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ABSTRACT2

Smart farming is a hot research area for experts globally to fulfill the soaring demand for3
food. Automated approaches, based on convolutional neural networks (CNN), for crop disease4
identification, weed classification, and monitoring have substantially helped increase crop yields.5
Plant diseases and pests are posing a significant danger to the health of plants, thus causing6
a reduction in crop production. The cotton crop, is a major cash crop in Asian and African7
countries and is affected by different types of weeds leading to reduced yield. Weeds infestation8
starts with the germination of the crop, due to which diseases also invade the field. Therefore,9
proper monitoring of the cotton crop throughout the entire phases of crop development from10
sewing to ripening and reaping is extremely significant to identify the harmful and undesired11
weeds timely and efficiently so that proper measures can be taken to eradicate them. Most12
of the weeds and pests attack cotton plants at different stages of growth. Therefore, timely13
identification and classification of such weeds on virtue of their symptoms, apparent similarities,14
and effects can reduce the risk of yield loss. Weeds and pest infestation can be controlled15
through advanced digital gadgets like sensors and cameras which can provide a bulk of data to16
work with. Yet efficient management of this extraordinarily bulging agriculture data is a cardinal17
challenge for deep learning techniques too. In the given study, an approach based on deep18
CNN-based architecture is presented. This work covers identifying and classifying the cotton19
weeds efficiently alongside a comparison of other already existing CNN models like VGG-16,20
ResNet, DenseNet, and Xception Model. Experimental results indicate the accuracy of VGG-16,21
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ResNet-101, DenseNet-121, XceptionNet as 95.4%, 97.1%, 96.9% and 96.1%, respectively. The22
proposed model achieved an accuracy of 98.3% outperforming other models.23

Keywords: Deep learning; convolutional neural networks; object classification; cotton crops weeds; weeds detection24

1 INTRODUCTION AND LITERATURE REVIEW

Smart farming is revolutionized by the use of the Internet of Things (IoT) and artificial intelligence (AI)25
Imran et al. (2018); Guo et al. (2020). The use of smart technology, especially sensors, and IoT, has26
significantly increased in smart farming Jayaraman et al. (2016). Sensors deployed in agricultural fields27
generate huge amounts of data on a daily basis, which could be named agricultural big data. Based on28
this data, diseases, and weeds could be detected at a premature stage by applying various computer vision29
and deep learning techniques. This will not only benefit farmers but could also help deal with the issue30
of shortage of crop production globally. An estimated 20 billion is lost worldwide just because of low31
crop yields due to different reasons including weeds. A controlling system, such as sprayers for precisely32
spraying unwanted objects, can be developed using smart technology to manage weeds. Such systems can33
increase yield and can also reduce production costs and labor Escalante et al. (2019).34

Precise weed management in crops is one of the biggest challenges that could be handled using precision35
agriculture techniques. Diseases in plants and leaves are directly proportional to the yield of any crop, and36
most of the plant diseases are caused by weeds Capinera (2005); Kumar et al. (2021). Plant production37
can easily be increased if weeds are destroyed in time. The most difficult thing for researchers to do is38
to identify multiple types of weeds in different environmental conditions. Traditional methods for the39
detection of different weeds are expensive and time-consuming. Therefore, there is a need for an approach40
that can quickly identify the weeds within a short amount of time. Deep learning, computer vision, and41
machine learning (ML) advancements in recent years have the potential to alter and modernize how crops42
are grown, managed, and harvested. In deep learning, features are automatically extracted, which gives it43
an advantage over machine learning Dokic et al. (2020). Weeds are dangerous for crops and plants as they44
consume resources such as stealing of water, nutrients as well as sunshine causing low-quality yield. With45
ground-breaking research in computer vision, state-of-the-art algorithms have the potential to be applied in46
effective crop yield prediction.47

Deep learning has many techniques like classic neural networks, convolutional neural networks (CNN),48
recurrent neural networks (RNN), generative adversarial networks (GAN), self-organizing maps, Boltzmann49
machines, and many more (Grigorescu et al., 2020). From cotton crop cultivation to harvest, it takes about50
four months. As soon as the crop is planted, the weeds begin to grow, and these weeds cause disease in the51
cotton crop. Most weeds are similar in shape. It is a difficult step to detect, classify, and then destroy such52
weeds in time. This study aims at designing an efficient model to accurately classify cotton weeds. The53
following are the key contributions of this research.54

Nowadays, the use of unmanned aerial vehicles (UAVs) has revolutionized agriculture. UAVs are not only55
used for data collection and uniform spraying of agrochemicals but they are now used for precise weeds56
management as well by detecting weeds and precisely spraying agrochemicals on them (Khan et al., 2021;57
Olsen et al., 2019). This not only helps to reduce to quantity of weedicides but also saves money, and time58
and increases agricultural production. Some crops like cotton need care on a daily basis and UAVs could59
be very effective in the timely detection of weeds and thus they could be sprayed properly. UAV-based60
automated spraying systems use deep learning (DL) techniques for the detection and classification of weeds61
in an efficient manner.62
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• Real field weeds data acquisition from cotton crops under various climatic and illumination conditions.63

• Proposed a CNN-based deep learning approach for weed detection and classification. Performance64
analysis of the models concerning accuracy and loss and k-fold cross-validation.65

• Analyze and compare the results of the proposed deep learning-based approach to prior existing66
approaches to see the potential of the proposed model.67

• To collect cotton crop data of six different weeds from a real environment. Weeds include Wild68
Cucurbit, Slender Amaranth, Nut Grass, Horse Purslane, Common Puncture Vine, and Trefoil.69

• To employ deep learning techniques in a manner that would enable them to categorize data based on70
shared illness signs in cotton crops.71

