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Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing, China
Tomatoes, widely cherished for their high nutritional value, necessitate precise

ripeness identification and selective harvesting of mature fruits to significantly

enhance the efficiency and economic benefits of tomato harvesting

management. Previous studies on intelligent harvesting often focused solely

on identifying tomatoes as the target, lacking fine-grained detection of tomato

ripeness. This deficiency leads to the inadvertent harvesting of immature and

rotten fruits, resulting in economic losses. Moreover, in natural settings, uneven

illumination, occlusion by leaves, and fruit overlap hinder the precise assessment

of tomato ripeness by robotic systems. Simultaneously, the demand for high

accuracy and rapid response in tomato ripeness detection is compounded by the

need for making the model lightweight to mitigate hardware costs. This study

proposes a lightweight model named PDSI-RTDETR to address these challenges.

Initially, the PConv_Block module, integrating partial convolution with residual

blocks, replaces the Basic_Block structure in the legacy backbone to alleviate

computing load and enhance feature extraction efficiency. Subsequently, a

deformable attention module is amalgamated with intra-scale feature

interaction structure, bolstering the capability to extract detailed features for

fine-grained classification. Additionally, the proposed slimneck-SSFF feature

fusion structure, merging the Scale Sequence Feature Fusion framework with a

slim-neck design utilizing GSConv and VoVGSCSP modules, aims to reduce

volume of computation and inference latency. Lastly, by amalgamating Inner-

IoU with EIoU to formulate Inner-EIoU, replacing the original GIoU to expedite

convergence while utilizing auxiliary frames enhances small object detection

capabilities. Comprehensive assessments validate that the PDSI-RTDETR model

achieves an average precision mAP50 of 86.8%, marking a 3.9% enhancement

over the original RT-DETR model, and a 38.7% increase in FPS. Furthermore, the

GFLOPs of PDSI-RTDETR have been diminished by 17.6%. Surpassing the

baseline RT-DETR and other prevalent methods regarding precision and speed,

it unveils its considerable potential for detecting tomato ripeness. When applied

to intelligent harvesting robots in the future, this approach can improve the

quality of tomato harvesting by reducing the collection of immature and

spoiled fruits.
KEYWORDS

tomato, ripeness recognition, deep learning, RT-DETR, PConv, deformable attention,
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1 Introduction

Tomatoes are widely favored for their rich content of vitamin C,

potassium, and lycopene (Story et al., 2010). During the growth of

tomatoes, their color gradually shifts from green to yellow, orange,

and finally red, while the firmness decreases, and the sweetness and

acidity reach a balance, leading to an increase in nutritional content.

The maturity level of tomatoes directly impacts their nutritional

value, taste, and the timing of harvesting. Traditional manual

detection methods are subjective and are often inefficient and

costly, failing to meet the needs for high-efficiency maturity

discrimination and harvesting (El-Bendary et al., 2015). Although

sensors provide a non-contact means of detecting maturity, they

sometimes struggle to accurately distinguish between closely related

stages of ripeness, are significantly influenced by ecological

elements like illumination and temperature, and are cost-

prohibitive (Aghilinategh et al., 2020; Alam Siddiquee et al.,

2020). Consequently, the creation of a lightweight, efficient, and

precise algorithm for maturity detection is of great importance for

the intelligent grading and harvesting of tomatoes However, the

natural growth environment of tomatoes, characterized by fruit

occlusion, subtle color differentiation, and variations in lighting

conditions, presents challenges for the accurate identification of

tomato maturity.

To enhance the quality of tomato harvests and reduce labor

costs, while also accurately distinguishing fruits of different

maturities for harvesting, certain conventional machine learning

methods have been utilized in the maturity detection of fruits and

vegetables. For example (Zhao et al., 2016), extracted Haar-like

characteristics from monochrome images of tomatoes and used an

AdaBoost classifier to identify potential tomato targets, but the

precision and speed of their identification still require enhancement

(Liu et al., 2019). utilized the Gradients of Oriented Histograms

descriptor for training the classifier and introduced a coarse-to-fine

scanning technique that enhanced the accuracy of tomato detection;

however, the algorithm did not consider maturity grading and was

limited only to the identification of ripe tomatoes, which constitutes

a significant limitation. Recently (Bai et al., 2023), utilized machine

learning to aid in image analysis, merging form, surface, and hue

characteristics of tomatoes to achieve high-precision identification

and picking point localization of clustered tomatoes. However, their

model is large and requires high-end hardware. Although

traditional machine learning demonstrates significant advantages

over manual inspection in identifying the ripeness of tomatoes, it

still suffers from issues such as the cumbersome process of manual

feature extraction, high model complexity, low detection accuracy,

and slow processing speeds.

In unstructured environments, the characterization of tomatoes

is further complicated by factors such as variable lighting

conditions, occlusion by leaves, and overlapping fruits. These

challenges render conventional machine vision algorithms less

effective in differentiating the maturity levels, leading to

considerable limitations in their applicability. Consequently, deep

learning has been employed to address these aforementioned
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difficulties (Afonso et al., 2020). utilized the Mask-RCNN (He

et al., 2017) algorithm to identify tomato images captured in a

greenhouse environment, but its ability to distinguish the ripeness

of tomatoes was subpar (Ko et al., 2021). have implemented multi-

stream convolutional network (Simonyan and Zisserman, 2014) for

the detection of tomato ripeness and have employed probabilistic

decision integration to achieve more accurate categorization

outcomes of ripeness, thereby achieving commendable detection

accuracy. Nonetheless, the research pertaining to the real-time

identification of tomatoes remains deficient. In recent years,

models from the YOLO (Redmon et al., 2016; Redmon and

Farhadi, 2017) series have demonstrated exceptional effectiveness

within the realm of industrial object recognition, outperforming

conventional two-stage detection pipelines (Liu et al., 2020). have

substituted conventional rectangular boxes for circular ones for

tomato localization, introducing a modified YOLOv3-based

detection model that reduces the impact of variations in lighting,

overlaps, and obstructions. Nevertheless, this model does not

consider ripeness information, which limits its effectiveness in

detecting tomatoes across various growth stages (Lawal, 2021).

have employed compact architecture integration and pyramid

pooling within a modified YOLOv3 framework to enhance the

identification accuracy of tomatoes (Zheng et al., 2022). have

integrated the ResNet (He et al., 2016) architecture into the

CSPDarknet53 backbone of YOLOv4, incorporating depthwise

separable convolution blocks as residual edges to execute tomato

object detection tasks at three different scales. This has enhanced the

robustness under varying degrees of occlusion and lighting

conditions. Additionally (Khan et al., 2023), have proposed a

novel approach to tomato ripeness classification utilizing a

modular convolutional transformer. This method merges the

benefits of convolutional networks and transformers (Vaswani

et al., 2017), potentially elevating the productivity and correctness

in the processes of tomato collection, evaluation, and quality

oversight. However, its detection capabilities are limited when

dealing with tomatoes that are heavily occluded, cluttered, or

small in size.

