici, A., Szponarski, W., Ruffel, S., Lacombe, B., and Krouk, G. (2017).
The world according to GARP transcription factors. Curr. Opin. Plant Biol. 39, 159–
167. doi: 10.1016/j.pbi.2017.07.006

Sagar, M., Chervin, C., Mila, I., Hao, Y., Roustan, J. P., Benichou, M., et al. (2013).
SlARF4, an auxin response factor involved in the control of sugar metabolism during
tomato fruit development. Plant Physiol. 161, 1362–1374. doi: 10.1104/pp.113.213843

Sakuraba, Y., Kim, E. Y., Han, S. H., Piao, W., An, G., Todaka, D., et al. (2017). Rice
Phytochrome-Interacting Factor-Like1 (OsPIL1) is involved in the promotion of
chlorophyll biosynthesis through feed-forward regulatory loops. J. Exp. Bot. 68,
4103–4114. doi: 10.1093/jxb/erx231

Savitch, L. V., Subramaniam, R., Allard, G. C., and Singh, J. (2007). The GLK1
‘regulon’ encodes disease defense related proteins and confers resistance to Fusarium
graminearum in Arabidopsis. Biochem. Biophys. Res. Commun. 359, 234–238.
doi: 10.1016/j.bbrc.2007.05.084

Shi, H., Wang, X., Mo, X., Tang, C., Zhong, S., and Deng, X. W. (2015). Arabidopsis
DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc.
Natl. Acad. Sci. U S A. 112, 3817–3822. doi: 10.1073/pnas.1502405112

Song, Y., Yang, C., Gao, S., Zhang, W., Li, L., and Kuai, B. (2014). Age-triggered and
dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5.
Mol. Plant 7, 1776–1787. doi: 10.1093/mp/ssu109

Soudry, E., Ulitzur, S., and Gepstein, S. (2005). Accumulation and remobilization of
amino acids during senescence of detached and attached leaves: in planta analysis of
tryptophan levels by recombinant luminescent bacteria. J Exp Bot. 56, 695–702.
doi: 10.1093/jxb/eri054

Sukarta, O. C. A., Townsend, P. D., Llewelyn, A., Dixon, C. H., Slootweg, E. J.,
Pålsson, L. O., et al. (2020). A DNA-Binding Bromodomain-containing protein
interacts with and reduces Rx1-mediated immune response to potato virus X. Plant
Commun. 1, 100086. doi: 10.1016/j.xplc.2020.100086

Sun, T., Zeng, S., Wang, X., Owens, L. A., Fe, Z., Zhao, Y., et al. (2022). GLKs directly
regulate carotenoid biosynthesis via interacting with GBFs in nuclear condensates in
plants. bioRxiv. doi: 10.1101/2022.09.09.507346
frontiersin.org