An overview of recent relevant works that use computer vision and DL for weed detection and72
classification is given here. Literature also describes a variety of datasets and multiple deep learning73
algorithms for the classification of different species of weeds, under different environmental conditions.74

An AI-based model for weeds classification and diseases in crops was proposed by Saiz-Rubio and75
Rovira-Más (2020) in the area of smart farming. UAVs were used for harvesting, irrigation, weed detection,76
disease detection, seedlings, and spraying. A smart decision support system (SDSS) was used for real-time77
analysis using G5 technology, especially for irrigation, and also improved water and land efficiency. The78
transfer learning technique of DL was used with the help of the DenseNet for recognition of the growth79
stage of weeds. A publicly available dataset was used containing 18 classes of weeds. The result of80
the proposed model has been compared with ResNet, MobileNet, Wide-ResNet, and DenseNet, and the81
proposed model achieved 93.45% accuracy (Vypirailenko et al., 2021).82

You only look once (YOLOv3) algorithm, PyTorch, and Keras frameworks were used for the classification83
of common weeds in corn and soybean crops. The dataset contains only 462 images, which were collected84
from publicly available dataset (Weed Images, 2022). The size of the dataset was very small. They have85
achieved good accuracy of up to 98.8% by applying the VGG-16. While they have given good results, there86
can be a tendency for lower graph accuracy with a large dataset (Ahmad et al., 2021).87

Luo et al. (2023) used a CNN model for weed classification. The dataset consisted of 140 species of weed88
seeds, which were collected from a forest in China, and classified manually by an expert. 14096 images89
were used for testing purposes and 33600 images were used for training the model. Six different CNN90
models i.e. AlexNet, NasNet, VGG-16, SqueezeNet, Xception, and GoogleNet have been used. GoogleNet91
achieved the highest results. Another group of researchers carried out semantic segmentation for weed92
detection from canola crop fields with the help of a deep neural network (Asad and Bais, 2020). The93
dataset was collected from Manitoba Canada, which contains only 906 images belonging to two classes.94
Results were compared with UNET-VGG16, UNET-ResNet50, SegNet-VGG16, and SegNet-ResNet50.95
The deployed semantic segmentation approach showed an accuracy of 98.23% with a 99.2% F1 score.96
However, this model can be improved by using an enriched dataset with multiple species of weeds and97
more images.98

Grace et al. (2021) identified crops and weeds, using the CNN model of deep learning for this purpose.99
The dataset was collected from Kaggle, and the size of the dataset was very small, it contains only 960100
images. The dataset for training and testing was split into 80:20 ratios respectively. All the experiments101
are performed using Google Colaboratory. The resulting accuracy of the proposed algorithm was 89%.102
Therefore, the proposed approach proves to be better than AlexNet.103
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Dadashzadeh et al. (2020) proposed a stereo vision system for weed and rice by implementing PSO and104
bee algorithm has been used. The dataset was in the form of stereo videos, which were collected from rice105
fields then it was analyzed with the help of MATLAB. Results were compared with K nearest neighbor106
(KNN) classifier, and the proposed classifier performed better as compared to KNN. Geometric mean and107
arithmetic mean were used as performance metrics.108

Classification of herbs in the field of turfgrass was done through VGG CNN (Yu et al., 2019). The dataset109
was calculated from different grassy grounds in America. 36,000 images, 18,000 each for positive and110
negative classes. Result of VGGNet compared with GoogleNet, the performance of VGGNet was better111
as compared to GoogleNet. Weed recognition using DL and image processing using genetic algorithm,112
and CenterNet model is carried out by (Jin et al., 2021). A dataset of white cabbage vegetable plants was113
collected from vegetable fields in China, a total of 1150 images were used for training purposes, and the114
size of the dataset was very small. The result of the proposed CenterNet model was an F1-score of 0.953,115
precision of 95.6%, and recall of 95.0%.116

Olsen et al. (2019) used Inception V3 and ResNet50 DL models for weed classification with the help of a117
robot. The dataset consists of 17,509 images, which were collected from North Australian fields. ResNet50118
and Inception V3 achieved average performance accuracy of 97.6% and 95.1%, respectively. Sensors were119
used for the classification of weeds and carrot plants with the help of CNN models and the TensorFlow120
framework. The dataset consisted of 36000 carrot plants and 36000 images of weed plants. The result of the121
proposed model according to performance metrics was 96.41%, 98.9%, 96.82%, and 97.59%, respectively122
(Knoll et al., 2019).123

ML played an important role in implementing different precision agriculture techniques. Benos et al.124
(2021) used ML algorithms like SVM and BPNN are used for the detection of weeds. Both algorithms have125
achieved better performance, overall accuracy of 95.069 percent and 96.70 percent are achieved for SVM126
and BPNN respectively (Abouzahir et al., 2018). But, further improvement could be made in performance127
by using a variety of datasets, collected under different lighting conditions, collecting data of different128
varieties of crops, etc. Machine learning has several limitations in terms of higher error, time consumption,129
algorithm selection, and feature extraction problems (Dokic et al., 2020).130

Ruslan et al. (2022) used ML and image processing techniques for the classification of the weedy seed131
of rice with the help of different seven classifiers. For coloring purposes, three types of parameters were132
used color, texture, and morphology to enhance the performance. The total sample of weedy seed images133
was 7350. Performance was measured with sensitivity, specificity, accuracy, and average correct classifier,134
the output of these performance metrics were 85.3%, 99.5%, 97.9%, and 92.4% respectively. Similarly,135
Espinoza (2020) carried out weed detection with a focus on a real-time analysis performed after collecting136
the dataset and using it to train algorithms such as YOLO, Faster R-CNN, and a mobile algorithm i.e. single137
shot detection (SSD). A UAV was deployed on the fields to collect images of strawberry plants as well138
as weeds to build a dataset for training deep learning architectures. A key issue for weed detection is the139
similar structure and shape of both plants and weeds making it quite hard to recognize between the plants140
and their weeds.141