Deep learning supersedes traditional machine learning in

automated feature extraction and handling of high-dimensional

data, particularly achieving higher accuracy in image recognition

tasks. In the agricultural sector, especially in fruit and vegetable

harvesting, there is a growing demand for low-power embedded

devices to reduce costs and improve efficiency. Hence, with

algorithmic practicality in mind, it is crucial to minimize the

footprint and computational demands of the model while

concurrently improving the accuracy and velocity of

identification. Furthermore, the algorithms are required to possess

robustness to withstand interference from unstructured external

elements such as changing illumination, climatic conditions, and

obstructions due to vegetation. These challenges necessitate the

development of innovative deep learning approaches that can

effectively balance performance, efficiency, and adaptability to

real-world scenarios. This study introduces a lightweight tomato

maturity identification approach utilizing an enhanced RT-DETR
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framework to tackle the previously mentioned possible issues. Our

main contributions are as follows:
Fron
1. “Integration of residual blocks with partial convolutional”:

By amalgamating PConv lightweight convolutions with

residual blocks into a novel PConv_Block module,

enhanced residual architecture for backbone networks.

This integration preserves performance while reducing

computational load, thereby elevating the efficiency of

feature extraction.

2. “Introduction of deformable attention mechanism”:

Incorporating the deformable attention mechanism into

the encoder of the transformer to replace the multi-head

attention mechanism results in the AIFI-DAT component.

This enables the framework to grasp intricate associations

among various segments of the input, providing enhanced

performance in the task of fine-grained classification of

tomato ripeness.

3. “Design of a lightweight Neck architecture”: The novel

slimneck-SSFF structure is proposed by integrating the

Scale Sequence Feature Fusion (SSFF) framework with

the slim-neck, which incorporates lightweight GSConv

and VoVGSCSP modules. Introduced at the Neck stage,

this architecture boosts the detection abilities for tiny items

while preserving precision, and concurrently reduces

computational demand and inference latency.

4. “Loss function optimization” : The Inner-IoU is

amalgamated with EIoU, introducing an auxiliary

bounding box within EIoU controlled by a scale factor

ratio to obtain Inner-EIoU. Employing this loss function in

place of the original GIoU used by the model yields faster

and more efficient regression results.

5. “Evaluation of effectiveness”: Thorough assessment with

the tomato maturity dataset shows that the proposed PDSI-

RTDETR framework outperforms the initial RT-DETR

framework regarding accuracy and speed, with reduced

computational costs, and outperforms other common

object detection models.
2 Materials and methods

2.1 RT-DETR network

RT-DETR is a novel real-time end-to-end target detection

model (Lv et al., 2023). Compared to YOLOv8, RT-DETR

demonstrates improved efficacy and better equilibrium in the

same testing environments, with a shortened training period and

without employing the mosaic data augmentation strategy, while

maintaining detection speeds on par with the YOLO series. The RT-

DETR model is partitioned into three primary segments: the

backbone network, the hybrid encoder, and the decoder.

The backbone architecture harnesses the capabilities of a

convolutional network to extract salient features, procuring
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outputs across three distinct scales with strides of 8, 16, and 32.

The neck network employs an Attention-based Intra-scale Feature

Interaction (AIFI) module to process high-level features from the

backbone network, significantly reducing computational load and

improving computational speed without compromising

performance. It also uses a Cross-scale Feature-Fusion Module

(CCFM) for the integration and interaction of multi-scale

features. RT-DETR leverages a transformer-based denoising

decoder to enhance the quality of bipartite matching samples,

accelerating the convergence rate during training. The model

dynamically adjusts queries based on IoU, focusing efforts on

regions most relevant to the detection targets. The decoder

obtains initial object queries from an IoU-aware selection

mechanism and iteratively refines them. Overall, RT-DETR

presents significant potential for advancement in industrial object

detection. The structure of the foundational model RT-DETR

selected for this article is shown in Figure 1.
2.2 Dataset collection

The main objective of this research is to ascertain the maturity

level of tomatoes cultivated in outdoor settings, thus improving the

robustness of our model. To enhance data diversity, images of

tomato ripeness were acquired in two batches. The first batch of

photographs was taken during the daytime in a tomato picking

garden located in Fengtai District, Beijing, China (longitude 116°

12’3.7548”E, latitude 39°47’26.8332”N), using a Xiaomi 9

smartphone equipped with a SONY IMX586 lens (48 MP, f/1.7

aperture, 26mm equivalent focal length). The images were captured

under various lighting conditions, ranging from bright sunlight to

overcast skies, with temperatures between 25°C and 30°C in early

September. The captured images exhibit varying conditions, such as

strong light, shadow occlusion, and overlapping fruits. The second

batch of images was sourced from 112 tomato images in the publicly

available Fruits and Vegetables Image Recognition Dataset (Seth,

2020) on Kaggle. These images underwent data augmentation

processing, including mean blur (with kernel sizes ranging from

5×5 to 15×15), random cropping (cropping a random portion of the

image within 40-80% of the original image size), and random

rotation (rotation by a random angle between -60° and 60°), to

enhance the diversity of the dataset. All augmented images were

resized to a consistent size of 640x640 pixels. After data

augmentation, a total of 3,251 images were obtained. Examples of

data augmentation are shown in Figure 2.

To meet the experimental requirements, the dataset was divided

into three parts using random splitting. First, the dataset was

randomly shuffled to ensure the randomness of the samples.

