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Existing seed germination detection technologies based on deep learning are

typically optimized for hydroponic breeding environments, leading to a decrease

in recognition accuracy in complex soil cultivation environments. On the other

hand, traditional manual germination detection methods are associated with

high labor costs, long processing times, and high error rates, with these issues

becoming more pronounced in complex soil–based environments. To address

these issues in the germination process of new cucumber varieties, this paper

utilized a Seed Germination Phenotyping System to construct a cucumber

germination soil–based experimental environment that is more closely aligned

with actual production. This system captures images of cucumber germination

under salt stress in a soil-based environment, constructs a cucumber

germination dataset, and designs a lightweight real-time cucumber

germination detection model based on Real-Time DEtection TRansformer (RT-

DETR). By introducing online image enhancement, incorporating the Adown

downsampling operator, replacing the backbone convolutional block with

Generalized Efficient Lightweight Network, introducing the Online

Convolutional Re-parameterization mechanism, and adding the Normalized

Gaussian Wasserstein Distance loss function, the training effectiveness of the

model is enhanced. This enhances the model’s capability to capture profound

semantic details, achieves significant lightweighting, and enhances the model’s

capability to capture embryonic root targets, ultimately completing the

construction of the RT-DETR-SoilCuc model. The results show that, compared

to the RT-DETR-R18 model, the RT-DETR-SoilCuc model exhibits a 61.2%

reduction in Params, 61% reduction in FLOP, and 56.5% reduction in weight

size. Its mAP@0.5, precision, and recall rates are 98.2%, 97.4%, and 96.9%,

respectively, demonstrating certain advantages over the You Only Look Once

series models of similar size. Germination tests of cucumbers under different

concentrations of salt stress in a soil-based environment were conducted,

validating the high accuracy of the RT-DETR-SoilCuc model for embryonic
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root target detection in the presence of soil background interference. This

research reduces the manual workload in the monitoring of cucumber

germination and provides a method for the selection and breeding of new

cucumber varieties.
KEYWORDS

RT-DETR, soil-based environment, cucumber germination, germination rate,
salt tolerance
1 Introduction

Cucumber (Cucumis sativus L.), widely loved for its fresh, crispy

texture, rich nutritional value, and powerful health benefits, is one

of the most widely consumed fruits in the world (Wang et al., 2017).

Several bioactive compounds found in cucumbers, including

cucurbitacins, are believed to have potential anti-diabetic, lipid-

lowering, and antioxidant activities (Mukherjee et al., 2012). With

the continuous development of the edible and medicinal value of

cucumbers, rapid breeding research for cucumbers is also

advancing (Hui et al., 2023). Germination rate is an important

indicator for evaluating the quality of cucumber varieties.

Evaluating the germination rate of cucumbers under salt stress in

soil-based environments is more closely aligned with the actual

growth conditions of the seeds. This process can help identify

cucumber varieties with stronger resistance to stress, aiding in the

selection of more resilient cucumber cultivars. On one hand,

traditional methods for assessing seed germination rely on

manual judgment, which has the disadvantages of high cost, long

time consumption, and high error rates (Jahnke et al., 2016). On the

other hand, existing deep learning–based seed germination

detection technologies are often optimized for hydroponic

cultivation environments and may face challenges in accurately

identifying germination in soil images with stronger interference

(Jiang et al., 2023; Fu et al., 2022). Lastly, due to the limited

performance of agricultural production equipment, practical

germination detection technologies need to consider the

lightweight nature of germination detection models. To address

the limitations of current germination detection methods and take

into account the deployment requirements in low-computing

environments, this paper proposes a lightweight, cost-effective,

automated, and high-throughput method for detecting cucumber

seed germination in soil-based environments.

In the field of machine learning, classical machine learning

methods have been widely used for automated analysis of seeds (de

Medeiros et al., 2020a; Fu et al., 2021). For example, Zhao et al. (2022)

and Khatri et al. (2022) successfully achieved the measurement of key

dynamic traits of wheat (such as root length) using supervisedmachine

learning algorithms such as Support Vector Machine and K-Nearest

Neighbors. Shetty et al. (2011) employed a supervised classification

method to predict the vigor of carrot or radish seeds using near-
02
infrared spectroscopy. de Medeiros et al. (2020b) combined X-ray

analysis with an linear discriminant analysis (LDA) machine learning

model to achieve an average germination detection accuracy of 94.36%

for leprosy tree seeds. Joosen et al. (2010) proposed a software package

for assessing Arabidopsis seed germination. Yuan et al. (2016) and

Dang et al. (2020) used red, green and blue (RGB)-transformed images

for seedling recognition, but the recognition rate was only 50%,

making it difficult for practical production applications. In summary,

early machine learning–based crop phenotyping analysis methods

often require the development of algorithms tailored to specific

environments, with narrow applicability and low robustness. The

algorithm design process is complex, and these methods typically

operate only in specialized environments to identify specific crop

features, lacking the flexibility for deployment and adaptability to

environments with strong interference. Furthermore, their accuracy is

relatively low, making it challenging to meet practical production

demands. To overcome these limitations, convolutional neural

networks have been more widely applied in crop phenotype analysis,

as they can extract target features through multi-layer convolution and

pooling operations and possess high robustness and real-time

performance in deep learning models [e.g., Real-Time DEtection

TRansformer (RT-DETR) and You Only Look Once (YOLO)].

