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Introduction: Autotetraploid rice holds high resistance to abiotic stress and

substantial promise for yield increase, but it could not be commercially used

because of low fertility. Thus, our team developed neo-tetraploid rice with high

fertility and hybrid vigor when crossed with indica autotetraploid rice. Despite

these advances, the molecular mechanisms underlying this heterosis remain

poorly understood.

Methods: An elite indica autotetraploid rice line (HD11) was used to cross with

neo-tetraploid rice, and 34 hybrids were obtained to evaluate agronomic traits

related to yield. WE-CLSM, RNA-seq, and CRISPR/Cas9 were employed to

observe endosperm structure and identify candidate genes from two

represent hybrids.

Results and discussion: These hybrids showed high seed setting and an

approximately 55% increase in 1000-grain weight, some of which achieved

grain yields comparable to those of the diploid rice variety. The endosperm

observations indicated that the starch grains in the hybrids were more compact

than those in paternal lines. A total of 119 seed heterosis related genes (SHRGs)

with different expressions were identified, which might contribute to high 1000-

grain weight heterosis in neo-tetraploid hybrids. Among them, 12 genes had

been found to regulate grain weight formation, including OsFl3, ONAC023,

OsNAC024, ONAC025, ONAC026, RAG2, FLO4, FLO11, OsISA1, OsNF-YB1, NF-

YC12, and OsYUC9. Haplotype analyses of these 12 genes revealed the various

effects on grain weight among different haplotypes. The hybrids could

polymerize more dominant haplotypes of above grain weight regulators than

any homozygous cultivar. Moreover, two SHRGs (OsFl3 and SHRG2) mutants

displayed a significant reduction in 1000-grain weight and an increase in grain
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chalkiness, indicating thatOsFl3 and SHRG2 positively regulate grain weight. Our

research has identified a valuable indica autotetraploid germplasm for generating

strong yield heterosis in combination with neo-tetraploid lines and gaining

molecular insights into the regulatory processes of heterosis in tetraploid rice.
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Introduction

Polyploidy is widespread in plants, including 30~50% flowering

plants, 50~70% angiosperms, and many important crops like wheat,

potato, sugarcane, cotton, and rape seed (Comai, 2005; Alix et al.,

2017). Polyploid individuals possess more than two homologous

chromosomes, which can be categorized as autopolyploidy and

allopolyploidy based on the origin of the additional chromosomes.

The chromosomes of the autopolyploidy originate from the same

species, like autotetraploid rice (AAAA genome), while the

chromosomes in allopolyploidy originate from different species,

such as allohexaploid wheat (AABBDD genome) (International

Wheat Genome Sequencing Consortium, 2018). Polyploid plants

exhibit robust growth, enhanced stress resistance, increased

biosynthesis, improved nutrient composition, and stronger

adaptability in plant evolution (Xu et al., 2011; Mclntyre, 2012;

Allario et al., 2013; Chao et al., 2013; Corneillie et al., 2019;

Wang et al., 2022).

Autotetraploid rice (ATR) is a useful germplasm developed

from genome duplication of diploid rice, in which intersubspecific

hybrids showed great biological vigor and high yield potential

(Koide et al., 2020). However, the limited reproductive capacity of

autotetraploid rice and its hybrids has impeded their widespread

commercial cultivation (Wu et al., 2015). Prior studies have

indicated that autotetraploid sterility may be attributed to

irregular meiotic chromosomal behaviors, changes in DNA

methylation, and disrupted gene or non-coding RNA expression

(He et al., 2011a; Wu et al., 2014, 2015; Li et al., 2016b, 2018,

2020). To dissolve this “bottleneck” problem (polyploidization

sterility), Chinese scientists developed some tetraploid rice with

high fertility by many year’s effort, including PMeS polyploid rice

and neo-tetraploid rice (NTR, 80% seed setting) (He et al., 2011b;

Guo et al., 2017; Ghaleb et al., 2020; Liu et al., 2023). NTR lines
tetraploid rice; HHZ,

M, whole-mount eosin

ring stage sample; 5P, 5
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had the ability to overcome the polyploidization sterility when

they crossed with typical autotetraploid rice with low fertility

(Guo et al., 2017; Ghaleb et al., 2020; Yu et al., 2020). NTR lines

were clustered into one independent group adjacent to the

japonica subspecies in a comparative genomic study (Yu et al.,

2021). On the other hand, NTR lines harbored wide compatibility

gene S5
n and pollen fertility “neutral gene” Scn (Ghaleb et al.,

2020). Thus, those hybrids derived from NTR and indica

autotetraploid lines demonstrated no hybrid sterility and

significant yield heterosis (Guo et al., 2017; Chen et al., 2019;

Ghaleb et al., 2020), indicating that NTR can serve as the primary

parental lines for restorer lines in future intersubspecific tetraploid

hybrid breeding.