Then, according to the predefined ratios, the shuffled dataset was

divided into three subsets: 2,275 images (70%) were used for the

training dataset, 325 images (10%) for the validation dataset, and

651 images (20%) were designated for the testing dataset. This

random splitting approach effectively assigns the data to different

subsets, reducing the bias introduced by the division of the dataset

and improving the generalization ability of the model.
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FIGURE 2

Examples of data augmentation techniques applied to the tomato images.
FIGURE 1

RT-DETR network structure diagram.
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2.3 Dataset annotation and processing

Given that the principal emphasis of this paper lies in the

analysis of computer vision algorithms in assessing tomato ripeness,

visual differentiation is performed based on the appearance

differences in coloration, hue saturation, size and shape, as well as

the degree of spoilage. Based on these characteristics, tomatoes are

categorized into five classes: unripe, half-ripe, ripe, overripe, and

rotten. Unripe tomatoes exhibit a bright green hue, smaller size, low

sugar content, acidic taste, and generally have a total soluble solids

TSS content below 5%. Half-ripe tomatoes transition to yellow or

pink while retaining green areas, with a sugar content of around 8%,

a pH level of approximately 4.25, and a slightly increased TSS of

about 7%. Ripe tomatoes are uniformly red or deep red, larger in

volume, and vivid in color, with a pH typically ranging between 4.2

and 4.5, and a higher TSS content, likely between 10-12%. Overripe

tomatoes are deep red, beginning to lose their luster, showing slight

shrinkage or skin relaxation. Rotten tomatoes may develop irregular

brown or black spots, lose their normal skin sheen, exhibit

significant shrinkage, soften, or even burst. Utilizing the Labelme

annotation tool, the tomatoes in the images are manually labeled

according to the aforementioned characteristics. Detailed

information about the dataset annotation is presented in Table 1

as follows:
2.4 Training and experimental
comparison platform

The network experimental environment is based on Ubuntu

20.04, Python 3.10.12, and Pytorch 2.0.1, with relevant hardware

configurations and model parameters detailed in Supplementary

Table 1. The batch size was set to 4, with a training duration of 100

epochs, and a learning rate selected at 0.0001. An adaptive image

size of 640×640 was selected for the experiments.
3 Algorithm design

3.1 The PDSI-RTDETR model architecture

The advent of RT-DETR has filled a void in the DETR (Carion

et al., 2020) series for real-time monitoring applications, offering a

superior balance of precision and velocity relative to the YOLO

series. On the other hand, the detection of tomato ripeness in

natural environments necessitates not only high accuracy and rapid
Frontiers in Plant Science 05
processing but also confronts the challenge of model lightweighting

to mitigate issues such as hardware costs. This study introduces the

lightweight PDSI-RTDETR model to address these concerns. The

PConv_Block module, proposed in this paper, merges partial

convolutional (PConv) (Chen et al., 2023) with residual blocks,

optimizing the backbone network for efficient feature extraction

with reduced computational burden. Deformable attention

mechanisms (Xia et al., 2022) are introduced to the encoder,

enhancing fine-grained classification through the AIFI-DAT

module. The proposed slimneck-SSFF structure combines the

Scale Sequence Feature Fusion framework (Kang et al., 2023) with

a slim-neck design, featuring GSConv and VoVGSCSP modules (Li

et al., 2022a), to improve small object detection with reduced

computational cost and lower inference latency. Optimization of

the loss function is achieved by integrating Inner-IoU (Zhang et al.,

2023a) with EIoU (Zhang et al., 2022) to form Inner-EIoU,

improving regression efficiency. Comprehensive evaluations

confirm that the PDSI-RTDETR model outperforms the baseline

RT-DETR and other prevalent object detection methods in

accuracy, speed, and computational efficiency. Figure 3 illustrates

the PDSI-RTDETR model architecture.
3.2 Backbone network improvement

To circumvent the computational redundancies of complex

models in simple tasks, which result in diminished detection

velocities, this paper utilizes the comparatively light ResNet-18

(He et al., 2016) as the baseline for the backbone network.

Moreover, we substitute the conventional convolutions within the

Basic_Block modules with partial convolutions to bolster feature

extraction while simultaneously achieving heightened model

lightness. Partial convolution judiciously utilizes filters across a

chosen subset of input channels, thereby conserving the remainder,

which culminates in lower Floating Point Operations Per Second

(FLOPs) than standard convolution. This method secures an

elevated operational speed on an extensive spectrum of devices

without detracting from the precision of the task. The structural

principle of PConv is illustrated in Supplementary Figure 1.

The PConv employs conventional convolution on a specific

portion of the input channels to derive spatial features, preserving

the rest of the channels unchanged. To ensure efficient memory

access, the calculation engages the first or last sequence of cp
consecutive channels as a proxy for the computational demand

across all feature maps. Maintaining methodological uniformity, it’s

assumed that the count of channels remains the same for both input
TABLE 1 Tomato ripeness dataset labeling information.

Types Number half_ripe over_ripe ripe rotten unripe

Training 2275 721 1285 2417 980 1408

Validation 325 146 237 337 101 222

Test 651 216 328 627 265 489

Total 3251 1083 1850 3381 1346 2119
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and output feature maps. Therefore, the FLOPs of a PConv are only,

as detailed in Equation (1):

h� w � k2 � c2p (1)

Within the formula, h and w denote the dimensions of the

feature map, k indicates the size of the convolution kernel, and cp is

the count of channels utilized by the standard convolution.

Typically, with r = cp=c = 1=4, the FLOPs for PConv are just 1=16

of a regular Conv. Additionally, the scenario of diminished memory

access for PConv includes, as specified in Equation (2):

h�w�2cp+k
2�c2p≈h�w�2cp (2)

Memory access for PConv is merely a quarter compared to a

typical convolution, as the remaining c ∼ cp channels do not

participate in the computation and therefore do not require

memory access. Incorporating PConv into the feature extraction

network markedly decreases computational and memory demands,

streamlining the backbone network and enhancing model inference

speed. The backbone network incorporating the proposed

PConv_Block module is shown in Figure 4.
3.3 Improvements to the efficient
hybrid encoder

3.3.1 Deformable attention
The deformable self-attention module determines the

locations of key and value pairs inside the self-attention

framework based on the data. This method facilitates targeted

attention on significant areas, enhancing the extraction of
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meaningful features. Additionally, it addresses the issue of

excessive memory and computational costs associated with

dense attention. Deformable attention shares shifted keys and

values for each query, reducing spatial complexity and avoiding

significant information loss that can result from down-sampling

techniques. An illustration of deformable attention is presented

in Figure 5.

As shown above, for an input feature map x ∈ RH�W�C , a

uniform grid of points p ∈ RHG�WG�2 is established as a baseline.