https://doi.org/10.1093/plphys/kiad029
https://doi.org/10.1146/annurev-genet-110410&ndash;132507
https://doi.org/10.1146/annurev-genet-110410&ndash;132507
https://doi.org/10.1105/tpc.111.092254
https://doi.org/10.1016/s1369&ndash;5266(02)00275&ndash;3
https://doi.org/10.1016/s1369&ndash;5266(02)00275&ndash;3
https://doi.org/10.1007/s00299&ndash;024-03208&ndash;9
https://doi.org/10.1093/plphys/kiad251
https://doi.org/10.1093/plphys/kiad251
https://doi.org/10.1105/tpc.113.120857
https://doi.org/10.1007/s00425&ndash;018-2853&ndash;6
https://doi.org/10.3389/fpls.2022.951605
https://doi.org/10.3389/fpls.2022.952877
https://doi.org/10.1093/plphys/kiab600
https://doi.org/10.1111/jipb.13471
https://doi.org/10.1093/plphys/kiad561
https://doi.org/10.1007/s00122&ndash;022-04214&ndash;9
https://doi.org/10.1038/s42003&ndash;020-0887&ndash;3
https://doi.org/10.1038/s41598&ndash;018-20542&ndash;7
https://doi.org/10.1016/j.plantsci.2020.110461
https://doi.org/10.1016/j.plantsci.2020.110461
https://doi.org/10.3389/fpls.2021.759312
https://doi.org/10.1007/s10725&ndash;021-00759&ndash;9
https://doi.org/10.1007/s10725&ndash;021-00759&ndash;9
https://doi.org/10.1038/s41477&ndash;021-01019&ndash;4
https://doi.org/10.1371/journal.pone.0212224
https://doi.org/10.1371/journal.pone.0212224
https://doi.org/10.1016/j.tplants.2008.11.006
https://doi.org/10.1016/j.tplants.2008.11.006
https://doi.org/10.1038/ncomms11431
https://doi.org/10.1038/ncomms11431
https://doi.org/10.1093/pcp/pcw046
https://doi.org/10.1111/mpp.12077
https://doi.org/10.1111/tpj.12529
https://doi.org/10.1073/pnas.1513093113
https://doi.org/10.1093/pcp/pcp138
https://doi.org/10.1105/tpc.113.118794
https://doi.org/10.1105/tpc.113.118794
https://doi.org/10.1016/j.molp.2016.12.003
https://doi.org/10.1111/tpj.15989
https://doi.org/10.4238/gmr16018942
https://doi.org/10.1016/j.tplants.2008.08.008
https://doi.org/10.1126/science.1222218
https://doi.org/10.3390/ijms25136968
https://doi.org/10.1038/embor.2013.24
https://doi.org/10.1126/science.290.5499.2105
https://doi.org/10.1105/tpc.13.5.1231
https://doi.org/10.1016/j.pbi.2017.07.006
https://doi.org/10.1104/pp.113.213843
https://doi.org/10.1093/jxb/erx231
https://doi.org/10.1016/j.bbrc.2007.05.084
https://doi.org/10.1073/pnas.1502405112
https://doi.org/10.1093/mp/ssu109
https://doi.org/10.1093/jxb/eri054
https://doi.org/10.1016/j.xplc.2020.100086
https://doi.org/10.1101/2022.09.09.507346
https://doi.org/10.3389/fpls.2024.1445875
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zheng et al. 10.3389/fpls.2024.1445875
Susila, H., Nasim, Z., Gawarecka, K., Jung, J. Y., Jin, S., Youn, G., et al. (2023).
Chloroplasts prevent precocious flowering through a GOLDEN2-LIKE-B-BOX DOMAIN
PROTEIN module. Plant Commun. 4, 100515. doi: 10.1016/j.xplc.2023.100515

Tachibana, R., Abe, S., Marugami, M., Yamagami, A., Akema, R., Ohashi, T., et al.
(2024). BPG4 regulates chloroplast development and homeostasis by suppressing GLK
transcription factors and involving light and brassinosteroid signaling. Nat. Commun.
15, 370. doi: 10.1038/s41467–023-44492–5

Taketa, S., Hattori, M., Takami, T., Himi, E., and Sakamoto, W. (2021). Mutations in
a Golden2-Like Gene Cause Reduced Seed Weight in Barley albino lemma 1 Mutants.
Plant Cell Physiol. 62, 447–457. doi: 10.1093/pcp/pcab001

Tang, X., Miao, M., Niu, X., Zhang, D., Cao, X., Jin, X., et al. (2016). Ubiquitin-
conjugated degradation of golden 2-like transcription factor is mediated by CUL4-
DDB1-based E3 ligase complex in tomato. New Phytol. 209, 1028–1039. doi: 10.1111/
nph.13635

Tokumaru, M., Adachi, F., Toda, M., Ito-Inaba, Y., Yazu, F., Hirosawa, Y., et al.
(2017). Ubiquitinproteasome dependent regulation of the golden 2-like 1 transcription
factor in response to plastid signals. Plant Physiol. 173, 524–535. doi: 10.1104/
pp.16.01546

Tu, X., Ren, S., Shen, W., Li, J., Li, Y., Li, C., et al. (2022). Limited conservation in
cross-species comparison of GLK transcription factor binding suggested wide-spread
cistrome divergence. Nat. Commun. 13, 7632. doi: 10.1038/s41467–022-35438–4
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