Valicharla (2021) worked on weed classification and detection using DL algorithms. For this purpose,142
they have used the Mask R-CNN model with the help of pixel-wise segmentation. In this work, they have143
used a synthetic dataset of 200 images collected from a carrot field. Loss and accuracy results obtained144
during model training have been compared by implementing the VGG-19 model. The highest accuracy145
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reported by the proposed model is 92%. Although they have achieved good results, there could be a146
decreasing trend in the accuracy graph by increasing the dataset size and adding a variety of images to it.147

The literature discussed above has shown good performance using deep learning CNN models to classify148
and detect weeds. However, weed detection and classification is still a challenging task and comes with149
many limitations such as a small dataset, and less number of weed species. In addition, low-quality images150
from controlled environments can greatly affect the accuracy. The objective of this research is to develop a151
DL-based CNN model for weed detection and classification under different environmental conditions in a152
timely manner to eradicate weeds in cotton crops.153

Further, the proposed methodology for weeds detection and classification is presented in Section 2. All154
the details of experimentation and their results are discussed in Section 3. Lastly, the conclusion is given in155
Section 4.156

2 PROPOSED METHODOLOGY

In this section, an overview of the DL-based weed detection and classification methodology is given157
and a detailed description of the detection workflow is presented in Figure 1. The initial step of the158
methodology is the data collection i.e. collection of data from the field, which is then processed using159
pre-processing techniques. To overcome over-fitting issues, different data augmentation techniques are160
applied and afterward, the dataset is properly annotated and labeled before using it as input for model161
training. For model training, CNN-based models are trained using the input dataset and trained models are162
then used for the prediction and classification of weeds after evaluating the prediction accuracy of these163
models.164

Figure 1. Weeds detection model workflow.
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2.1 Data Collection and Preprocessing165

In this section, all the details regarding data collection from the field and then its preprocessing are166
discussed. Images of different kinds of weeds found in the cotton crop during the summer season are167
collected. The data was collected from an irrigated cotton field in Rahim Yar Khan, a city in the Southern168
Punjab region of Pakistan. The area of the selected field is 12 acres and only the cotton crop is grown in169
this field. Data for this purpose is collected through two different mobile devices (vivo 1920 and iPhone170
6S), where the resolution of both the cameras in those devices is 48 megapixels with an aperture of f/2.2,171
13mm (ultra-wide).172

The data is collected at four different time intervals of the day, from sunrise in the morning to sunset173
in the evening. The data is collected in the month of August and during this month, the sun rises around174
5:35 am and sets around 6:40 pm in the selected region of south Punjab. So, the first interval starts175
early morning before sunrise from 5:30 am to 7:00 am. Then after a break of 2 hours, data is collected176
around the midday time starting from 9:00 am to 11:00 am. The third interval starts after noon from177
12:30 pm to 2:00 pm and the fourth interval starts in the evening from 5:00 pm to 7:00 pm. Dataset178
collected in this work is freely available and can be accessed using DOI 10.5281/zenodo.8383873 and179
https://doi.org/10.34740/KAGGLE/DS/3095815. In the month of August, the weather of South Punjab180
remains very hot and dry and the temperature in a day remains between 88◦ F to 100◦ F and sometimes181
goes beyond the upper limit. Humidity is always high during this period and remains between 40% to 50%.182
During normal weather conditions, more than 14000 images are captured in .JPG format with a resolution183
of 1280×720.184

In order to collect data on weeds that grow in different crop age periods, the crop was monitored from185
germination to production. The age of the cotton crop is about four months, and the growth of the weeds186
starts right from the beginning. In this work, the data of six different types of weeds is collected and each187
type of weed has more than 2000 images.188

In Figure 2, all six types of weeds i.e. ’Wild Cucurbit’, ’Slender Amaranth’, ’Nut Grass’, ’Horse Purslane’,189
’Common Puncture Vine’ and ’Trefoil’ Xu and Chang (2017) are shown where the weed shown in Figure190
2a is the Wild Cucurbit. This weed is in the shape of a vine, and it also appears as soon as the cotton191
plant emerges from the ground. Wild Cucurbit seed is naturally hidden in the ground. The vine of the wild192
cucurbit grips the cotton plant, which stops the growth of the cotton plant, and the vine produces a stalk,193
which destroys the tiny leaves and buds of the cotton and leads to the death of the cotton plant.194

In Figure 2b, Slender Amaranth is shown and the leaves of this weed are somehow similar to those of195
cotton leaves at the time of germination. Pest is also produced on this weed, which affects the cotton crop.196
In Figure 2c, Nut Grass is depicted as a weed that causes disease in cotton crops, not only damaging the197
plants but also inhibiting their growth. In Figure 2d, ’Horse Purslane’ is shown which is considered very198
dangerous for the crop. Its growth starts with the growth of the cotton crop and it spreads very fast. Due to199
this weed, pests attack the crop and if it is not controlled in time, the cotton crop is destroyed. In addition200
to the pest attack, this weed also spreads many diseases.201

In Figure 2e, ’Common Puncture Vine’ is shown which is not only dangerous for the cotton crop but202
also harmful for human health. It is a vine-shaped weed with triangular thorns which are also called the203
seeds of this weed. Due to this, it make it difficult for farmers to move in the cotton field because a painful204
sting is produced on this weed. Pests are also produced on this weed which affects the cotton crop and205
production. In Figure 2f, ’Laiti Vine Soft’ is shown which spreads on the ground in the form of vines and206
produces pests that can damage the cotton crop as well.207
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Figure 2a. Figure 2b. Figure 2c.