In the field of deep learning, the YOLO algorithm has become

the most widely used algorithm in the intelligent breeding field of

agriculture due to its combination of fast detection speed, detection

accuracy, and ease of use and improvement (Yanhua et al., 2022;

Redmon et al., 2016). Many scholars have developed more accurate

algorithms based on YOLO for specific environments and varieties

to address different application scenarios (Li et al., 2024). For

example, Yao et al. (2024) and Kundu et al. (2021) utilized the

improved YOLOv7 algorithm and YOLOv5 algorithm, respectively,

for wild rice germination detection and maize seed classification.

The abovementioned germination detection algorithms based on

YOLO typically operate in hydroponic environments where the

images are captured against a solid-colored non-woven fabric

background. The solid-colored background in hydroponic

environments minimizes background interference, and the special

optimizations implemented in these algorithms are often geared

towards accurately detecting small embryo targets rather than

combating background interference. While these algorithms

perform well in hydroponic environments, the complex
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background interference in soil-based environments, which is closer

to actual production settings, can significantly impact their

recognition performance.

Although the YOLO series algorithms have been widely used in

agricultural production experiments, they still have significant

drawbacks. YOLO tends to generate numerous redundant

bounding boxes during runtime, which need to be filtered out

using non-maximum suppression (NMS) in post-processing. The

hyperparameters of NMS can significantly impact the accuracy and

speed of YOLO (Lv et al., 2023). This can lead to poor detection of

small objects (Jiang et al., 2023) and a large number of parameters.

Dai et al. (2021) introduced a dynamic encoder in the DETRmodel to

approximate the attention mechanism of the Transformer encoder,

improving the DETR model’s ability to recognize features of small

objects. Dai et al. (2021) proposed the unsupervised pre-training

(UP)-DETR model, which exhibits faster convergence in object

detection, to some extent addressing the issue of lengthy training

time in DETR. Unlike the common hydroponic environment in

laboratories, although soil-based cultivation is closer to actual

production, irregular small soil particles scattered around seeds or

adhering to tiny newly embryonic roots pose a significant challenge

for the YOLO model, which is not adept at recognizing small objects.

To achieve high accuracy and recall in soil-based cultivation while

considering the cost and training time, it is advisable to abandon the

use of YOLO and instead opt for lightweight models in the DETR

series, such as the real-time end-to-end object detection model, RT-

DETR, as the baseline model for improvement (Lv et al., 2023).

Compared to YOLO, it has a mixed encoder that can effectively

handle multi-scale features and Intersection over Union (IoU)-aware

query selection, enabling RT-DETR to achieve faster speed than

YOLO at the same level of accuracy, thus outperforming YOLO in the

field of small object detection.

While RT-DETR has advantages in recognition accuracy

compared to YOLO of similar scale, there are still limitations in

cucumber seed germination detection in soil-based environments.

Firstly, unlike hydroponic environments, in soil-based, cucumber

seeds tend to burrow into the soil during germination, leading to the

seeds themselves or the radicles being covered by soil. Radicles

emerging from another position after burrowing into the soil also

easily result in repeated identification of the same target. To address

these complex scenarios, more targeted image data need to be

collected. The time span of cucumber germination is 3 to 4 days,

and manually annotating a large amount of image data generated

during this process is extremely time-consuming. Therefore, to

achieve better training results with a limited annotated training set,

the dataset needs to be augmented online to increase the training

data volume. On the other hand, cucumber seeds are small in size,

and the radicles that emerge during germination are also fine. In

soil-based environments, compared to hydroponic environments,

the background of cucumber seed images may contain more

interfering objects, including but not limited to stones with colors

similar to cucumber seeds and wooden fibers similar in length to

radicles. Despite RT-DETR having superior small target resolution

capabilities compared to YOLO, distinguishing fine radicles from

small interfering objects in the soil remains challenging,

necessitating enhancement of the recognition capabilities of the
Frontiers in Plant Science 03
RT-DETR model for soil-based environments. Additionally, the

parameter size of the RT-DETR model is large. To reduce

deployment complexity and improve inference speed, efforts are

made to reduce its parameter size and computational load through

additional lightweight design. This paper proposes a RT-DETR-

SoilCuc model specifically designed for cucumber seed germination

detection in soil-based, using the RT-DETR-R18 model with a

smaller parameter size in the RT-DETR series as the baseline model

(Lv et al., 2023).

To address the abovementioned issues, the main contributions

are as follows:
1. To ensure the model’s recognition accuracy in the face of

complex soil interference, we introduce online image

augmentation techniques based on the Albumentations

library. This approach not only reduces the cost of

manual annotation but also enhances the efficiency of

model training in limited datasets and improves the

model’s adaptability to complex environments.

2. By incorporating the Adown downsampling operator and

the Generalized Efficient Lightweight Network (GELAN)

module derived from YOLOv9 into the backbone of the

model, we have successfully enhanced the model’s

recognition accuracy while reducing its computational

complexity. This ensures that the model can be deployed

in scenarios with limited hardware resources and achieves

seamless upgrades without compromising performance.