To calculate the offsets for each grid point, the feature map

undergoes a linear transformation into query tokens q = xWq,

which are then processed by a specialized lightweight network

qoffset to produce the offsets Dp = qoffset(q). Following this, sampling

of features occurs at these adjusted points to form keys and values,

culminating in the creation of the projection matrix, as described in

Equations (3) and (4):

q = xWq, ~k = ~xWk,~v = ~xWv (3)

Dp = qoffset(q), ~x = ∅ (x; p + Dp) (4)

~k and ~v respectively represent the deformed key and value

embeddings, and are transformed into bilinear interpolation using

the sampling function ∅ (·; ·), as defined in Equation (5):

∅ z; px , py
� �� �

= o
(rx ,ry)

ɡ(px , rx)ɡ(py , ry)z½ry , rx , :� (5)

where ɡ(a, b) and the coordinates (rx , ry) span every position on

z ∈ RH�W�C . Multi-head attention is performed on q, k, v,

incorporating relative positional displacements R. The result from

the attention heads is articulated as follows in Equation (6):
FIGURE 3

The structure diagram of improved RT-DETR(PDSI-RTDETR).
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Z(m) = s(q(m)~k(m)T=
ffiffiffi
d

p
+∅ (B̂ ;R))~v(m) (6)

where s( · ) represents the softmax operation and d is the

dimensionality of each attention head. Z(m) signifies the output

embedding from the m-th attention head. The outputs from all

heads are merged via concatenation and then transformed through

Wo to produce the final output z, as described in Equation (7):

Z = Concat(z(1),⋯, z(M))Wo (7)
3.3.2 Introduce deformable attention into the
AIFI module

Within the neck architecture of the model, a single transformer

encoder layer is dedicated to processing the S5 features emanating

from the backbone network. Leveraging the rich semantic attributes

of high-level features, this methodology significantly curtails

computational demands and augments processing speed without

sacrificing performance robustness. This optimized hybrid encoder

orchestrates intra-scale feature interaction, morphing multi-scale

features into a serialized array of image feature sequences. The

replacement of the conventional multi-head self-attention with
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deformable attention facilitates adaptive sampling of pivotal

feature locations, diminishing memory usage and circumventing

the severe information loss inherent to down-sampling techniques,

thereby elevating the computational efficiency and prowess in

feature capture of the model. The computational process, as

delineated in Equations (8) and (9), is as follows:

Q = K = V = FlDatten(S5) (8)

F5 = Reshape(DAttn(Q,K ,V)) (9)

where DAttn represents the deformable attention, and Reshape

represents the restoration of the feature’s shape to match that of S5,

which is the inverse operation of FlDatten.
3.4 Improved neck

The role of the neck network in the model is to coordinate and

bolster the feature representation at different levels in order to

enhance the precision in identifying targets across various sizes. The

neck network of the RT-DETR model uses the AIFI module to
FIGURE 4

Lightweight feature extraction backbone network structure incorporating PConv.
FIGURE 5

Deformable attention mechanism structure, which adjusts reference points and applies relative position bias through an offset network to optimize
feature transformation.
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process the high-level features, and then the CCFM module is used

for the interaction and fusion of multi-scale features. Its compared

with YOLO the number of parameters and computation of this neck

structure of the network has risen, and considering the necessity to

detect a significant volume of targets within an individual image

and the large color difference between different ripeness of

tomatoes, the original model loses the small target information in

the process of convolution and down-sampling. Therefore, this

paper introduces the SSFF module, GSConv and Slim-neck

technology, and proposes the slimneck-SSFF feature fusion

architecture, which reduces the complexity and computation of

the model on the basis of improving the accuracy.

As shown in Figure 6, the GSConv module combines

conventional convolution with separable convolution and uses the

Shuffle procedure to integrate the features generated by both,

ensuring inter-channel information exchange while effectively

reducing computational costs.

As illustrated in Figures 6B, C, GSbottleneck consists of two

GSConv modules and one DWConv module, with input features

fed into each module and their outputs summed. Based on

GSbottleneck, VoVGSCSP is constructed using a one-off

aggregation approach, effectively decreasing the count of

parameters and floating-point computations.

To distinguish between the ripeness stages of tomatoes across

different sizes, we employ the SSFF module to boost the network

proficiency in capturing scale-diverse features. The structure of the

SSFF module is depicted in Figure 6D. The SSFF module treats

feature maps of different sizes as a scale space, adjusts the effective

feature maps of different resolutions to the same resolution for

concatenation, then horizontally stacks the feature maps of different

scales, and utilizes three-dimensional convolution to extract their
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scale sequence features. In contrast to existing literature that merely

adopts summation or concatenation methods to fuse pyramid

features, the SSFF module can better integrate the high-

dimensional information from deep feature maps with the

detailed information from shallow feature maps. This provides

more comprehensive and refined feature descriptions for objects

of different dimensions, thereby enhancing the network’s ability to

capture multi-scale features.

3.5 The improved loss function

In the research conducted, the original GIoU of the model is

substituted with Inner-EIoU, which offers quicker convergence,

enhanced accuracy in assessment, and supplementary edges. The

use of smaller auxiliary borders to compute the loss during the

model training process has a gain effect on the regression of the high

IoU samples, and the opposite is true for the low IoU samples.

Employing the scale factor ratio to manage the creation of various

scales of auxiliary edges for loss calculation yields quicker regression

outcomes across diverse scenarios. Applying Inner-IOU to the

EIOU loss function is calculated as follows, according to

Equations (10)–(14):

inter = (min (bɡtr , br) −max (bɡtl , bl)) ∗ (min (bɡtb , bb)

−max (bɡtt , bt)) (10)

union = (wɡt ∗ hɡt) ∗ (ratio)2 + (w ∗ h) ∗ (ratio)2 − inter (11)

IoUinner =
inter
union

(12)
A B

D

C

FIGURE 6

(A) GSConv, (B) GSbottleneck, (C) VoVGSCSPC, and (D) SSFF module structure diagrams.
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LEIoU = LIou + Ldis + Lasp (13)

LInner−EIoU = LEIoU + IoU − IoUinner (14)

where the ground truth (GT) box and anchor are respectively

represented as Bɡt and B. The width and height of the GT box are

denoted by wɡt and hɡt , while the width and height of the anchor

box are represented by w and h. The ratio is an auxiliary factor that

controls the size of the helper box. The EIOU loss function is

composed of three components: the overlap loss LIou, the center

distance loss Ldis, and the width and height loss Lasp. Inner-EIoU,

focusing more accurately on the box’s center, is an enhanced

bounding box regression loss that quickens convergence through

loss calculation with scale-modified support boxes and shows

efficacy in detecting smaller objects.
4 Evaluation indicators

The paper assesses the algorithmic performance by comparing

the disparities in image detection by the network model before and

after enhancements, under identical experimental settings. The

study employs precision (P), recall (R), mean average precision

(mAP), F1 score, GFLOPs, and frames per second (FPS) as

evaluative criteria.

Precision represents the proportion of true positives in the

predictions classified as positive by the model. It gauges the

adeptness of the model in distinguishing negative samples. Higher

precision denotes greater reliability of the model in predicting

positive cases. The formula for precision is presented as in

Equation (15).