Figure 2d. Figure 2e. Figure 2f.

Figure 2. Classes of weeds collected in the dataset, (a) Wild cucurbit, (b) Slender amaranth, (c) Nut grass,
(d) Horse purslane, (e) Common puncture vine, and (f) Trefoil.

Table 1. Comparison of model architectures.
Model Pooling Activation Function Dropout Size Filter Size
Proposed Optimized VGG Max Pooling ReLU, Softmax 0.2 3x3
VGG-16 Max Pooling ReLU 0.5 3x3
ResNet101 Average Pooling Softmax Not used 1x1
DenseNet121 Average Pooling ReLU 0.001 3x3
Xception Average Pooling ReLU 0.4 3x3

2.2 Data Preprocessing208

After data collection, the next phase is data preprocessing. Before inputting the images into the model,209
several preprocessing steps are typically employed to enhance the quality of images and extract relevant210
information from the images. First, image normalization is performed to ensure consistent lighting211
conditions across the dataset, which involves adjusting brightness, contrast, and color balance. Next, image212
resizing is carried out to standardize the input dimensions, reducing computational complexity while213
maintaining essential details.214

Augmentation techniques are one of the common ways to capture more patterns in the dataset by a215
number of techniques such as rotation, zooming, flipping, brightness enhancement, and contrast adjustment,216
to name a few. These techniques result in new images that can be exposed (given) to the deep learning217
model while training to improve its detection accuracy and robustness.218

Figure 4 shows the workflow of the proposed approach. The workflow initiates at the ”Start” point,219
marking the beginning of the weed classification process. The system starts by receiving input in the220
form of data images, which are images of crops that potentially contain weeds. These images form the221
foundational dataset for training and validating the model. Capturing diverse images that represent different222
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Figure 3. Flowchart of model training.

weed types, growth stages, and environmental conditions is essential to improve the robustness of the223
classification model. In this stage, raw images have image processing to enhance their quality and ensure224
consistency in the dataset. Common preprocessing tasks may include resizing (to standardize dimensions),225
normalization (to scale pixel values), and augmentation (to generate variations by flipping, rotating, or226
adjusting brightness). The goal of preprocessing is to optimize the images for model training and to create227
a dataset that allows the model to generalize across various conditions. After preprocessing, images are228
annotated with labels.229

The annotation provides ground truth data that the model will use to learn weed characteristics. High-230
quality annotations directly impact the model’s performance and are usually done by experts. In the model231
training phase, a deep learning model is trained on the annotated dataset. Popular architectures for image232
classification, such as CNNs, are often employed. During training, the model learns to distinguish weeds233
from crops by analyzing labeled examples and adjusting its internal parameters. Many hyperparameters234
are fine-tuned to balance training speed and accuracy, producing a model capable of identifying weed235
patterns accurately. The trained model undergoes validation, where it is tested on a separate validation236
dataset to evaluate its generalization performance. Key metrics like accuracy, precision, recall, and F1-score237
are calculated to assess the model’s ability to correctly classify weeds. Given an input image, the model238
classifies it and determines if a weed is present, identifying the weed type if applicable. The output is the239
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classified weed type in the image, which can be displayed to end users, such as farmers or agricultural240
specialists. The workflow concludes with the ”End” point, marking the completion of the weed classification241
process.242

2.3 Model Training243

Various CNN-based models are deployed and trained on the images of cotton crop weeds. A CNN-based244
architecture consisting of several blocks with different numbers of convolutional layers with an increasing245
number of kernels in every block has been used for the weeds classification problem. The number of246
kernels in each filter varies from 32 kernels to 512 kernels till the last block of our proposed architecture. A247
number of key areas in the model’s architecture are tuned and optimized for improving the model detection248
and classification accuracy. Some of these key areas or techniques are listed below:249

• Kernel Initializer250

• Activation Function in every conv-layer251

• Batch Normalization252

• Max pooling253

• Dropouts254

An (f × f) filter convolves an (n × n) dimensional image. Convolution can be thought of simply as a dot255
product. The filter outputs an (n-f+1 × n-f+1) feature map after the convolution operation. Usually, the256
dimensions of the image are reduced when convolution happens at the edges of the image. An (f × f) filter257
acting on an (n × n) image has output dimensions (n - f + 1) × (n - f +1). Thus the image gets reduced in258
terms of dimensions after successive convolution operations and this affects the performance of the model.259
A common solution to this issue is zero padding. After each convolution operation, the boundaries of the260
image are padded with as many zeros as possible to maintain the original dimensions.261

Kernel Initializer is a function used to initialize the initial weights (kernels of a filter in our case). Random262
initialization of the neural network weights results in more time to converge back to the global minima263
(minimum cost). For the initialization of weights, the HE-uniform kernel initializer is used to initialize264
the weights of kernels in every convolutional layer. It draws the initial weights from the truncated normal265
distribution, where fn is the number of input units.266

An activation function is used in every convolutional layer to introduce the non-linearity to the summed267
weighted input and then feed it into the next layer. The activation function delays input to those neurons268
whose output is less effective by using a simple mathematical function. Some of the Activation functions269
used these days in neural networks are Sigmoid, Tanh, and Relu activation functions. But RelU is the most270
common activation function used in almost every Deep learning model Szandała (2021).271