In the past 20 years, our group developed more than 100

ATR lines. The highlight one of these lines, HD11, was derived

from progenies resulting from the self-poll ination of

Huanghuazhan-4x (HHZ-4x), whose hybrids showed significant

heterosis and good plant performance. In this study, HD11, 34

NTR lines, and their hybrids were developed to evaluate

intersubspecific tetraploid heterosis, two of which were used to

ascertain the genes associated with the production of heterosis in

grain weight. Our study aims to provide a yield improvement case

of polyploid rice by utilizing superior genetic resources and offer a

distinct perspective on understanding the mechanisms behind

heterosis regulation.
Materials and methods

Plant materials

The autotetraploid rice, HD11, was developed from the 8th

generation of self-pollination of Huanghuazhan-4x (HHZ-4x).

HHZ-4x was developed from genome duplication of the diploid

cultivar Huanghuazhan (Oryza sativa L. ssp. indica) by colchicine

treatment in our lab. Two neo-tetraploid lines with high fertility,

Huaduo1 (H1) and Huaduo8 (H8), were used as paternal lines of

two tetraploid hybrids, 1HF1 and 8HF1. Moreover, 34 hybrids were

developed using HD11 by crossing 34 neo-tetraploid rice lines. The

OsFl3 and SHRG2 mutants were genetically modified in the ZH11

background using the CRISPR/Cas9 system.
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Investigation of agronomic traits and
evaluation of heterosis

Yield-related traits, such as panicle number, total grain number,

seed setting rate, 1000-grain weight, and grain yield per plant, were

investigated. The high-parent heterosis was calculated as described

by Guo et al. (2017): HPH = (F1-HP)/HP×100%; F1 indicates the

performance of hybrid plants; HP signifies superior performance in

both parents.
Whole-mount eosin B-staining confocal
laser scanning microscopy observations

To characterize the endosperm structure of mature seeds, WE-

CLSM observations were performed as follows: The brown rice was

cut by a sharp blade and stained by 4% eosin B solution for 5 min,

hyalinized via pure methyl salicylate before observation under WE-

CLSM. WE-CLSM observations were also performed to

characterize the endosperm and embryo development in 5P

ovaries, as described in our previous study (Li et al., 2023). The

collected samples were fixed in FAA solution (70% ethanol: acetic

acid: methanal = 89:5:5, v/v), went through gradient rehydration,

stained by 4% eosin B solution, dehydrated by gradient ethanol, and

hyalinized via 50% and pure methyl salicylate before observation

under WE-CLSM.
RNA-seq analysis

A total of 30 samples were collected and stored at -80°C. These

samples consisted of two developmental stages of the ovary

(flowering stage, 0P; 5 days after pollination, 5P) from five

different materials [HD11, H1, F1(HD11×H1), H8, F1

(HD11×H8)]. Each sample was collected in three biological

replications. The total RNA extraction and RNA-seq were done

as described by Guo et al. (2017). Trimmomatic software was used

to filter low-quality data (Bolger et al., 2014). STAR and samtools

were used to map reads to MSU7.0 Nipponbare reference genome

and evaluate the expression level (FPKM values) of genes (Li et al.,

2009; Dobin et al., 2013). The differentially expressed genes (DEG)

were identified according to the following criterion: (1) |log2(fold

change)| >1; (2) P-value <0.05 (False discovery rate control

method); (3) At least one sample with FPKM>10.
Bioinformatics tools

Those candidate genes are annotated in the National Rice Data

Center website (Kawahara et al., 2013). The global gene expression

profile of target genes was predicted by using the Rice eFP expression

profile analysis website (Winter et al., 2007). Venn analyses, upset

plot analyses and heatmap diagrams were performed by TBtools

(Chen et al., 2023). Haplotype analyses were performed via RFGB

v2.0 tools (Wang et al., 2018; Wang et al., 2020a).
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Identification of CRISPR/Cas9 mutants

Single target targeting coding sequences of OsFl3

(5’-GCACTAGCCATCACAAC-3’) or SHRG2 (5’-ACATATCTT

GTTCTAGT-3’) were designed for CRISPR/Cas9 system to obtain

transgenic lines. All transgenic seedlings naturally grew at the

experimental station of South China Agricultural University,

Guangzhou, China. The targeted sites of OsFl3 and SHRG2 were

amplified from transgenic plants for Sanger sequencing to select

homozygous mutations. The PCR primers were designed by Primer

Premier 5.0 (Supplementary Table S1).
Results

Production assessment of an indica
autotetraploid line, HD11, and its
intersubspecific hybrids

In order to create superior indica ATR cultivars, we produced

a set of indica ATR lines using high-yielding indica diploid lines.

Among these lines, we isolated an ATR line called HD11 in 2020.