3. Introducing the Online Convolutional Re-parameterization

(OREPA) mechanism into the model’s convolutional

computation allows flexible weight transformation during

model training and enhances the model’s ability to identify

small targets with uncertain embryonic root positions.

4. The introduction of the Normalized Gaussian Wasserstein

Distance (NWD) loss function specifically designed to

enhance the recognition of small targets, combined with

the previous improvements, strengthens the model’s ability

to identify embryo features in the presence of soil

background interference.

5. Validating the practical use of the model through a salt-alkali

tolerance experiment on cucumber seeds: The model is

used to automatically analyze seed germination, and in

combination with germination rate and germination index,

successfully evaluates the salt-alkali tolerance of the

cucumber variety, thereby verifying the practical value of

the model.
The remaining sections of this paper are organized as follows.

The second section discusses the data collection equipment and

methods, the process of image data collection, data augmentation,

the structure of RT-DETR-SoilCuc and its improvement modules,

model evaluation metrics, and seed germination vigor evaluation

metrics. The third section explains the results and discussions,

including training environment and parameter settings, results and

discussions of model ablation experiments and comparative

experiments, and experimental verification of the model’s
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effectiveness in detecting salt and alkali tolerance of cucumber seeds

in soil. The fourth section provides a summary, limitations, and

future work.
2 Materials and methods

2.1 Data collection equipment

We conducted cucumber seed germination experiments using a

Seed Germination Phenotyping System. The system comprises a

seed germination incubator and an image acquisition device, as

shown in Figure 1B. The dimensions of the incubator are 1,120 mm

in length, 380 mm in width, and 860 mm in height, with internal

dimensions of 1,060 mm in length, 320 mm in width, and 800 mm

in height (manufacturer: Henan Greentech Electric Technology Co.,

Ltd.). It is equipped with a hot air circulation system that relies on

two sets of Tp-100 thermocouples on the inner side of the incubator

to monitor the temperature. When the temperature falls below the

preset level, the hot air circulation system operates to raise the

temperature. If the temperature exceeds the upper limit, then the
Frontiers in Plant Science 04
system stops to maintain a constant temperature environment. The

temperature range can be adjusted between 5°C and 50°C to meet

the germination temperature requirements of different seeds.

Additionally, the box has an LED lighting system and can

accommodate three 25 cm × 25 cm culture dishes, each of which

can cultivate 49 seeds simultaneously, as shown in Figure 1C. To

avoid reflections from the acrylic material affecting image

acquisition, the culture dishes are customized using Polyethylene

terephthalate-I (PETG) material through 3D printing technology. A

horizontal guide rail is installed at the top of the incubator, with a

stepper motor and an HIK Vision industrial camera mounted on

the rail. The camera model is MV-CS060-10GC, equipped with a

12-mm focal length lens (model MVL-HF1228M-6MPE, supplier:

Suzhou Youxin Zeda Co.), positioned 40 cm away from the culture

dish. The stepper motor provides power to move the camera along

the guide rail inside the incubator at a speed of 0 mm to 50 mm per

second, covering a range of 860 mm, to capture high-resolution

images of specific culture dishes. The camera communicates with

the host through a GigE gigabit interface, and the image resolution

is 2,592 × 2,048 pixels. Users have the option to adjust the camera’s

focal length, shooting interval, and apply pre-cropping of images
FIGURE 1

Seed Germination Phenotyping System. (A) Schematic diagram of model training process. (B) Structure of the system. (C) Schematic diagram of seed
placement. (D) Data acquisition camera. (E) Edge computer. (F) Schematic of the acquired images.
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through the software interface on the host, as shown in Figure 1E.

The final images can be viewed in the “data” folder on the host for

the next step of dataset annotation. The annotated dataset, as shown

in Figure 1F, is used for model training. The model training process

is illustrated in Figure 1A, and the final model recognition results

are shown in Figure 1.
2.2 Data collection and preprocessing

2.2.1 Germination protocol and data collection
We conducted experiments using the Zhi Lv 0116 (supplier:

Nanjing Lvling Seed Industry Co., Ltd.) variety combined with pure

substrate soil. The pure substrate soil that has been sterilized at high

temperatures does not contain harmful pathogens that affect

cucumber germination. It has a darker color and fewer impurities,

making it easier to distinguish seeds from the soil background. By

utilizing the Seed Germination Phenotyping System (as shown in

Figure 2A), we maintained the experimental temperature at 25°C,

ensuring full-day sunlight and suitable humidity (Guadalupe et al.,

2013). A total of 500 undamaged and plump cucumber seeds were

selected for the experiment, as shown in Figure 2B. The experiment

was divided into two parts: a non-stress control experiment and a

salt stress experiment. The salt stress experiment involved salt

concentrations ranging from 30 mmol/L to 150mmol/L, with

experiments conducted at intervals of 30 mmol/L, totaling five

sets of experiments (Deinlein et al., 2014). The non-stress control

experiment was conducted six times, spanning 5 days, resulting in a

collection of 2,102 images. The salt stress experiment was also

repeated six times for each group, lasting 5 days, and yielding a total

of 3,991 images, with images at key time points shown as an

example in Figure 2C. All images were saved in.jpg format with a

resolution of 1,840 × 1,800 pixels after pre-cropping on the host.