Precision =
TP

TP + FP
(15)

Recall quantifies the fraction of true positive samples accurately

detected as positive by the model, showcasing the proficiency in

identifying positive instances. An increased recall suggests the

model identifies more true positives. The formula for calculating

recall is presented in Equation (16).

Recall =
TP

TP + FN
(16)

The F1 score, serving as the harmonic mean between precision

and recall, aims to consolidate these metrics into one indicator. This

score varies between 0 and 1, where scores nearing 1 denote a

stronger model. The calculation for the F1 score is detailed in

Equation (17).

F1 =
2

Recall−1 + Precision−1

� �
= 2

Precision · Recall
Precision + Recall

(17)

The Average Precision (AP) measures the mean highest

precision at various recall levels per category. The mean Average

Precision (mAP) averages these APs across categories, assessing

object detection models’ overall performance. It is a comprehensive

metric suitable for multi-category object detection tasks, as

illustrated in the following formula, Equations (18) and (19).
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AP =
Z 1

0
P(r)dr (18)

mAP = o
S
j=1AP(j)

S
(19)

where S denotes the total category count, and the divisor is the

aggregate of AP values across all categories.

Moreover, GFLOPs measures the computational complexity,

allowing for efficiency comparisons among models. FPS, indicating

images processed per second, assesses real-time performance. The

formula involving tavg represents FPS calculation, as shown in

Equation (20).

FPS =
1
tavɡ

(20)
5 Results and analysis

5.1 Backbone network
comparative experiment

The backbone network of the RT-DETR model, employing

ResNet-18 for feature extraction, encompasses four Basic_Block

modules. To explore the appropriate position for enhancing the

backbone network architecture, the introduced PConv_Block

module is utilized to substitute each Basic_Block module, and the

performance of the enhanced model is examined.

As indicated in Table 2, the introduction of the PConv_Block

module leads to a reduction in the computational cost of the model,

while the highest mAP50 also increases by 1.3%. However, within

the backbone network structure, it has been found that the number

of PConv usages is not the more the better, after all 4 modules are

improved mAP50 instead decreased by 0.5%, and experiments

found that it is more effective to use it in the middle feature layer.

This may be due to PConv requiring both location and semantic

information, which are relatively balanced in the middle feature

layers. Based on the experimental results, this paper replaces the last

three Block modules in the backbone of the baseline model with

PConv_Block modules, lightening the model structure while

improving detection accuracy.

Furthermore, the challenge in accurately detecting tomato

ripeness involves minimizing computational demands while

enhancing precision and speed. To corroborate the efficiency of

employing partial convolution, several leading convolutional

networks have been chosen for benchmarking in comparative

studies, as illustrated in Table 3.

As can be seen from Table 3, compared with the original model,

the introduction of lightweight PConv_ Block not only significantly

reduces the model parameters and computational cost, but also

achieves the improvement of P, R, and mAP, of which the mAP50

obtains a sizable improvement of 1.3 percentage points. The

integration of Deformable Convolution v2 (Zhu et al., 2019) has

resulted in an increase of 1.4% in mAP50, thus yielding enhanced

accuracy; however, this enhancement comes at the cost of a 2.2%
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increase in the parameter count of the model. Additionally, the

current study has incorporated DySnakeConv (Qi et al., 2023) into

the original Basic_Block module. While DySnakeConv

demonstrates impressive performance on the mAP50 metric,

improving by 1.1% over the original model, it has substantially

increased both the parameter count and computational demand of

the model, with GFLOPs experiencing a 6.8% surge. In the final

analysis, compared to the original model, the backbone integration

of DualConv (Zhong et al., 2022) and AKConv (Zhang et al.,

2023b), despite reducing both parameters and computational

load, results in respective reductions of 0.3% and 2.3% in

mAP50:95, which does not satisfy the high-precision

requirements for tomato ripeness detection. Upon comparison of

the performance of several prevalent operators, the PConv_Block

proposed in this article exhibits exceptional performance.
5.2 Verifying the role of AIFI-DAT module

To confirm and explore the factors contributing to enhanced

tomato ripeness detection performance through the integration of

the intra-scale feature interaction module with deformable

attention, this study utilized XGrad-CAM (Fu et al., 2020) for

generating and contrasting heatmaps pre and post the

incorporation of the attention mechanism. This comparative

evaluation is depicted in Figure 7.

From the above figures, it can be observed that the RT-DETR

model without the AIFI-DAT module neglects certain tomato

targets, while attending to irrelevant locations such as tree leaves.

Upon integration of the AIFI-DAT module, the focus of the model

becomes more concentrated and accurate, mitigating attention

towards interfering elements like foliage. Additionally, it enables

precise identification of the ripeness of smaller tomatoes.
Frontiers in Plant Science 10
5.3 Verifying the effectiveness of the
slimneck-SSFF structure

As seen in the ablation experiments in Table 4, by comparing

four different configurations of the model, the specific effects of

various neck network improvement strategies on the model

performance can be observed. Model 2, which introduces

slimneck, enhances the precision and recall by 1.2% and 2.5%, in

comparison with the RT-DETR model, while the calculation

complexity and the parameter count are diminished to 53.3

GFLOPs and 19.30 M, illustrating the significant effect of the

slimneck strategy in boosting the computational efficiency of the

model. Conversely, Model 3, employing the SSFF strategy, markedly

improves the mAP50 and mAP50:95 by 2.1% and 3.1%, yet

modestly elevates the computational complexity and the number

of parameters, highlighting the additional resource requirement in

aiming for higher detection accuracy. Ultimately, Model 4, merging

both slimneck and SSFF strategies, attains equilibrium, raising the

precision and recall to 85.4% and 82.4% while enhancing mAP50

and mAP50:95 by 2.1% and 2.6%, and trimming the number of

parameters by 1.8%, thus achieving the optimization objective of

managing the consumption of computational resources while

preserving high performance.
5.4 Validity of loss function improvements

To substantiate the effectiveness of the proposed Inner-EIoU

loss function, experiments were conducted by selecting different

ratio values to alter the size of the auxiliary bounding box.

Comparative analyses were performed against established loss

functions such as GIoU, SIoU, EIoU, and Shape-IoU (Rezatofighi

et al., 2019; Gevorgyan, 2022; Zhang et al., 2022; Zhang and
TABLE 2 Comparison of model performance after improving the backbone network.