HD11 exhibited outstanding plant performance and was obtained

from progenies of HHZ-4x by our research group. Interestingly,

when HD11 was crossed with NTR lines, the resulting hybrids

exhibited a substantial increase in yield. A total of 34 hybrids

developed from HD11 crossing with NTR lines displayed high

plant yield, seed setting and 1000-grain weight with high-parent

heterosis, indicating the strong combination between HD11 and

NTR lines (Supplementary Table S2). Among them, two hybrids,

1HF1 [F1(HD11×H1)] (Supplementary Figure S1) and 8HF1 [F1
(HD11×H8)], displayed 159.10% and 71.37% high-parent yield

heterosis (Figure 1A), respectively, which were commensurate to

the yield of the commercial rice variety (HHZ) (Figure 1B).

Moreover, 1HF1 and 8HF1 exhibited 17.49% and 17.30% high-

parent heterosis in 1000-grain weight, respectively. In this case,

1000-grain weight of 1HF1 (36.88 g) and 8HF1 (36.55 g) showed a

68.51~70.03% increase compared to HHZ (21.69 g) (Figure 1C).

For seed setting, 1HF1 (79.70%) and 8HF1 (74.64%) were normal

fertile and significantly higher than those hybrids of ATR lines,

such as HD11×T431 japonica (58.16%), HD11×T436 japonica

(59.95%), and T431×T41indica (38.58%) (Figure 1D). For grain

number per plant, 1HF1 (632.67) and 8HF1 (665.33) were still

significantly lower than HHZ (1152.00), but significantly

increased relative to HD11 (444.00) and H1 (359.33)

(Figure 1E). For panicle number, no obvious improvement was

found in 1HF1 (3.67) and 8HF1 (3.67) relative to parental lines,

HD11 (4.33), H1 (3.67) and H8 (3.00), which is still significantly

inferior to HHZ (8.00) (Figure 1F). Taken together, these findings

demonstrated the potential for increasing crop productivity by

combining the utilization strategy of polyploidization and

intersubspecific heterosis.

Re-sequencing was employed to analyze the genomic DNA

polymorphisms of HD11 compared with HHZ, 5 ATR lines, and 3

NTR lines. The evaluation of Q30 bases proportion, average depth,
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and coverage_10× showed that the quality of these resequencing

data was high enough (Yu et al., 2021). A total of 1321 genes with

specific variations were detected in HD11 compared to HHZ, out of

which 28 are known to have a function (Supplementary Table S3).

Gene ontology (GO) enrichment analysis identified 22 prominent

terms in the biological process category associated with the mutant

genes (Supplementary Table S4). A total of 14371 genes with

specific variations were detected in HD11 compared to other

ATR lines, of which 212 have known functions, including 60

resistance or tolerance-related genes and 54 physiological trait

genes (Supplementary Table S5), which enriched in 14 Gene

ontology (GO) biological process terms (Supplementary Table

S6). A total of 8260 genes with distinct variations were found in

HD11 compared with NTR, which were enriched in 16 prominent

GO terms in the biological process category (Supplementary Table

S7). Among those specific variant genes compared to NTR, 190

have known functions, including 45 physiological trait genes, 10

genes associated with yield components, 7 heading date genes, and 1

seed morphology gene (Supplementary Table S8).
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Grain weight formation among
intersubspecific tetraploid hybrids and
parental lines

Relative to diploid HHZ, the chalkiness increased in HD11

grains. Interestingly, the chalkiness in 1HF1 or 8HF1 grains was less

than HD11, H1, and H8, suggesting that improved grain weight

formation plays an important role in yield heterosis of 1HF1 and

8HF1 (Figures 2A, B). WE-CLSM observation confirmed denser

starch grains in the 67.00~75.00% endosperms of hybrids, while

severe interstices were observed in 87.00~99.00% endosperm of

paternal lines (Figure 2C). We further characterized the grain

development of HHZ, H1, H8, 1HF1, and 8HF1 to identify

differences during grain weight heterosis formation. The

developing grain weights of 1HF1 and 8HF1 were significantly

higher than HHZ, H1, and H8 at 3 days after pollination. The

increase of grain weight in 1HF1 and 8HF1 reached a plateau at 15

days after pollination, which was obviously earlier than H1 and H8

(Figures 2D, E). When we evaluate the increased grain weight per
A

B D

E F

C

FIGURE 1

Yield-related traits evaluation of intersubspecific tetraploid hybrids and parental lines. (A) Plant morphology, (B) grain yield per plant, (C) 1000-grain
weight, (D) seed setting rate, (E) grain numbers, and (F) panicle number of six lines. S5, Sa, Sb, and Sc indicate intersubspecific hybrid sterile loci. 1HF1
and 8HF1 indicate F1(HD11×H1) and F1(HD11×H8). Error bars indicate the standard deviation (SD) with n = 3. Significant differences were indicated by
different lowercase letters (one-way ANOVA, least significant difference (LSD) test, P < 0.05).
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two days from 3 to 17 days after pollination, all HHZ, H1, H8, 1HF1,