2.2.2 Data preprocessing
To ensure the efficiency of later training, we manually selected

early germination images from a total of 6,093 pictures and removed

blurry images caused by exposure failures. This resulted in the

extraction of 1,000 high-quality early germination seed images. We

used LabelImg to manually annotate these 1,000 images, thereby

establishing a dataset. To enrich the variety of data and improve

training accuracy, roots shorter than the length of the seed itself were

labeled as “SROOT,” whereas roots longer than the seed itself were

labeled as “LROOT.” Seed vitality was determined on the basis of

whether the seed could germinate and the length of the root. The

annotation criteria are shown in Figure 3.

The dataset will be divided into training, testing, and validation

sets in a 7:2:1 ratio. Considering the traditional offline image

augmentation methods, expanding images from the original

dataset may appear in both the testing and training sets,

potentially leading to artificially inflated model accuracy.

Additionally, in soil-based seed cultivation environments, the

radicles of seeds may penetrate the soil or become covered in soil,

as shown in Figure 4. Small target radicles covered by soil in high-

intensity data augmentation, such as pixelation or adding mosaics,
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may result in the loss of some information, further negatively

impacting the model training effectiveness. To address this issue,

this study will employ online data augmentation based on the

Albumentations library (Buslaev et al., 2020). This form of data

augmentation will apply random augmentation within preset

parameter ranges during the model training process, ensuring

that each batch of trained images undergoes different data

augmentation. Compared to traditional offline data augmentation

methods, which can only use a fixed method to expand the dataset,

the online data augmentation approach generates almost

limitless samples.

Considering that online data augmentation may increase model

training time, this paper adopts four relatively mild and simple

image enhancement functions for data augmentation (1) Blur:

applies random blurring to the entire image with a blurring

probability set at 1%, simulating image blurring caused by camera

shake. (2) Medianblur: uses median filtering to take the average of

surrounding pixels, reducing image noise and enhancing training

effectiveness. (3) Clahe (Contrast Limited Adaptive Histogram

Equalization): randomly adjusts the contrast of the image to

enhance the model’s recognition capability under varying lighting

conditions. (4) Togray: converts the image to a grayscale image to

reduce GPU resource usage. The results of the image processing are

shown in Figure 5.
2.3 Design for RT-DETR-SoilCuc

The RT-DETR-SoilCuc model proposed in this paper is an

improvement based on the lightweight RT-DETR-R18 model (Lv

et al., 2023). The baseline model has been further lightweighted,

and, for the purpose of facilitating model deployment, it has been

modified from using the PaddlePaddle library to using the

ultralytics library for deployment. This allows RT-DETR-SoilCuc

to run in the YOLO environment, making it easier to use, deploy,

and improve. Similar to traditional neural networks, RT-DETR-

SoilCuc consists of three main parts: the backbone, the neck, and

the decoder and head parts. The backbone first extracts shallow and

effective information from the image through two consecutive

convolution operations. In the P3 to P5 layers, the use of the

downsampling operator ADown and the combination of two

modules based on GELAN and OREPA, OREPANCSPELAN4,

can feed the mid-training information back to the training loop,

making the model more efficient while computing lightweight, and

able to identify deep semantic features of small targets. In the

decoder and head parts, RT-DETR-SoilCuc has a new group

attention mechanism, which can distribute attention calculation

to two attention heads to improve training efficiency.

Compared to RT-DETR-R18, this paper makes the following

improvements: (1) In the backbone part, we added the

downsampling operator Adown from the latest YOLOv9, which

uses average pooling to extract feature map sizes, reducing the

number of model parameters and making the model more

lightweight. At the same time, Adown can fuse its parameters

into the convolutional layer during the inference stage, making
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the model more lightweight and efficient. (2) The RepNCSPELAN4

module from YOLOv9 replaces the Repc3 module in RT-DETR-

R18. It is more lightweight and can provide a more versatile and

efficient network to adapt to complex training tasks. (3) To avoid a

decrease in accuracy after lightweighting the model, we

incorporated OREPA into the RepNCSPELAN4 module to reduce

training complexity and improve model accuracy. (4) We added the

NWD loss function specifically designed to enhance the semantic
Frontiers in Plant Science 06
extraction capability of small targets, aiming to improve the

recognition of fine embryonic root features. The improved model

structure is shown in Figure 6.

2.3.1 Adown
The module is the downsampling module in YOLOv9, and we

will insert this module between the convolution operations in the

backbone of RT-DETR-R18. The structure of Adown and its sub-
FIGURE 2

(A) Sprout equipment. (B) Experimental flowchart. (C) Schematic of cucumber seed growth process.
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FIGURE 3

Schematic of short root and long root cucumber seeds.
FIGURE 4

Root schematic diagram for drilling into soil.
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modules is shown in Figure 7, where chunking is the segmentation

operation performed on the input dataset.