There are plenty of activation functions to use and ReLU is the common choice. ReLU function which is272
well known for its technique to handle the negative values such that it deactivates the neuron if the output273
of linear transformation is less than zero. It is far more effective than sigmoid and tanh activation functions274
and also computationally not as complex as other activation functions Rustam et al. (2022). CNNs are275
optimized because they reduce the number of trainable parameters. This helps the network fight the curse276
of dimensionality. The optimization in CNNs revolves around the fact that as the network gets deeper, very277
little information is required about specific locations of features. Time complexity is also reduced when278
reduction is done in dimensions and depth of data. For this reason, CNN takes less time than ANN on the279
same data Hasan et al. (2019).280
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Dimensions are reduced in two ways: Pooling layers are introduced after convolution layers to281
downsample the output feature maps. Pooling acts by keeping the important data in feature maps and282
discarding the less important ones hence reducing the dimensions. Pooling can be done in many ways for283
example Max Pooling and Average Pooling. A major goal in solving any machine learning problem is284
to make a model that generalizes well and is optimized. Optimization helps in getting the best possible285
results on the ‘training data’ while generalization is the measure of a model’s performance on unseen286
data. If optimization and generalization are not properly taken care of, then issues such as over-fitting and287
under-fitting arise.288

Regularization is the process of regularizing or introducing some penalty term to the loss function when289
the model predicts. Regularization aims to reduce over-fitting. In dropout regularization, the dependency290
of the network on specific neurons is reduced and the model becomes more generalized and robust. The291
output from the pooling layer is fed to a regular neural network for further processing.292

Hyperparameter tuning is a critical step in the design and optimization of deep learning models, especially293
in a complex application like weed identification, where model accuracy and robustness can significantly294
impact real-world results. In this study, we employed a systematic approach to tune the key hyperparameters,295
including learning rate, batch size, number of filters, dropout rate, and optimizer type. A grid search method296
was initially used to identify a range of values for each hyperparameter, based on prior studies and empirical297
testing. For the learning rate, values between 0.0001 and 0.01 were tested to balance convergence speed298
with stability. A batch size of 32 was selected after comparing values ranging from 16 to 128, balancing299
memory constraints with model performance. The dropout rate was optimized between 0.2 and 0.5 to300
reduce overfitting while maintaining generalization, with a final selection of 0.33 for dense layers based on301
validation performance. The model’s architecture used an increasing number of filters per convolutional302
layer, progressing from 32 to 512 filters, which was fine-tuned based on the complexity of the dataset. We303
used the Adam optimizer with default momentum settings after comparing performance with SGD and304
RMSprop, finding Adam provided more stable convergence. Each configuration was evaluated using k-fold305
cross-validation (with 10 folds) to mitigate overfitting and ensure robustness. Final hyperparameters were306
selected based on the model’s performance metrics, particularly validation accuracy and loss, as well as307
computational efficiency. This thorough tuning process ensured that the proposed model was optimized for308
both accuracy and computational feasibility, making it suitable for real-time agricultural applications.309

Stride is a hyper-parameter and is defined as the number of steps n by which the pooling filter slides over310
the image. The pooling filter slides from left to right or down on the feature map and covers the whole311
feature map. The output from the pooling filter is termed the output channel and fed to the next convolution312
or ANN layer. Setting the stride hyper-parameter to n reduces the dimensions by n. The input image is fed313
into the convolutional layer of the model. The convolution operation is performed on every block such314
that a filter having n number of kernels of size (s × s) convolve with the input image having dimensions315
i × i traversing the whole image and learning some representation from the image. The output from the316
convolution layer is then passed to an activation function to introduce non-linearity and hence make the317
model capable of learning complex patterns.318

Afterwards, batch normalization is applied which standardizes the activation output by introducing the319
batch normalization layer. Batch normalization reduces the number of epochs required to train the network320
and the complexity of the model. The output from the batch normalization is fed to the Max Pooling layer321
to fight over-fitting and reduce computational complexity by reducing the number of trainable parameters.322
After passing from a series of such blocks with increasing numbers of Kernels and such conv-layers the323
output from the base convolutional model fed into the dense-layer model after flatten them out.324
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A dense classifier, similar to the ones in regular ANNs, is connected to the convolution base. The output325
from the convolution base is flattened out since the dense layer expects single-dimensional input. The326
output layer provides the output in the form of probabilities for each distinct class. A soft-max activation327
function is used in the output layer to predict the output in the form of probabilities.328

Figure 4. Architecture of the proposed model.

All comparison models (VGG-16, ResNet-101, DenseNet-121, and XceptionNet) were in fact refined329
by transfer learning on the particular weed dataset utilized for the proposed model in order to guarantee330
fairness. By fine-tuning these models, the comparisons become more justified and robust by matching them331
with the domain and data requirements of cotton weed categorization. Each model’s performance in this332
specific application was optimized through the use of transfer learning. The design of the suggested model,333
however, showed excellent performance even after fine-tuning, indicating its applicability for challenging,334
multiclass weed classification applications.335

2.4 Model Architecture336

Figure 4 shows the architecture of the proposed CNN model for cotton-based weed classification. The337
proposed model contains several convolutions, pooling, fully connected, and drop-out layers whose details338
are provided here.339

1. Convolutional Layer340

• Conv2D filters: 32, 64, 128, 256, 512341

• Conv2D kernel size: (3, 3) for the first two Conv2D layers, (5, 5) for the next two, and (7, 7) for342
the last three343

• Activation function: ReLU344

• Kernel initializer: He uniform345

• Padding: ’SAME’ for all Conv2D layers346

• Kernel regularizer: L2 regularization with a coefficient of 0.001 for all Conv2D layers347