and 8HF1 increased 36~53% grain weight in the first two days, while

1HF1 and 8HF1 accumulated more grain weight (52~53%) than

HHZ (41%), H1 (46%), and H8 (36%) (Figure 2F). WE-CLSM

observation revealed detailed information about ovary development

before and after fertilization. Before pollination, the egg cell,

synergid, central cell and antipodal cells were observed in embryo

sac (Figure 2G), while the embryo has been differentiated from the

zygote, and the endosperm cells have filled the hole of the ovary at 5

days after pollination (Figures 2H, I). These results indicate that 5
Frontiers in Plant Science 05
days after pollination is an important stage for different grain

weight among HHZ, H1, H8, 1HF1, and 8HF1.
RNA-seq analyses detected the genes with
higher expression level in tetraploid
intersubspecific hybrids than parental lines

To reveal the genes related to strong heterosis formation during

seed development of tetraploid intersubspecific hybrids, RNA-seq
FIGURE 2

Growth analysis of developing caryopses of 1HF1, 8HF1, and parental lines. (A, B) Brown rice grains, (C) endosperm observation on the middle of
grains (cross section) via WE-CLSM, (D) developing grains, (E) developing grain weight, (F) increase rate per 2 days of developing grains of HHZ, H1,
H8, 1HF1, and 8HF1. (G) Embryo sac view before pollination (WE-CLSM). (H) Embryo and (I) endosperm at 5 days after pollination (WE-CLSM).
(B) Numbers indicate the number of chalky grains per 100 grains. White “*” indicates unfilled interstices in the endosperm. Bars = 1 cm (A), 50 µm
(B), 40 µm (C, G-I).
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was performed to assess the global gene expression in developing

seeds during two stages (0P, flowering; 5P, 5 days after pollination)

among 1HF1, 8HF1 and three parental lines. More than 39.8 million

clean reads were produced from each library, which could cover

91.85~96.08% of the reference genome (MSU7.0). While counting

the number of genes expressed in each sample (FPKM>10), each

material expressed a range of 7475 to 7986 genes in 0P seeds and a

range of 6265 to 7850 genes in 5P seeds, respectively (Figure 3).

Among them, 68 (0P) and 122 (5P) genes were expressed in three

parental lines but not in two hybrids, while 32 (0P) and 67 (5P)

genes were expressed in two hybrids but not in three parental lines

(Supplementary Table S9). These specific genes might contribute to

strong yield heterosis formation of tetraploid hybrids.

We analyzed the differentially expressed genes (DEGs) in 0P

seeds. Relative to H1, 414 DEGs were identified in 1HF1 plants,

including 156 up- and 258 down-regulated DEGs. Relative to

HD11, 410 DEGs were identified in 1HF1 plants, including 136

up- and 274 down-regulated DEGs. Furthermore, there were 102

common DEGs (coDEGs) shared in 1HF1/H1 and 1HF1/HD11,

including 13 up- and 89 down-regulated coDEGs (Supplementary

Figure S2A; Supplementary Table S10). In our previous study, 819

DEGs (402 up- and 417 down-regulated) were identified in

comparative analyses between 8HF1 and H8, and 592 DEGs (284

up- and 308 down-regulated) were identified in the comparative

studies between 8HF1 and HD11. Furthermore, there were 86

coDEGs shared in 8HF1/H8 and 8HF1/HD11, including 32 up-

and 54 down-regulated coDEGs (Supplementary Figure S2B;

Supplementary Table S10).
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Secondly, we analyzed the DEGs in 5P seeds. Relative to H1, 651

DEGs were identified in 1HF1 plants, including 314 up- and 337

down-regulated DEGs. Relative to HD11, 3996 DEGs were

identified in 1HF1 plants, including 1972 up- and 2024 down-

regulated DEGs. Furthermore, there were 341 common DEGs

(coDEGs) shared in 1HF1/H1 and 1HF1/HD11, including 248 up-

and 93 down-regulated coDEGs (Supplementary Figure S2C;

Supplementary Table S11). In our previous study, 2235 DEGs

(1151 up- and 1084 down-regulated) were identified in 8HF1/H8

comparative analyses, and 1737 DEGs (1229 up- and 508 down-)

were identified in 8HF1/HD11 comparative analyses. Furthermore,

there were 821 common DEGs (coDEGs) shared in 8HF1/H8 and

8HF1/HD11, including 722 up- and 99 down-regulated coDEGs

(Supplementary Figure S2D; Supplementary Table S12). These

coDEGs are hypothesized to have significant implications in the

phenomenon of polyploid heterosis during seed development. In

comparison to the 0P stage, a greater number of DEGs were

identified during the 5P stage, suggesting that the 5P stage is an

important period for grain weight heterosis.