Different from the traditional downsampling module, which is

typically a direct combination of max pooling and average pooling,

Adown introduces two convolution operations (Wang et al., 2024). It

first provides average pooling to average all the features in the image,

helping to extract overall features. It then splits the channels into two

parts. Each part undergoes a CBS operation and a max pooling

operation. CBS is a combination of convolution, batch normalization,

and activation function, which can extract the features within the image

after average pooling, whereas max pooling retains the most significant

features of each target. Finally, the two results are concatenated to

combine feature maps of different scales in the channel dimension,

expanding the tensor dimension to further extract deep semantic

information. By adding this module, the model’s efficiency can be

improved without significantly reducing accuracy.
2.3.2 RepNCSPELAN4
RepNCSPELAN4 is derived from the new network architecture

proposed in YOLOv9 called GELAN, as shown in Figure 7. It is a

fusion of cross stage partial network (CSPNet) and efficient layer
Frontiers in Plant Science 08
aggregation network (ELAN) designs (Wang et al., 2019). In the

architecture of CSPNet, the input is divided into two parts through

a transition layer and then processed separately through arbitrary

computation blocks. These branches are then recombined (via

concatenation) and passed through the transition layer again. On

the other hand, ELAN adopts stacked convolutional layers, where

the output of each layer is combined with the input of the next layer

and then processed through convolution (Zhang et al., 2022).

The new neural network architecture, GELAN, combines the

segmentation and recombination concepts of CSPNet and the

hierarchical convolution processing approach of ELAN to

improve the model’s performance and flexibility (Wang et al.,

2024). It is designed considering lightweighting, inference speed,

and accuracy to enhance overall performance. It incorporates the

segmentation and recombination concepts of CSPNet to improve

the model’s feature extraction and recombination capabilities.

Additionally, it introduces the hierarchical convolution processing

approach of ELAN in each part, further enhancing the model’s

performance and adaptability.

Unlike previous architectures, GELAN not only uses

convolutional layers but can also use any computation block,

making the network more flexible and customizable according to
FIGURE 5

Schematic diagram of online image augmentation process.
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different application requirements. This structure allows GELAN to

support various types of computation blocks to better adapt to

different computing requirements and hardware constraints.

Furthermore, the optional modules and partitions of GELAN

further increase the network’s adaptability and customizability.
Frontiers in Plant Science 09
This design enables GELAN to better adapt to various application

scenarios and hardware platforms, thus improving the model’s

flexibility and performance. This also provides a breakthrough for

further model improvement and will replace the ordinary

convolution modules in RT-DETR as a computational module.
FIGURE 7

Structure diagram of Adown in RT-DETR-SoilCuc. (A) Adown module. (B) CBS module. (C) Concat module. (D) RepNCSPELAN4 module structure.
(E) GELAN schematic.
FIGURE 6

RT-DETR-SoilCuc detector structure scheme.
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2.3.3 OREPA
OREPAwas proposed by Hu et al. at CVPR 2022 to overcome the

limitations of traditional structural re-parameterization, which often

trades training time for training accuracy (Hu et al., 2022). To achieve

this goal, OREPA consists of two main components: a special linear

scaling layer and module compression, as shown in Figure 8.

The linear scaling layer is used to optimize the online module

and improve training efficiency. It allows the model to perform real-

time refreshing of weights during training, enhancing the flexibility

of the model while effectively extracting information. Additionally,

stable weight flow further optimizes the model. The compression of

the second-stage module refers to OREPA’s transformation of a

large number of complex convolutional network blocks into a single

convolutional layer through simple linear processing and structural

simplification during training. This significantly reduces the

parameter count and computation time during training, making

the model easier to deploy. OREPA reduces the additional training

overhead caused by a large number of intermediate modules and

has minimal impact on model accuracy.

Leveraging the unique scalability of GELAN, we used class

inheritance to integrate OREPA into RepNCSPELAN4, replacing

two convolutional blocks. This approach reduces the computational

load of the model backbone and filters out the interference of

features related to the soil-based environment.
2.3.4 NWD
A targeted loss function can improve model accuracy while

reducing computational complexity. We will add the specialized
Frontiers in Plant Science 10
loss function, NWD, in addition to retaining the original Giou loss

function (Wang et al., 2021). The core idea of NWD lies in the

design of multi-scale windows and the fusion of multi-size features.

This allows NWD to use different-sized detection windows at

different stages of training and dynamically adjust window sizes

for different targets. NWD can also fuse feature maps at different

levels, aiding in the extraction of more contextual information.

However, NWD is not sensitive to targets of different sizes, making

it more suitable for extracting similarities between small objects.

NWD(Na,Nb)=exp −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

2(Na,Nb)
p

C

 !
(1)

Here, W2
2 represents the second-order Wasserstein distance

between Na and Nb, and C is a constant related to the characteristics

of the dataset.
2.4 Evaluation metrics

2.4.1 Model evaluation metrics
To evaluate the level of model lightweighting and its effectiveness

in detecting cucumber seed germination in soil-based environments,

we will use precision, recall, floating point operation (FLOP), and

Params for model evaluation, where precision represents the accuracy

of the model’s target prediction, mAP represents the average accuracy

of all target detections, and recall represents the ratio of correctly

predicted targets to the total targets. The closer these parameters are

to 1, the better the model’s performance. It is worth noting that, for
FIGURE 8

(A) OREPA module structure. (B) Block linearization schematic. (C, D) Block squeezing schematic, including sequential structure (C) and parallel
structure (D).
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the detection performance of small embryonic roots, more attention

should be paid to mAP@0.5-0.95 rather than mAP@0.5. The

numbers following them represent the ratio of the detection box to

the actual target. Clearly, for small targets, the requirement for the

accuracy of the detection box selection is greater than that for larger

targets. FLOP represents the computational complexity required by

the model, and Params represents the level of model lightweighting.