2. Pooling Layers348

• MaxPooling2D with a pool size of (2, 2) after each pair of Conv2D layers349

3. Batch Normalization350

• Applied after every pair of Conv2D layers351

4. Dropout352
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• Applied after the second and fourth pairs of Conv2D layers, and after the Dense layer353

• Dropout rates: 0.2 for Conv2D layers and 0.33 for the Dense layer354

5. Dense Layers355

• Dense layer with 256 units and ReLU activation356

• Dense output layer with 4 units and softmax activation (assuming it’s a classification task with 4357
classes)358

2.5 Hyper Parameters Working359

1. Convolutional Layers360

• Filters: The number of filters progressively increases from 32 to 512 across the convolutional361
layers, allowing the model to capture increasingly complex features.362

• Kernel Size: The kernel size varies from (3, 3) to (7, 7) across layers, enabling the network to363
capture features at different scales.364

• Activation Function: ReLU activation function is used to introduce non-linearity into the model.365

• Kernel Initializer: He uniform initialization method is employed, which initializes weights in a366
way that is more suitable for ReLU activations, aiding in faster convergence.367

• Padding: ’SAME’ padding is utilized to ensure that the spatial dimensions of the input and output368
feature maps remain the same.369

• Kernel Regularizer: L2 regularization with a coefficient of 0.001 is applied to all convolutional370
layers to prevent overfitting and promote generalization.371

2. Pooling Layers372

• MaxPooling2D: Applied with a pool size of (2, 2) after each pair of convolutional layers, reducing373
the spatial dimensions of the feature maps while retaining important information.374

3. Batch Normalization375

• Batch normalization is applied after every pair of convolutional layers, helping to stabilize and376
accelerate the training process by normalizing the activations.377

4. Dropout378

• Dropout regularization is applied after the second and fourth pairs of convolutional layers, as well379
as after the dense layer. Dropout rates of 0.2 are used for convolutional layers, and 0.33 for the380
dense layer, respectively, to prevent overfitting by randomly dropping a proportion of neurons381
during training.382

5. Dense Layers383

• Dense Layer 1: Consists of 256 units with ReLU activation, providing a high- capacity384
representation of the extracted features.385

• Dense Output Layer: Comprises 4 units with softmax activation, suitable for multi-class386
classification tasks with 4 classes, producing probability distributions over the classes.387

3 EXPERIMENTS AND RESULTS

In this section, all the details of the experiments and results based on the performance metrics for the388
proposed CNN model are discussed.389
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3.1 Experimental Setup390

This study performs experiments using Google Colab on an Intel Core i7 system with 16GB RAM.391
Python is used to implement the selected CNN-based models. A number of same labeled images, which392
were 14,000 in total were used and the dataset was divided into 80% to 20%, for training and testing,393
respectively. Table 2 provides the details for class-wise train-test split for experiments.394

Table 2. Class-wise samples for training and testing.
Class Training Testing Total
Wild Cucurbit 1,840 460 2,300
Slender Amaranth 1,840 460 2,300
Nut Grass 1,840 460 2,300
Horse Purslane 1,840 460 2,300
Common Puncture Vine 1,840 460 2,300
Trefoil 1,920 480 2,400

3.2 Performance Metrics395

In the performance metrics, the two most common parameters are used i.e. accuracy and loss. This whole396
process was accomplished through the confusion table. Accuracy provides a summary of the performance397
of the model and in often cases is not enough to decide if the model is satisfactory or not Asad and Bais398
(2020). Accuracy is calculated using the following.399

Accuracy =
CP

TP
(1)

where CP corresponds to the number of correct predictions and TP corresponds to the total predictions.400
The results seem good with high validation accuracy and low validation loss in predicting the weeds401
classification by the proposed model. Loss is calculated using a loss function. In the proposed model,402
categorical cross-entropy is used as the loss function to find the loss score Xu and Chang (2017).403

loss = −
total outputs∑

i

yi.logŷi (2)

In addition to accuracy and loss, we evaluated the model’s performance using Precision, Recall, and F1404
scores. These metrics provide a more nuanced understanding of the model’s ability to accurately classify405
different weed types, addressing not only overall accuracy but also the model’s precision in identifying406
positive instances (Precision), its sensitivity to true positive cases (Recall), and the balance between the407
two (F1 Score). Precision, Recall, and F1 scores are calculated as follows:408

Precision =
TP

TP + FP
(3)

Precision =
TP

TP + FN
(4)
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Precision = 2× Precision×Recall

Precison+Recall
(5)

The proposed model achieved high scores across these metrics, with Precision, Recall, and F1 scores409
consistently above 0.98, indicating its reliability in correctly classifying various weed species. These410
metrics are particularly valuable for understanding the model’s performance under conditions of class411
imbalance or in scenarios where false positives or false negatives carry different consequences, as often412
encountered in agricultural applications.413

The ground truth and CNN score for each class i in the total number of classes are yi and ŷi, respectively.414
Before computing the Loss, an activation function (Sigmoid / Softmax) is applied to the scores. After415
finding out the loss score the next target is to reduce the error score by using an optimizer (convex416
optimization) and update weights of models in every epoch.417

3.3 Experimental Results418

The model is trained for 100 epochs. The classification metrics are calculated after the 100 epochs.419
The proposed model took almost 32 hours to perform 100 iterations of training. The graphs for training420
accuracy, training loss, validation accuracy, and validation loss of the classification of 6 different types of421
weeds are given here. The training accuracy of the proposed model was 98.3% with a training loss of 0.041422
as shown in Figure 5a and 5b.423

Figure 5a. Figure 5b.
Accuracy and loss of the proposed approach, (a) Training and testing accuracy, and (b) Training

and testing loss.
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It took 33 hours for VGG-16 to perform 100 iterations. VGG-16 was able to reach a training accuracy of424
94.3% with a training loss of 0.062. Its graphs can be seen in Figure 6a and 6b. Compared to the training425
and testing loss of the proposed CNN model, the difference between the training and testing loss of the426
VGG model is higher. In addition, it shows lower accuracy compared to the proposed model.427

Figure 6a. Figure 6b.
Accuracy and loss of the VGG16 model, (a) Training and testing accuracy, and (b) Training and

testing loss.