Finally, we sought to identify genes with high-parent heterosis

of expression level in both 1HF1 and 8HF1, which play a crucial role

in facilitating robust yield heterosis in tetraploid hybrids. In 0P

seeds, seven genes were identified, including 1 common up-

regulated and 6 common down-regulated genes in both 1HF1 and

8HF1 (Supplementary Figure S2E). In 5P seeds, 112 genes were

identified, including 107 common up-regulated and 5 common

down-regulated genes in both 1HF1 and 8HF1 (Supplementary

Figure S2F). These 119 candidate genes with high-parent
A

B

FIGURE 3

Upset plot analyses of expressed genes in tetraploid lines and their hybrids. (A) Upset plot analyses of expressed genes in 0P ovaries of tetraploid
lines and their hybrids; (B) Upset plot analyses of expressed genes in 5P ovaries of tetraploid lines and their hybrids. Orange groups indicate that
gene sets exhibit specificity in either parental lines or hybrids.
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heterosis in expression level were designed as seed heterosis related

genes (hereafter referred to as SHRGs) (Supplementary Table S13).
Hybrids can pyramid more elite haplotypes
of 12 known SHRGs

A comprehensive analysis of 119 SHRGs revealed 12 identified

positive regulators of grain weight, which functioned on endosperm

development to impact both grain size and filling rate, including

OsFl3 (PLATZ transcription factor), four NAC transcription factors

(ONAC023, OsNAC024, ONAC025, and ONAC026), two subunits

of NF-Y transcription factor (OsNF-YB1, NF-YC12), FLO4

(Pyruvate orthophosphate dikinase), FLO11 (Plastid heat shock
Frontiers in Plant Science 07
protein 70), and OsYUC9 (YUCCA flavin-containing

monooxygenase), RAG2 (a-amylase/trypsin inhibitor), and

OsISA1 (Starch debranching enzyme). All of these 12 known

SHRGs were up-regulated in hybrids (Figure 4A), which might

contribute to an increase in grain weight and ultimately lead to

high heterosis.

Haplotype analyses were conducted on the above-mentioned 12

known SHRGs using the RFGB database. While concentrating on

their primary five haplotypes, the 1000-grain weight was compared

among cultivars that possess distinct haplotypes of each known

SHRG. Hap1-OsFl3 (25.55 g), Hap1-ONAC023 (26.52 g), Hap2-

OsNAC024 (26.19 g), Hap2-ONAC025 (25.77 g), Hap4-ONAC026

(25.93 g), Hap2-OsNF-YB1 (25.96 g), Hap4-NF-YC12 (26.93 g),

Hap4-FLO4 (26.69 g), Hap3-FLO11 (27.22 g), Hap3-OsYUC9
A

B

D

C

FIGURE 4

12 known grain weight regulated genes with higher expression levels in hybrids than parental lines. (A) Expression levels and functional annotation of
12 known SHRGs in 1HF1, 8HF1, and parental lines; (B) 1000-grain weight comparison among haplotypes of 12 known SHRGs; (C) Distribution of
cultivars that carry different numbers of elite haplotypes in 12 known SHRGs; (D) Distribution of putative hybrids that carry different number of elite
haplotypes in 12 known SHRGs.
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(26.85 g), Hap2-RAG2 (26.25 g), Hap4-OsISA1 (26.43 g) are the

haplotypes with the highest 1000-grain weight (Figure 4B). If we

suppose these haplotypes with the highest 1000-grain weight are the

most elite haplotypes for each known SHRG to analyze the

distribution of cultivars carrying different number of elite

haplotypes, all 3024 cultivars have no more than 7 elite

haplotypes for these 12 known SHRGs (Figure 4C). While

randomly couple with two cultivars to construct suppositional

hybrids and calculate their most elite haplotypes of 12 known

SHRGs, 128658, 7516, and 78 hybrids could pyramid 8, 9 and 10

most elite haplotypes of 12 known SHRGs, respectively, which

never exist in parental cultivars (Figure 4D). These findings indicate

that the most superior genetic variations (haplotypes) are lacking in

any rice cultivar. However, hybrids offer greater possibilities for

pyramiding superior genetic variations of grain weight regulators

and forming heterosis of grain weight.
Functional verification of two
selected SHRGs

To evaluate the biological relevance of 119 candidate SHRGs,

we selected two SHRGs overlapped with 67 specific expressed genes

in hybrids for functional verification in grain weight formation,

LOC_Os01g33350 (OsFl3) and LOC_Os02g55210 (referred as

SHRG2, here). Similar to OsFl3, SHRG2 was a strongly expressed
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gene in both 1HF1 and 8HF1 5P samples, which was almost

completely suppressed in the 5P samples of the three parental

lines (Figures 4A, 5A). Expression pattern analyses via eFP tools

revealed that OsFl3 is mainly expressed in S3 developing seed, and

SHRG2 is primari ly expressed in S2 developing seed

(Supplementary Figure S3; Figure 5B). Haplotype analyses

showed that haplotypes of SHRG2 were distinguished between

indica and japonica cultivars, which japonica cultivars mainly

contained SHRG2-Hap2, and indica cultivars carried SHRG2-

Hap1 or SHRG2-Hap3 (Figures 5C, D). The haplotypes of SHRG2

affected 1000-grain weight in cultivars, while SHRG2-Hap2 showed

the highest 1000-grain weight (Figure 5E).