Model P(%) R(%) mAP50(%) mAP50:95(%) GFLOPs(G)

RT-DETR 81.7 78.7 82.9 69.8 57.3

RT-DERT+1 PConv_Block 84.2 77.9 82.5 69.3 53.8

RT-DERT+2 PConv_Block 84.8 78.5 84.1 70.5 50.2

RT-DERT+3 PConv_Block 85.1 80.9 84.2 71.3 46.7

RT-DERT+4 PConv_Block 82.9 77.6 82.4 68.8 43.2
TABLE 3 Comparative experiment results of different backbone networks.

Backbone network P(%) R(%) mAP50(%) mAP50:95(%) Params(M) GFLOPs(G)

Basic_Block 81.7 78.7 82.9 69.8 19.97 57.3

DualConv_Block 84.3 80.1 83.6 69.5 16.02 50.2

AKConv_Block 82.2 77.6 81.5 67.5 15.44 49.4

DCNv2_Block 81.8 81.9 84.3 70.5 20.41 47.4

DySnakeConv_Block 83.8 80.6 84.0 68.2 27.96 61.2

PConv_Block 85.1 80.9 84.2 71.3 14.17 46.7
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Zhang, 2023). According to the data illustrated in Table 5, the

model incorporating the Inner-EIoU loss function with a ratio of

0.7 manifested superior detection precision. Relative to the baseline

model employing the GIoU loss function, there was an

enhancement of 0.9% in the metric mAP50 and a 0.7% increment

in mAP50:95. This suggests that the use of the Inner-EIoU loss

function can lead to more stable regression on bounding boxes and

higher prediction accuracy.

In models for detecting objects, the goal is to accurately

determine the position and dimensions of objects with maximum

precision. Therefore, a lower bounding box loss indicates a smaller

discrepancy between the predicted bounding boxes and the true
Frontiers in Plant Science 11
annotations, signifying enhanced model performance. From

Supplementary Figure 2, it is evident that the Inner-EIoU

markedly outperforms other loss functions, facilitating accelerated

descent velocity and reducing the convergence time of the model.
5.5 Ablation study

To verify the enhancement effect of the proposed improvement

modules on the model, eight sets of ablation experiments were

designed. On the basis of the RE-DETR network, the following

modifications were made: the Basic_Block in the feature extraction
A B

D E F

G IH

C

FIGURE 7

Comparison of feature visualization before and after adding the AIFI-DAT module. (A–C) image correctly labeled boxes, (D–F) feature heatmaps of
the original RT-DETR, and (G–I) feature heatmaps with the addition of the AIFI-DAT module.
TABLE 4 Performance comparison of models after neck improvements.

Model
P
(%)

R
(%)

mAP50
(%)

mAP50:95
(%)

GFLOPs
(G)

Params
(M)

1.RT-DETR 81.7 78.7 82.9 69.8 57.3 19.97

2.RT-DERT+slimneck 82.9 81.2 83.9 70.3 53.3 19.30

3.RT-DERT+SSFF 84.4 81.6 85.0 72.9 61.5 20.16

4.RT-DERT+slimneck+SSFF 85.4 82.4 85.0 72.4 57.6 19.61
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network was replaced with the lightweight PConv_Block module,

the intra-scale feature interaction module equipped with a

deformable attention mechanism was added, and the feature

fusion network was optimized using slimneck and SSFF.

Additionally, the loss function was switched to Inner-EIoU. The

experiments were conducted by successively adding each

improvement module, and the results are presented in Table 6.

The ablation study results presented in Table 6 elucidate that

substituting the backbone with a module incorporating lightweight

partial convolution engenders enhancements of 1.3%, 1.5%, and

22.5% across the mAP50, mAP50:95, and FPS metrics respectively.

This evidences that refining the backbone network concurrently

elevates accuracy and expedites detection velocity, while also

effectuating a diminution in computational load and parameter

count by 18.5% and 29.1%, respectively. The incorporation of the

AIFI-DAT layer into the improved model, relative to its

predecessor, yielded ascensions of 0.9% and 14.7% in mAP50 and

FPS, respectively. Moreover, the integration of a deformable

attention mechanism slightly augmented the computational and

parameter requisites of the model, yet significantly bolstered its

performance in discerning tomatoes of disparate shapes. The

amalgamation of the slimneck-SSFF architecture within the neck
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network substantially uplifted mAP50 and mAP50:95 by 2.1% and

2.6%, correspondingly, while maintaining stability in other metrics.

This attests to the efficacious enhancement of the fusion and

articulation of tomato feature information by the slimneck-SSFF

framework. Subsequent to adopting the Inner-EIoU loss function,

the model manifested incremental enhancements of 0.9%, 1.4%,

and 7.5% in mAP50, mAP95, and FPS, respectively.

Additionally, a comparison between Experiment 1 and

Experiment 6 reveals that the model integrating the PConv_Block

module and AIFI-DAT layer exhibited enhancements of 1.9%,

2.2%, and 22.3% in mAP50, mAP50:95, and FPS, respectively,

alongside a substantial reduction in computational and parameter

volume. Further analysis of Experiments 1, 6, and 7 shows that,

following the incorporation of the slimneck-SSFF architecture in

Experiment 7, there was a marginal increase in computational

demand compared to Experiment 6, yet the precision and speed

of the model were augmented. Finally, a comparison between

Experiments 1 and 8 demonstrates that after implementing four

model improvements, the proposed PDSI-RTDETR model, relative

to the baseline model, achieved respective increases in mAP50,

mAP50:95, and FPS metrics by 3.9%, 4.1%, and 38.7%, with a

decrease of 17.6% in GFLOPs and a reduction of 6.16M in
TABLE 5 Performance comparison of models with improved loss functions.

Loss function P(%) R(%) mAP50(%) mAP50:95(%)

GIoU 86.3 82.8 85.9 73.2

SIoU 85.0 83.5 85.5 72.8

Shape-IoU 86.7 82.4 85.5 73.0

EIoU 84.2 83.8 86.2 73.7

Inner-EIoU(ratio=0.70) 86.9 84.1 86.8 73.9

Inner-EIoU(ratio=0.75) 85.4 81.1 84.6 70.6

Inner-EIoU(ratio=0.80) 86.0 82.6 85.9 73.3

Inner-EIoU(ratio=1.10) 86.1 83.1 85.4 73.0

Inner-EIoU(ratio=1.13) 86.0 82.9 85.5 73.1

Inner-EIoU(ratio=1.15) 86.7 83.4 85.7 73.2
TABLE 6 Results of ablation experiments.