The lower these values, the lower the model’s training cost and the

higher the level of lightweighting. An excellent and effective soil-

based cucumber germination detection model should achieve high

accuracy and high recall while ensuring a lightweight level. True

positive (TP) refers to the count of cucumbers correctly identified by

the model as germinated, whereas false positive (FP) and false

negative (FN) indicate the number of cucumber seeds that are

erroneously identified or missed by the model, respectively. The

formulas for calculating each evaluation parameter are as follows:

Precision=
TP

TP+FP
(2)

Recall=
TP

TP+FN
(3)

AP=
Z 1

0
P(R)dR (4)

mAP=

Z Q

q=1
AP(q)

n
(5)

FLOPS=2�H�W(CinK
2+1)Cout     (6)

Params=Cin �K2�Cout     (7)
2.4.2 Evaluation metrics of seed
germination vigor

This paper primarily employs two metrics to assess the viability of

cucumber seeds: germination rate and germination index. The

germination rate is defined as the proportion of germinated seeds to

the total number of seeds at a specific time, which is an intuitive

reflection of seed vitality and is widely used in agricultural production

to evaluate the germination potential of seeds. The germination index

refers to the ratio of the total number of seeds germinated by a certain

time to the total number of days for seed germination. This index can

effectively assess the future vitality and growth potential of the seeds. By

calculating these two indicators, the vitality of cucumber seeds in a soil-

based environment can be accurately reflected, providing evaluation

criteria for selecting superior genotypes of cucumber varieties. The

specific formulas are shown in the following:

Germination rate=
Nt

N
�100% (8)

Germination index =o(
Gt

Dt
) (9)
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3 Results and discussion

3.1 Training environment and
hyperparameter settings

The model training environment for this experiment is as

follows. Under the Windows 10 operating system, the processor

is Intel(R) Core(TM) i5-9300H @ 2.4GHz, and the graphics card is

NVIDIA GeForce GTX1650 with 16 GB of RAM. The model runs

on Python 3.8 and PyTorch 2.2.1, utilizing GPU acceleration for

training with CUDA version 11.8. To avoid the common bug in the

GTX series GPU, the cache is set to false. All other parameters are

kept at their default values. The training set is randomly divided

into training, testing, and validation sets at a ratio of 7:2:1. To

ensure a true and effective comparison of performance between

different models in all experiments, all models are set to the

parameters shown in Table 1, and pre-trained weights are

uniformly not used to improve accuracy. The image size is

uniformly cropped to 640 × 640 pixels, and the number of images

per training batch is 4. The training process diagram is shown

in Figure 9.
3.2 Ablation experiments

Using a randomly selected annotated dataset, ablation experiments

were conducted to evaluate the lightweight outcomes, as shown in

Table 2, and the optimized accuracy results, as presented in Table 3.

Initially, the most lightweight model in RT-DETR, RT-DETR-R18, was

used as the baseline model for enhancement. After introducing the

Adown downsampling operator into RT-DETR-R18, the Params,

FLOP, and weight size decreased by 3%, 2%, and 3.3%, respectively.

However, the three average pooling operations performed by Adown in

the backbone blurred the feature information in training images,

impacting the model’s ability to locate and recognize embryo root

targets, leading to a 0.2% decrease in mAP@0.5, which was undesirable.

Therefore, the backbone part of the baselinemodel was replacedwith the

GELANmodule to enhance themodel’s ability to extract and recombine

target features. This led to a 0.1% increase in mAP@0.5 accuracy while

significantly reducing Params, FLOP, and weight size by 52.6%, 52.3%,

and 52.2%, respectively, thus significantly improving the model’s

lightweighting level. However, the accuracy was still not ideal. Further,

OREPAmechanismwas added to themodel backbone, where its unique
TABLE 1 Model hyperparameter settings.

Parameters Setup

Epoch 100

Batch size 4

GIoU 0.5

Image Size 640 × 640

Cache False

Workers 4
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linear scaling layer and module compression could suppress feature

interference from the soil-cultivation environment. This resulted in an

increase in mAP@0.5 and mAP@0.5-0.95 to 97.2% and 72.3%,

respectively. Compared to the previous experiment, Params, FLOP,

and weight size increased by 54.9%, 25.9%, and 67.4%, respectively, but

the model still maintained a lightweight advantage of around 30%

compared to the baseline model. Finally, the NWD loss function was

introduced, which, benefiting from NWD’s ability in pixel-level
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recognition of small targets, improved the model’s ability to

distinguish small embryo root targets. This resulted in an increase in

mAP@0.5, mAP@0.5-0.95, precision, and recall by 1%, 2.1%, 0.9%, and

1%, respectively, without increasing the model’s Params, FLOP, and

weight size. All of the improvements have been completed, and the final

RT-DETR-SoilCucmodel demonstrates comprehensive advantages over

the baseline model under the experimental conditions of this paper.

Compared to RT-DETR-R18, its Params, FLOP, and weight size have
FIGURE 9

Training process diagram.
TABLE 2 Results of ablation experiments in terms of model lightweighting.