Moreover, we generated fl3 and shrg2 mutant in ZH11

background (Oryza sativa L. ssp. Japonica) via CRISPR/Cas9

system to verify grain weight regulated roles of OsFl3 and SHRG2.

Three homozygous lines with frameshift mutations were selected

from fl3 and shrg2, designated as fl3-1, fl3-2, fl3-3, shrg2-1, shrg2-2,

and shrg2-3, respectively. The fl3-1, fl3-2, and fl3-3 harbored a C

deletion, an A insertion, and an AA insertion, while shrg2-1, shrg2-

2, shrg2-3 contained a T insertion, a 7 bp deletion, and a 4 bp

deletion, respectively (Figures 6A, B). Mutation of OsFl3 and

SHRG2 both caused a significant reduction in grain thickness and

grain width and an increase in chalkiness, but did not affect grain

length (Figures 6C-H). The 1000-grain weight offl3 (23.02~23.67 g)

and shrg2 (23.21~24.04 g) lines both displayed a significant

reduction relative to ZH11 (27.33 g) (Figure 6I). Collectively,
A B

D E

C

FIGURE 5

Haplotype and expression analyses of SHRG2. (A) Expression levels of SHRG2 in 1HF1, 8HF1, and parental lines. (B) Expression pattern of SHRG2 via
eFP. (C) Haplotype distribution of SHRG2 in japonica and indica cultivars of RFGB database. (D) Five main haplotypes of SHRG2 in the cultivars of
RFGB database. (E) 1000-grain weight comparison among cultivars with different SHRG2 haplotypes.
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these findings indicate that OsFl3 and SHRG2 likely have significant

functions in enhancing yield heterosis by controlling the

development of grain weight.
Discussion

HD11 is an elite germplasm for improving
the grain yield of neo-tetraploid hybrid rice

HD11 is a new autotetraploid line breed from the F8 self-crossing

progenies of HHZ-4x. HHZ-4x is an autotetraploid rice developed

from genome duplication of a diploid rice cultivar, HHZ

(Huanghuazhan). HHZ is a highly esteemed diploid indica cultivar

that exhibits semi-dwarfism, excellent eating quality, exceptionally

high yield, and robust adaptation to diverse environments, and it has

been cultivated across over 4.5 million ha in southern China (Zhou

et al., 2016; Chen et al., 2017). HHZ contained 13.05% conserved

regions and 86.95% recombined genome from a series of elite

cultivars, such as Teqing (18.21%), Qingliuai (2.61%), Fengqingai
Frontiers in Plant Science 09
(0.26%), Huangxinzhan (4.40%), Fenghuazhan (8.01%), Jingxian89

(0.74%), Texianzhan25 (0.65%), Huasizhan (8.62%), Fengbazhan

(2.76%), Fengaizhan (0.62%), and Changsizhan (0.19%) (Zhou

et al., 2016). HHZ carries a series of elite alleles regulating key

agronomic traits, for example, sd1, Ehd4, htd1, SSIIa, SSIIa, GS3,

TAC1, SPK, RFT1, OsSSI, Amy3A, Gn1a, GW2, lp, and wx (Qiu et al.,

2018). HD11 contains 1321 specific mutant genes relative to HHZ,

but larger differences were found between HD11 and ATR (14371

specific mutant genes) or NTR (8260 specific mutant genes),

involving resistance or tolerance genes, physiological trait-related

genes, and meiosis-related genes. The presence of these genetic

variations is likely the primary factor that makes HD11 an

excellent germplasm for crossbreeding with neo-tetraploid lines.