Methods
PConv_
Block

AIFI-
DAT

slimneck-
SSFF

Inner-
EIoU

mAP50
(%)

mAP50:95
(%)

GFLOPs
(G)

Params
(M)

FPS
(f/s)

1.base — — — — 82.9 69.8 57.3 19.97 78.3

2 √ — — — 84.2 71.3 46.7 14.17 95.9

3 — √ — — 83.8 71.1 57.5 19.98 89.8

4 — — √ — 85.0 72.4 57.6 19.61 79.9

5 — — — √ 83.8 71.2 57.0 19.88 84.2

6 √ √ — — 84.8 72.0 46.9 14.17 95.8

7 √ √ √ — 85.9 73.2 47.2 13.81 106.9

8.ours √ √ √ √ 86.8 73.9 47.2 13.81 108.6
Where “√” symbol represents the improvement of the structure of the ordinate corresponding to this symbol.
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parameter count. A comprehensive analysis of Table 6, the results of

the ablation study substantiate the efficacy of each proposed

improvement module.

To more explicitly showcase the superiority of the proposed

PDSI-RTDETR model, the training curves for mAP50 and

mAP50:95 of both the original model and the improved model

were visualized and compared, with blue representing the RT-

DETR model and yellow denoting the PDSI-RTDETR model, as

illustrated in Figure 8. It is evident from the graph that, across

various epochs of training, the enhanced model consistently

surpasses the original model in both mAP50 and mAP95 metrics,

demonstrating a heightened precision and improved effectiveness in

detecting the ripeness of tomatoes.
5.6 Comprehensive analysis of the
improved model

Table 7 delineates the performance of the enhanced model in

detecting tomatoes at various stages of ripeness. Examining the

overall performance, the model exhibits high precision and recall

rates of 86.9% and 84.1%, respectively, achieving an mAP50 of

86.8% and an mAP50:95 of 73.9%, thereby affirming its effectiveness

in adjudicating the ripeness of tomatoes comprehensively. Notably,

in the detection of overripe and rotten tomatoes, the model

demonstrates exceptionally high precision rates of 96.1% and

87.7%, respectively, along with superior scores in mAP50,

reaching 93.4% and 89.7%, respectively. This signifies the robust

capability of the model to recognize prominent feature alterations

during the ripening process, such as intensified coloration and

structural changes in the fruit. However, in identifying tomatoes at

the half-ripe stage, the precision and recall rates of the model are

marginally lower, with notably diminished mAP50 and mAP50:95

scores of 67.4% and 70.4%, respectively. This can be attributed to

the subtler feature transitions characteristic of this ripening phase,

presenting challenges to the detection capabilities of the model.
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Although the precision in detecting unripe tomatoes is the lowest at

80.6%, a higher recall rate of 90.1% suggests the efficiency of the

model in not overlooking unripe tomatoes. Overall, the PDSI-

RTDETR model demonstrates exemplary performance in tomato

ripeness detection, particularly distinguishing itself in identifying

overripe and rotten tomatoes, showcasing significant advantages.

To visually demonstrate the capability of the model in

recognizing tomatoes at varying stages of ripeness, we visualized

several evaluation metrics, as depicted in Figure 9. The comparison

of performance curves for tomatoes of each ripeness category

distinctly illustrates the detection abilities of the improved model

across different maturation phases. Within Figure 9 respectively

represent the precision, recall, mAP50, and F1 comparison curves

for tomatoes at each level of ripeness.

Figure 10 presents the confusion matrices for the RT-DETR and

PDSI-RTDETR models at their respective optimal performances.

From the comparative visualization, it is intuitively observable that

the PDSI-RTDETR model surpasses the original model in

classification performance across all categories. Based on the

analysis provided, the PDSI-RTDETR model proposed in this

paper demonstrates exceptional performance in the task of

tomato ripeness detection.
5.7 Comparison of different
detection models

The performance of PDSI-RTDETR was compared with several

other object detection models, including Faster-RCNN (Ren et al.,

2016), SSD (Liu et al., 2016), YOLOv5, YOLOv6 (Li et al., 2022b),

YOLOv8, and the RT-DETR series.

As indicated in Table 8, compared to Faster-RCNN, SSD,

YOLOv5, YOLOv6, and YOLOv8, the mean average precision

with IoU of 0.5 was found to be higher by 10.0%, 7.9%, 3.5%,

1.7%, and 1.4%, respectively. Furthermore, the detection time was

recorded at 4.2 milliseconds per image, satisfying the criteria for
A B

FIGURE 8

Comparison of mean Average Precision between RT-DETR and PDSI-RTDETR. (A) mAP50 comparison curve, (B) mAP50:95 comparison curve.
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real-time detection. Additionally, in comparison to the RT-DETR-L,

RT-DETR-R34, and RT-DETR-R50 models, the precision of the

proposed model was enhanced by 1.8%, 5.6%, and 3.8%,

respectively. Compared to the original RT-DETR model, the

mAP50 and mAP50:95 were increased by 3.9% and 4.1%,

respectively, while F1 score increased by 5%. Consequently, in

comparison to other object detection networks, PDSI-RTDETR

demonstrated significant improvements in accuracy and speed for

the detection of tomato ripeness within natural environments.

The PDSI-RTDETR model introduced in this study outshines

the baseline model in detecting tomato ripeness and surpasses

several prevalent models for object detection, as shown in

Supplementary Figure 3. An increase of 3.9% in mAP50 is noted

when compared with the baseline RT-DETR model, alongside a

decrease in image processing time by 4.2 milliseconds. These

findings jointly suggest enhancements in both precision and

processing efficiency by the model.
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5.8 Visual analysis

In natural settings, tomatoes are subjected to a variety of

lighting conditions, including uneven illumination, potential

obstructions by leaves or branches, and even instances of fruit

overlap. To address these challenges, we evaluated the performance

of our enhanced model across diverse scenarios. As illustrated in

Figure 11 , we present examples of tomato ripeness detection under

various conditions. These findings demonstrate the exceptional

robustness of the model in managing changes in lighting and in

identifying overlapping fruits.

Figure 12 displays the comparative results of tomato ripeness

prediction between the PDSI-RTDETR and the original RT-DETR

models under varying environmental conditions.

Through these images, we can clearly observe that PDSI-

RTDETR surpasses the original model in detection accuracy.

Notably, a comparison presented in Figure 12 vividly showcases
TABLE 7 Performance of the improved model in detecting tomatoes of different ripeness levels.