Model mAP@0.5 (%) Params (M) FLOPs (G) Weight size (MB) FPS

RT-DETR-R18 96.8 19.8 56.9 38.6 22.2

Adown 96.6 19.2 55.6 37.3 23

Adown + GELAN 96.7 9.1 26.5 17.8 28

Adown + GELAN
+ OREPA

97.2 14.1 35.8 29.8 24.5

RT-DETR-SoilCuc 98.2 14.1 34.9 29.7 24.1
Bold indicates the best experimental results.
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decreased by 28.8%, 38.7%, and 23.1%, respectively, whereas mAP@0.5,

mAP@0.5-0.95, precision, and recall have increased by 1.4%, 3.5%, 1%,

and 1.5%, respectively. The intuitive comparison between various

parameters in the ablation experiments is shown in Figure 10. The fps

has reached 24.1, indicating that RT-DETR-SoilCuc can make

approximately 24.1 inferences per second, which represents the

number of predictions that the model can make in 1 s. Because seed
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germination is a time-consuming process, the real-time detection

capability of RT-DETR-SoilCuc at 24.1 inferences per second meets

the demand for detecting cucumber seed germination while

outperforming the baseline model in terms of accuracy and

lightweight design. This demonstrates the potential of the proposed

approach for cucumber seed germination detection in soil-

based environments.
TABLE 3 Results of ablation experiments in terms of model detection accuracy.

Model mAP@0.5 (%) mAP@0.5-0.95 (%) Precision Recall

RT-DETR-R18 96.8 70.9 96.4 95.4

Adown 96.6 71.2 95.7 95.4

Adown + GELAN 96.7 71.4 96 96.3

Adown + GELAN + OREPA 97.2 72.3 96.5 95.9

RT-DETR-SoilCuc 98.2 74.4 97.4 96.9
Bold indicates the best experimental results.
FIGURE 10

Partial comparison of RT-DETR-SoilCuc ablation test performance indicators. In the figure, A represents ADOWN, G represents GELAN, and O
represents OREPA.
TABLE 4 Results of each indicator for different models.

Model mAP@0.5 (%) mAP@0.5-
0.95 (%)

Params (M) FLOPs (G) Weight size (MB)

Deformable-DETR 97.6 97.9 39.8 176.2 456.7

YOLOv9c 95.5 86.0 25.3 102.3 49.2

YOLOv8m 96 74.4 25.8 78.7 49.6

YOLOv5m 96 96.6 25 64 48.2

RT-DETR-R18 96.8 97.5 19.8 56.9 38.6

RT-DETR-SoilCuc 98.2 98.8 14.1 34.9 29.7
Bold indicates the best experimental results.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1425103
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1425103
3.3 Comparison experiments

As shown in Table 4, RT-DETR-SoilCuc is compared with

YOLOv5m, YOLOv8m, YOLOv9c, RT-DETR-R18, and the classic

Deformable-DETR model in terms of accuracy and lightweighting

metrics (Zhu et al., 2021). The parameters of each model, as shown

in Table 4, mainly compare mAP@0.5, mAP@0.5-0.95, Params,
Frontiers in Plant Science 14
FLOP, and weight size. The intuitive comparison between various

parameters in the comparison experiments is shown in Figure 11. It

is evident that, without any enhancements, RT-DETR exhibits an

advantage in recognition accuracy over YOLO. This is one of the

reasons why RT-DETR was selected as the baseline model instead of

YOLO. In terms of model lightweighting, RT-DETR-SoilCuc has a

significant advantage in lightweighting compared to models of
FIGURE 12

Multi-indicator normalized analysis.
FIGURE 11

Partial comparison of different models’ performance indicators.
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similar size, with reductions of 28.8%, 38.7%, and 23.1% in Params,

FLOP, and weight size, respectively, compared to the baseline

model. Using model accuracy as the benchmark, RT-DETR-

SoilCuc still maintains a significant accuracy advantage,

indicating that the model has achieved a relatively optimal level

in terms of deployability and recognition accuracy.

To facilitate a more intuitive comparison of the performance of

each model, the parameters of each model were normalized. This

involved mapping the accuracy metrics, mAP@0.5 and mAP@0.5-

0.95, to a range between 0 and 1. Additionally, the Params, FLOP,

and weight size were reverse-mapped, such that lower values

corresponded to higher scores. Figure 12 depicts the normalized

histograms of the parameters for each model.
Frontiers in Plant Science 15
3.4 Detection of salt-alkali tolerance in
cucumber seeds grown in soil

During seed germination, high-salt environments can disrupt

the osmotic balance within the seeds, leading to ion toxicity and

potentially resulting in seed death (Zhou et al., 2021). In response to

this breeding issue and to validate the performance of RT-DETR-

SoilCuc in practical experiments, a salt tolerance experiment was

conducted on cucumber seeds in soil using the Zhi Lv 0116 variety

as an example.

Over a period of 5 days, the germination rate and growth vitality

of cucumber seeds under salt stress weremonitored in real-time using

RT-DETR-SoilCuc. Salt stress was simulated with sodium chloride
FIGURE 13

Detection results of RT-DETR-SoilCuc for different growth conditions of cucumber.
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solutions of 0 mmol/L, 30 mmol/L, 60 mmol/L, 90 mmol/L,

120 mmol/L, and 150 mmol/L, with sterile horticultural soil used

as the growth substrate. The recognition results of RT-DETR-SoilCuc

are shown in Figure 13.