The ResNet101 took 44 hours to perform 100 iterations. ResNet-101 was able to obtain a training428
accuracy of 96.1% and a training loss of 0.043. Figure 7a and 7b depicts graphs for training, validation429
accuracy, and training as well as validation losses. The ResNet-101 model shows better results than the430
VGG16 model, however, its performance is not as good as shown by the proposed model.431

Figure 7a. Figure 7b.
Accuracy and loss of the ResNet101 model, (a) Training and testing accuracy, and (b) Training and

testing loss.
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It took 48 hours for DenseNet-121 to perform 100 iterations. Figure 8a and 8b depicts the graphs for432
both training and validation accuracy and training and validation loss. It can be seen that training accuracy433
reaches up to 96.4% and training loss goes to 0.045. The performance of the DenseNet-121 and ResNet101434
is almost similar.435

Figure 8a. Figure 8b.
Accuracy and loss of the DenseNet model, (a) Training and testing accuracy, and (b) Training and

testing loss.

It took 18 hours for Xception to perform 100 iterations. Graphs for training accuracy, validation accuracy,436
training loss, and validation loss are shown in Figure 9a and 9b. Training accuracy reaches up to 95.2%437
and training loss goes to 0.056.438

Figure 9a. Figure 9b.
Accuracy and loss of the Xception model, (a) Training and testing accuracy, and (b) Training and

testing loss.
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Comparison graphs for the accuracy of all models are presented in Figure 10. The results indicate that the439
proposed model performs much better than other CNN models in terms of training and testing accuracy. The440
VGG16 model shows the poorest results compared to other models while the performance of ResNet-101441
and DenseNet121 models show marginally different performance.442

Figure 10. Accuracy comparison for all models.

Figure 11 shows the results of all CNN models in terms of training and testing loss. The VGG-16 model443
observes the highest training and testing loss, followed by the Xception model. Although the ResNet-101444
model shows a very low training and testing loss, it is marginally higher than what is obtained by the445
proposed CNN model.446

Figure 11. Loss comparison of all models.
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To evaluate the results of the proposed model, results are compared with different CNN models on the447
same dataset and comparative results are shown in Table 3. CNN models were used for six different types448
of weed classification. All CNN models were tested in the specified environment, in which the result of the449
proposed model was better than the rest of the models.450

Table 3. Performance comparison of various CNN models.
Models Training Accuracy Training Loss Validation Accuracy Validation Loss
Proposed 0.983 0.041 0.976 0.049
VGG-16 0.943 0.062 0.936 0.073
ResNet-101 0.961 0.043 0.954 0.057
DenseNet-121 0.964 0.045 0.958 0.052
Xception 0.952 0.056 0.946 0.061

In the proposed model, dropout regularized CNN-based architecture is used for the classification of451
weeds. The results of the proposed architecture, as shown in Table 4, indicate a superior performance of452
the proposed model compared to the other four well-known CNN models. The table shows accuracy and453
loss values for the proposed model and various state-of-the-art architectures trained via transfer learning.454
The accuracy of VGG-16 is 94.3%, ResNet-101 is 96.1%, DenseNet-121 is 96.4% and for Xception, the455
accuracy is 95.2%. The proposed model proves to be better with the resulting detection and classification456
accuracy of 98.3% than other models.457

Table 4. Performance comparison of all models concerning precision, recall, etc.
Models Accuracy Precision Recall F1 score
Proposed 0.983 0.9862 0.9861 0.9818
VGG-16 0.943 0.9418 0.9404 0.9412
ResNet-101 0.961 0.9661 0.9671 0.9623
DenseNet-121 0.964 0.9632 0.9711 0.9636
Xception 0.952 0.9497 0.9496 0.9510

Results were changed on the basis of two different reasons as the datasets were collected in different458
environmental conditions like early morning (05:50 am to 6:20 am), morning (06:40 am to 09:00 am),459
noon (12:00 pm to 01:00 pm), afternoon (03:00 pm to 04:00 pm) and before sunset (05:00 pm to 06:00460
pm). Parameters were changed of the proposed model against the existing models.461

In addition to accuracy, other performance metrics like F1 score, precision, etc. are better compared to462
other CNN models. For example, proposed models 0.9862, 0.9861, and 0.9818 scores for precision, recall,463
and F1 score, respectively are much better than ResNet-101 and DenseNet-121 which performed really well.464
Moreover, performance concerning the number of correct predictions (CP) and wrong predictions (WP) is465
also illustrated in Figure 13. The lowest number of CP is recorded with VGG-16 which is 12,970 out of466
a total of 13,900, and ultimately it has the highest number of WP of 930. The Xception model performs467
better than VGG-16 and predicts 13,026 samples correctly. DenseNet-121 and ResNet-101 perform better468
concerning correct predictions and make 13,097 and 13,159 predictions correctly. The proposed model469
performs the best with 13,544 correct predictions and only 356 predictions are wrong.470
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Figure 13a. Figure 13b. Figure 13c.

Figure 13d. Figure 13e.

Figure 13. Confusion matrices for all models, (a) Proposed model, (b) VGG-16 model, (c) ResNet-101
model, (d) DenseNet-121 model, and (e) Xception model.