Class Instances P(%) R(%) mAP50(%) mAP50:95(%)

all 1925 86.9 84.1 86.8 73.9

tomato_half_ripe 216 85.3 67.4 70.4 60.0

tomato_overripe 328 96.1 92.8 93.4 81.5

tomato_ripe 627 85.0 84.1 88.7 72.9

tomato_rotten 265 87.7 86.1 89.7 81.0

tomato_unripe 489 80.6 90.1 91.6 74.1
FIGURE 9

The precision, recall, mAP50, and F1 comparison curves for tomatoes at each ripeness level using the PDSI-RTDETR model.
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the ability of the enhanced model to accurately distinguish the

ripeness of tomatoes in dense areas. Moreover, Figure 12D reveal

that the original model mistakenly identified some leaves as unripe

tomatoes, and Figure 12F shows the misidentification of rotten

tomatoes as unripe ones. In contrast, the improved PDSI-RTDETR

model correctly detected the conditions, as shown in Figures 12G–I.
6 Discussion

The experimental results demonstrate that the proposed PDSI-

RTDETR model achieves significant improvements in both

accuracy and efficiency for tomato ripeness detection in natural

environments. The ablation studies confirm the effectiveness of

each proposed improvement module, including the lightweight

PConv_Block, the AIFI-DAT module, the slimneck-SSFF

structure, and the Inner-EIoU loss function.
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The introduction of the PConv_Block module in the backbone

network not only reduces the computational cost and parameter

count but also improves the detection accuracy, which can be

attributed to the ability of partial convolution to extract more

discriminative features by focusing on informative regions while

suppressing irrelevant background information. The AIFI-DAT

module further enhances the feature representation by capturing

multi-scale contextual information and adaptively adjusting the

receptive field based on the object scale, as revealed by the

visualization of attention maps using XGrad-CAM, which

demonstrates that the AIFI-DAT module enables the model to

focus more on the target tomatoes while suppressing the

interference from background elements such as leaves. In

the neck network, the slimneck-SSFF structure effectively balances

the trade-off between accuracy and efficiency, with the slimneck

strategy reducing the computational complexity and parameter

count, while the SSFF strategy improves the feature fusion and
A B

FIGURE 10

Comparison of model confusion matrix before and after improvement. (A) Confusion matrix for RT-DETR, (B) Confusion matrix for PDSI-RTDETR.
TABLE 8 Comparison of performance of different models.

Model P(%) R(%) mAP50(%) mAP50:95(%) F1 Time(ms)

Faster R-CNN 76.8 75.7 76.8 62.5 0.76 4.1

SSD 79.2 75.8 78.9 64.5 0.77 5.9

YOLOv5 82.3 80.2 83.3 70.2 0.81 8.2

YOLOv6 85.8 81.8 85.1 69.6 0.83 5.6

YOLOv8 84.3 81.2 85.4 71.4 0.83 7.9

RT-DETR 81.7 78.7 82.9 69.8 0.80 8.5

RT-DETR-L 84.6 81.8 85.0 71.7 0.83 5.4

RT-DETR-R34 80.8 76.9 80.6 66.2 0.79 4.4

RT-DETR-R50 82.6 81.0 84.2 69.9 0.82 8.2

PDSI-RTDETR 86.4 84.1 86.8 73.9 0.85 4.2
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representation capability, as demonstrated by the ablation

experiments, which show that the combination of slimneck and

SSFF achieves the best performance, indicating the complementary

nature of these two strategies. Furthermore, the Inner-EIoU loss

function promotes more precise bounding box regression by

penalizing the mismatch between the predicted and ground-truth

boxes, and the comparison with other state-of-the-art loss functions

validates the superiority of Inner-EIoU in terms of convergence

speed and detection accuracy.

A comprehensive analysis of the improved model reveals its

strong capability in detecting tomatoes at different ripeness stages,

particularly for unripe, overripe, and rotten tomatoes. The high

precision and recall rates demonstrate that the model can capture

the unique features associated with each ripeness stage. Comparisons

with other object detection models, including Faster-RCNN, SSD,

YOLOv5, YOLOv6, YOLOv8, and the RT-DETR series, highlight the

superior performance of PDSI-RTDETR in terms of accuracy and

speed. Visual analysis under various environmental conditions proves

the model’s robustness in handling challenges such as uneven

illumination, occlusion, and fruit overlap. When applied to

intelligent harvesting robots in the future, this approach has the

potential to enhance the quality of tomato harvesting by reducing the

collection of immature and spoiled fruits.
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7 Conclusion

This study proposes a fine-grained identification method for

assessing tomato ripeness, which can provide more accurate

decision support for tomato grading intelligent harvesting and

management. In this paper, an efficient lightweight tomato

ripeness detection model, PDSI-RTDETR, is proposed based on

RT-DETR architecture. Substituting the original Basic_Block

module of the backbone network with a streamlined

PConv_Block module renders the model more compact, lowering

computational requirements and the total parameter count. Then

the deformable attention module is combined with AIFI module to

enhance the ability of extracting detailed features of tomato and

improve the accuracy and efficiency of the model. In addition, the

slimneck-SSFF feature fusion architecture is proposed as the feature

fusion network structure of the model, which utilizes the GSConv

and VoVGSCSP modules to enhance the adaptability of the detector

to tomatoes at different scales, generating more fine-grained

semantic information while reducing the network computation.

Ultimately, the original GIoU loss function is substituted by the

Inner-EIoU loss function, which utilizes auxiliary frames to

improve the ripeness determination accuracy for overlapping and

small target tomatoes.
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FIGURE 11

Examples of tomato ripeness detection results under different conditions. (A–C) under sunlight, (D–F) under shade, (G–I) under dense occlusion.
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Extensive tests were performed to validate the efficacy of PDSI-

RTDETR. Comparative results demonstrate that PDSI-RTDETR

achieves enhancements in Precision, Recall, mAP50 and mAP50:95

by 4.7%, 5.4%, 3.9% and 4.1% respectively, compared to the RT-

DETR. Concurrently, GFLOPs and parameters were decreased by

17.6% and 30.8% respectively, with the detection time per image

being merely 4.2 milliseconds. Furthermore, the experiments

confirmed the robustness of PDSI-RTDETR, evidencing its

effective detection of tomato ripeness across various scenes

involving different lighting and occlusion conditions. Future

research will focus on integrating the model into a practical

intelligent tomato harvesting robot for on-site validation. The

harvesting system will be deployed in real tomato farming

environments, and its performance will be evaluated under

various field conditions. Furthermore, we plan to expand our

research to explore ripeness detection methods for other fruits

and agricultural products. By adapting the model architecture and

training methodology, we aim to develop similar lightweight and

efficient ripeness detection systems for a wider range of crops.

Through these efforts, we strive to contribute to the development of

intelligent and sustainable agricultural practices, improve the

quality of harvested crops, reduce waste, and enhance

agricultural efficiency.
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