This combination has shown promising results in enhancing the

fertility and overall grain yields of intersubspecific tetraploid hybrid

rice. The tetraploid hybrids in this study were able to attain equivalent

grain yields to those of HHZ, because of overcoming the typically

autotetraploid sterility, polyploidization advantages in increased

1000-grain weight, and intersubspecific heterosis in terms of 1000-

grain weight, seed setting rate, and grain number.
A B

D

E

F G IH

C

FIGURE 6

Functional verifications of OsFl3 and SHRG2. (A, B) The schematic diagrams of OsFl3 and SHRG2 genes. The sequences of CRISPR/Cas9 target sites
were given with protospacer adjacent motifs (PAMs) underlined and resulting mutations highlighted in red. The grain length and grain width of wild
and mutant types (C, D, F, G), brown rice grains (E), grain thickness (H), and 1000-grain weight (I) of ZH11, fl3 and shrg2. Bars = 1 cm (C–E).
Different lowercase letters indicate significant differences (P < 0.05, one-way ANOVA, least significant difference (LSD) test). Error bars indicate the
standard error (SE).
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High-parent expressions of seed regulators
contribute to grain weight heterosis in
tetraploid rice

Many key heterosis-associated genes have been identified in

rice, such as Ghd7, Hd3a, Ghd8, TAC1, LAX1, OsMADS1,

OsMADS51, GW6a, Hd1, and IPA1/OsSPL14. Of these, Ghd7,

Hd3a, Ghd8, OsMADS51, and Hd1 regulates heading time

(Kojima et al., 2002; Huang et al., 2016; Li et al., 2016a; Shao

et al., 2019); Ghd8 and LAX1 regulate kernel number (Komatsu

et al., 2001; Huang et al., 2016; Li et al., 2016a); Ghd8 and GW6a

regulate plant height (Sun et al., 2014; Huang et al., 2016; Li et al.,

2016a); IPA1 regulates plant architecture (Jiao et al., 2010; Miura

et al., 2010); OsMADS1 and GW6a regulate grain weight (Kim et al.,

2007; Sun et al., 2014). In addition, RNA-seq analyses have

identified numerous genes exhibiting distinct expression patterns

in high-performing hybrid varieties such as Shanyou 63. These

results suggest that the expression of heterosis-related genes may

play a role in the establishment of yield heterosis (Guo et al., 2017;

Chen et al., 2019; Shao et al., 2019; Ghaleb et al., 2020).

Here, we focused on the regulation of grain weight heterosis in

intersubspecific tetraploid hybrids and used comparative RNA-seq

analyses of developing ovary among intersubspecific autotetraploid

hybrids and their parental lines to identify a key geneset (119 SHRGs)

that might contribute to high grain weight heterosis in tetraploid

hybrids. This geneset contains 13 explicit grain weight regulated genes,

includingOsFl3,ONAC023,OsNAC024,ONAC025,ONAC026, RAG2,

FLO4, FLO11, OsISA1, OsNF-YB1, NF-YC12, OsYUC9, and SHRG2.

Any mutation of OsFl3 (Guo et al., 2022), ONAC023 (Li et al., 2022),

RAG2 (Zhou et al., 2017), FLO4 (Chastain et al., 2006), FLO11 (Zhu

et al., 2018; Tabassum et al., 2020), OsISA1 (Chao et al., 2019), OsNF-

YB1 (Bai et al., 2016; Bello et al., 2019; Xu et al., 2021),NF-YC12 (Bello

et al., 2019; Xiong et al., 2019), OsYUC9 (Xu et al., 2021), or double

mutation of OsNAC20 and OsNAC26 (Wang et al., 2020b) would

cause uncomplete grain filling and significantly increase chalkiness in

seeds. Correspondingly, overexpression of OsFl3 (Guo et al., 2022),

ONAC023 (Li et al., 2022), RAG2 (Zhou et al., 2017), or NF-YC12

(Xiong et al., 2019) would increase grain weight. OsNAC024 and

ONAC025 contain SNPs that exhibit a noteworthy correlation with

grain weight in rice, whose proteins interact with OsMED15a to

govern the expression of grain weight genes, such as GW2, GW5, and

DR11 (Dwivedi et al., 2019). The flo11 mutant exhibits temperature

sensitivity in its phenotype (Tabassum et al., 2020). Sugar levels and its

proteins influence the expression of OsNAC23 directly inhibit the

transcription of TPP1, hence controlling sugar homeostasis and grain

yield in rice (Li et al., 2022). Besides grain weight regulation, the NAC

transcription factors, OsNAC20 andOsNAC26, also positively regulate

the expression of glutelin (GluA1/B4/B5), a-globulin and 16 kD

prolamin (Wang et al., 2020b). In this study, phenotypic

observations indicate that mutations in OsFl3 or SHRG2 lead to a

decrease in grain weight due to impaired filling (Figure 6), further

contributing to the understanding of 119 potential regulators of grain

weight heterosis. These results suggest that all 13 grain weight

regulators mentioned above function as positive regulators in the

development of grain weight. The elite genotypes of these grain weight
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heterosis associate genes disperse in different varieties, while the

generation of more elite genotypes in hybrids results in a higher

expression level of grain weight regulators in the hybrids than their

parental lines and promotes grain weight heterosis. Taken together,

our study has presented a comprehensive analysis of the gene

expression patterns in tetraploid rice, specifically focusing on the

phenomenon of intersubspecific seed heterosis. We have found a set of

genes that are associated with grain weight heterosis, thereby

contributing to our understanding of the mechanisms underlying

heterosis generation in neo-tetraploid rice.
Breeding strategy for the utilization of
multi-generation heterosis in neo-
tetraploid rice

Our group also focused on the exploitation of those unique

advantages of neo-tetraploid rice, such as multi-generation heterosis.