The detection errors, including missed detections, false alarms,

and repeated detections, are highlighted with blue circles in

Figure 13. Among the 30 sample images, a total of 11 detection

errors were observed, comprising one missed detection, seven false

alarms, and three repeated detections. Considering that each image

contains 49 seed samples, the overall detection error rate is

approximately 0.78%. Figure 14 shows the confusion matrix
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generated after batch processing 100 images for recognition. As

depicted in Figure 14, background interference is the most

significant factor affecting recognition, with the primary

recognition error being false alarms. It is anticipated that, by

retaining only the soil environment during image cropping, the

probability of false alarms can be significantly reduced.

Based on the detection results of RT-DETR-SoilCuc, plot line

graphs in Figure 15 depict the evaluation of seed germination rate

and germination index, respectively.

From the figure, it can be observed that the Zhi Lv 0116 variety

exhibits good resistance to low-concentration salinity and alkalinity.
FIGURE 14

Confusion matrix.
FIGURE 15

The germination rate and germination index of cucumber seeds under different salt stress conditions.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1425103
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1425103
Under sodium chloride concentrations ranging from 0 mmol/L to

90 mmol/L, both the germination rate and germination index of this

variety increase as the salt concentration rises, indicating a positive

effect of low salt concentration on the germination vigor of this

cucumber variety. The culture dish with a concentration of 30

mmol/L is positioned near the hot air outlet (as shown in Figure 1),

which may lead to excessive drying of the moisture, thereby

negatively impacting the germination rate and seed vitality. The

germination vigor of this variety peaks at a sodium chloride

concentration of 90 mmol/L. However, at salt concentrations of

120 mmol/L and above, the germination rate and germination index

of Zhi Lv 0116 rapidly decline, suggesting its poor tolerance to

higher concentrations of saline-alkali environments. In summary,

Zhi Lv 0116 is suitable for cultivation in soil environments with no

or low salinization. Its seeds would lose most of their vigor under

high salt stress, making it unsuitable for cultivation in highly saline-

alkali soil environments.

This experiment verifies the effectiveness and accuracy of RT-

DETR-SoilCuc in detecting cucumber germination rates in soil-

based work, demonstrating the potential for deployment and use of

this model in experimental environments.
4 Summary, limitations, and
future work

In order to evaluate the germination rate of cucumbers in a

soil-based environment that is closer to the actual growth

conditions of the seeds and to assist breeders in selecting

cucumber varieties with stronger stress resistance, this study

addresses the limitations of traditional manual germination

detection methods, which are costly, time-consuming, and

prone to e r rors . Fur thermore , deep learn ing–based

germination detection methods optimized for hydroponic

environments may face challenges in accurately identifying

germination in soil environments. To overcome these

challenges, we constructed a cucumber germination dataset in

soi l-based environments using the Seed Germination

Pheno t yp ing Sy s t em . Cons i d e r i ng th e dep l oymen t

requirements in low-computing environments, we proposed a

real-time cucumber germination detection model, RT-DETR-

SoilCuc, based on the soil-cultivated cucumber germination

dataset. Compared to other models of similar size, this model is

characterized by its lightweight nature and high accuracy.

Specifically, we introduced online image augmentation

techniques based on the Albumentations library into the

baseline model RT-DETR. Subsequently, we replaced different

convolutional layers in the backbone of the model with the

ADown downsampling operator from the latest YOLOv9 and

the GELAN module. We incorporated the OREPA mechanism

in GELAN and added the NWD loss function at the end of the

model. As a result, RT-DETR-SoilCuc achieved mAP@0.5,

mAP@0.5-0.95, precision, and recall rates of 98.2%, 74.4%,

97.4%, and 96.9%, respectively. Additionally, the Params,
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FLOP, and weight size decreased by 28.8%, 38.7%, and 23.1%

compared to the baseline model.

The performance of the RT-DETR-SoilCuc model was

compared with the classic Deformable-DETR model and

other YOLO series models in terms of lightweight design and

deployment. The RT-DETR-SoilCuc model demonstrated

higher efficiency with an FPS of 24.1, making it suitable for

continuous detection in laboratory settings.

The model’s effectiveness was validated by conducting a

cucumber seed germination experiment under salt stress

conditions. Results showed that the Zhi Lv 0116 cucumber

var i e ty exh ib i t ed exce l l en t adaptab i l i t y to low sa l t

concentrations, with appropriate levels promoting germination

while high salt concentrations led to reduced vigor. This

experiment verifies the ability of RT-DETR-SoilCuc to detect

cucumber seed germination in soil-based environments.

Although the RT-DETR-SoilCuc model achieved its design

goals, it has limitations in detecting complex embryonic root

targets during later stages of cucumber seed germination. To

address this, we plan to optimize the model by establishing

datasets using semantic segmentation for deeper analysis of

cucumber growth processes.

Our future work aims to enhance the model’s capabilities for

analyzing cucumber growth processes and provide valuable insights

for soil-based breeding efforts. We hope that the RT-DETR-SoilCuc

model can provide convenience for other scholars’ cucumber soil-

based breeding work.
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