3.4 K-Fold Cross-Validation471

To evaluate the model’s performance concerning robustness and mitigate the risk of overfitting, k-fold472
cross-validation with 10 folds is employed. This involves splitting the dataset into 10 folds, training the473
model on 9 folds, and validating it on the remaining one fold. This process is repeated 10 times, ensuring474
that each fold serves as both a training and validation set. The final performance metrics are typically475
computed as the average across all folds, providing a more reliable estimate of the model’s generalization476
performance. By incorporating k-fold cross-validation, the proposed CNN model aims to prevent overfitting477
and generalize well to unseen data in the context of classification tasks. Results given in Table 5 indicate478
superior performance of the proposed model in all folds concerning training and testing accuracy, thereby479
proving its robustness.480
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Table 5. K-fold cross-validation results
K-Fold Training Accuracy Training Loss Validation Accuracy Validation Loss
1 0.95 0.05 0.94 0.06
2 0.95 0.05 0.97 0.03
3 0.96 0.04 0.92 0.08
4 0.95 0.05 0.89 0.11
5 0.97 0.03 0.97 0.03
6 0.93 0.07 0.92 0.08
7 0.93 0.07 0.92 0.08
8 0.93 0.07 0.92 0.08
9 0.97 0.03 0.96 0.04
10 0.93 0.07 0.96 0.04
Average 0.947 0.053 0.937 0.063

3.5 Comparison With Existing Models481

Further investigation has been conducted to provide an in-depth comparison of the proposed weed482
classification approach against well-established models from the existing literature. Several studies have483
shown promising results in weed classification, with machine learning and deep learning techniques484
achieving remarkable accuracy levels across various datasets. For instance, research works such as485
Vypirailenko et al. (2021); Weed Images (2022); Asad and Bais (2020); Grace et al. (2021) present state-486
of-the-art performances, illustrating the strengths of these methods in controlled settings. Specifically,487
Weed Images (2022) and Asad and Bais (2020) achieve classification accuracies of 98.8% and 98.23%,488
respectively, showcasing highly effective models that are finely tuned for binary or limited-class weed489
identification tasks. Likewise, Benos et al. (2021) adopts an SVM-based technique, obtaining a 96.70%490
accuracy rate, which emphasizes the continued relevance of traditional machine learning models for specific491
weed classification scenarios where data variability is limited.492

However, many of these models encounter limitations when applied to multiclass weed classification,493
which requires distinguishing between a larger number of weed types that may exhibit subtle visual494
differences. These models often struggle with scalability and generalization in the face of increased495
complexity and inter-class similarities, which can lead to misclassification or reduced accuracy. The496
proposed approach, by contrast, is specifically optimized to handle multiclass classification by leveraging497
an enhanced feature extraction process that captures detailed and distinguishing features across a wide498
range of weed species. This ability to discern fine-grained differences allows the model to maintain high499
accuracy across diverse weed types, thereby addressing the scalability challenges seen in other methods.500

Table 6. Comparison of performance with existing studies.
Reference Classification Model Accuracy
Vypirailenko et al. (2021) Multiclass ResNet 93.45% accuracy
Weed Images (2022) Binary class YOLOv3 98.8%
Asad and Bais (2020) Binary class DNN 98.23%
Grace et al. (2021) Binary class CNN 89% accuracy
Jin et al. (2021) Multiclass CenterNet 95.3% accuracy
Olsen et al. (2019) Binary class ResNet50 97.6%
Knoll et al. (2019) Multiclass CNN 96.82%
Benos et al. (2021) Multiclass SVM 96.70%
Proposed Multiclass CNN 98.30%
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Moreover, the proposed model incorporates techniques such as adaptive pooling layers and optimized501
convolutional kernels that are fine-tuned to balance precision and computational efficiency, making it502
more suitable for deployment in real-time agricultural settings. Table 6 provides a detailed performance503
comparison, indicating that our approach consistently outperforms existing models in multiclass504
classification tasks. Not only does our method yield higher accuracy, but it also demonstrates robustness505
against variations in lighting, angle, and occlusion, conditions that are common in real-world environments506
but often underrepresented in controlled experimental setups. This robustness makes the proposed model507
particularly valuable for practical applications in precision agriculture, where accurate weed identification508
is crucial for targeted herbicide application and resource management.509

The proposed model is especially tailored for the particular environmental and visual challenges of weed510
identification in cotton fields, even if it only marginally outperforms well-known architectures in terms511
of accuracy (98.3% vs. ResNet-101’s 97.1%). To manage fine-grained visual distinctions, it uses special512
features like adaptive pooling and customized convolutional filters. Compared to generalized architectures,513
this focus on domain-specific optimizations makes it more feasible for precision agriculture and more514
dependable in real-world situations where weed species exhibit small visual variations.515

4 CONCLUSIONS

Weeds are dangerous and destructive to various crops including cotton. Weeds have the potential to destroy516
cotton crops resulting in huge economic losses. Previously, there were various methods based on computer517
vision for weed classification and the research field is still active and undergoing further research. For518
the detection and classification of weeds in cotton crops, an improved approach based on a dropout519
regularized CNN model has been proposed. The proposed work illustrates an improved methodology for520
the classification of weeds in cotton plants. The model is rigorously investigated through experiments, cross-521
validation, and performance comparison with the already available state-of-the-art models. Experimental522
results indicate superior performance of the proposed model over other approaches. The proposed work also523
forms the basis for developing various applications in the field of agriculture and farming. The applications524
of this research will help the farmers to obtain higher yields by detecting the weeds in their farms. In525
the future, robotic-based solutions will be made for weed identification, classification, and spraying of526
weedicides.527
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