Autotetraploid rice hybrids possess four homologous chromosomes,

and their heterozygotes require more generations to become

homozygous. As a result, these hybrids demonstrate robust heterosis

for multiple generations. Previously, we had demonstrated that the

hybrids of neo-tetraploid lines and indica autotetraploid lines

exhibited near similar yield from F2 to F4 generation, indicating that

the high levels of heterosis were maintained for several generations in

the hybrids of neo-tetraploid rice crossed with autotetraploid rice

(Chen et al., 2022). The multi-generation heterosis of tetraploid rice

has great potential for producing hybrid seeds and reducing cost. In

contrast to diploid rice, the key tetraploid progenitors must exhibit the

capacity to overcome polyploid sterility, similar to our neo-tetraploid

rice. Now, we have successfully bred a series of neo-tetraploid lines

and identified an indica tetraploid germplasm, HD11, with a high

combining ability to neo-tetraploid lines, which can work as japonica

backbone parent and indica backbone parent in our future breeding,

respectively. Thus, we proposed a strategy for utilizing multi-

generation heterosis and intersubspecific heterosis based on neo-

tetraploid rice (Chen et al., 2022; Liu et al., 2023). Referring to the

“two-line” hybrid heterosis utilization in diploid rice involving a

temperature-sensitive male sterile line (TMSL) and a restoring line

(RL), our key strategy for future intersubspecific tetraploid hybrid rice

breeding is as follows (Supplementary Figure S4):
(1) Creation of a new indica tetraploid TMSL with elite genes

using HD11. The current study focuses on utilizing an

exceptional tetraploid line, HD11, to enhance the crop

productivity of tetraploid hybrid rice, which could be

used for developing tetraploid TMSL. Previously, we

confirmed the feasibility of creating tetraploid TMSL by

editing the temperature-sensitive male sterile gene, TMS5

(Chen et al., 2022). In this case, we can use CRISPR/Cas9 to

target TMS5 to develop HD11-drived TMSL.

(2) Breeding strong restorer lines based on neo-tetraploid rice.

Neo-tetraploid rice can be used as the recurrent parent to

cross with various autotetraploid lines, backcross 5-6 times

assisted with molecular markers to select target genes (such as
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“wide compatibility genes” and “neutral genes” for pollen

fertility), and finally self-cross to select excellent neo-tetraploid

restorer lines. Robust restorers need to retain their capacity to

overcome sterility caused by polyploidization, while also

enhancing the quantity of grains and panicles.

(3) Selection of super vigor combinations of HD11-derived TMSL

and neo-tetraploid restorer lines. HD11-drived TMSL can be

used to cross with various neo-tetraploid restorer lines, and

yield assessment of their F1 to F4 hybrids would be performed

to identify super vigor combinations with high yield and

multi-generation heterosis. Our group created several HD11-

tms5 lines that were temperature-sensitive and identified

several hybrids with high heterosis based on HD11 and neo-

tetraploid restorer lines. Meanwhile, we also explore to “fix”

the heterosis by apomixis using gene editing techniques.

Additional efforts are needed in this aspect. It is important

to acknowledge that there is significant room for genetic

enhancement in tetraploid hybrids regarding grain quantity,

panicle number, and tolerance to both biotic and abiotic stress.

This implies a substantial potential for increasing grain yield.

In order to get high yield, direct-seedling and dense planting

could be tried in neo-tetraploid rice.
Furthermore, tetraploid rice possesses the distinctive benefit of

multi-allelic heterosis, which can be effectively harnessed and applied

in future breeding programs for tetraploid rice. Tetraploid hybrids can

contain multiple alleles in the same locus, while only two alleles are

possible in diploid hybrids. Our understanding of the phenomenon of

additional heterosis in tetraploid hybrids with multiple alleles remains

inadequate. Further investigation into the utilization of related traits is

necessary for future tetraploid rice breeding.

Conclusions

Yield assessment of intersubspecific autotetraploid hybrid rice

offers empirical evidence for our tetraploid breeding strategy by the

combination of elite indica autotetraploid lines and japonica neo-

tetraploid lines. Intersubspecific autotetraploid hybrids still have

excellent yield potential in the improvement of grain number,

panicle number, elite haplotypes of grain weight regulators, and

cultivation patterns. These results provide important germplasms

for intersubspecific tetraploid hybrid rice breeding and new insights

into the underlying mechanism of heterosis.
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