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Introduction: In response to the current mainstream deep learning detection

methods with a large number of learned parameters and the complexity of apple

leaf disease scenarios, the paper proposes a lightweight method and names it

LCGSC-YOLO. This method is based on the LCNet(A Lightweight CPU

Convolutional Neural Network) and GSConv(Group Shuffle Convolution)

module modified YOLO(You Only Look Once) framework.

Methods: Firstly, the lightweight LCNet is utilized to reconstruct the backbone

network, with the purpose of reducing the number of parameters and

computations of the model. Secondly, the GSConv module and the

VOVGSCSP (Slim-neck by GSConv) module are introduced in the neck

network, which makes it possible to minimize the number of model

parameters and computations while guaranteeing the fusion capability among

the different feature layers. Finally, coordinate attention is embedded in the tail of

the backbone and after each VOVGSCSP module to improve the problem of

detection accuracy degradation issue caused by model lightweighting.

Results: The experimental results show the LCGSC-YOLO can achieve an

excellent detection performance with mean average precision of 95.5% and

detection speed of 53 frames per second (FPS) on the mixed datasets of Plant

Pathology 2021 (FGVC8) and AppleLeaf9.

Discussion: The number of parameters and Floating Point Operations

(FLOPs) of the LCGSC-YOLO are much less thanother related comparative

experimental algorithms.
KEYWORDS

apple leaf disease detection, coordinate attention, lightweight network, depth-wise
separable convolution, YOLO
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1 Introduction

As one of the favorite fruits, apples are highly nutritious and

widely cultivated around the world (Hyson, 2011). China has been

the global leader in apple production (Hu et al., 2022). The apple

cultivation industry has performed a vital task in promoting the

agricultural economy of China. However, various diseases during

the growth period of apples make the containment and

management of apple leaf diseases extremely challenging (Dhaka

et al., 2021). The prevention of apple leaf diseases is crucial for apple

growth. Farmers need to minimize the incidence of leaf diseases

through effective measures to ensure quality of apple production

(Roy and Bhaduri, 2021). Therefore, timely detection of apple leaf

diseases is essential for disease prevention and control. It not only

ensures the quality of the fruits but also contributes to the

improvement of agricultural yield.

Traditional apple leaf disease detection methods primarily

depended on eye observation to identify disease categories. But,

the approach has the problem of high labor intensity. The method

of manual visual inspection no longer meets the needs of modern

agriculture for efficiency and precision. Thus, it is essential to

introduce more advanced technologies and methods to achieve

greater efficiency in disease detection (Arsenovic et al., 2019). With

the advent of the machine learning-based technology, it has been

employed in various aspects of agriculture (Tian et al., 2020; Attri

et al., 2023; Elbasi et al., 2023). For example, Rastogi et al. classified

leaves based on artificial neural networks and then graded them

according to the number of diseases on the leaves (Rastogi et al.,

2015). Ahmed et al. used a decision tree approach to detect the three

most common rice diseases, which are black sigatoka, bacterial leaf

blight and brown spot (Ahmed et al., 2019). Harakannanavar et al.

combined K-Nearest Neighbor and image processing techniques for

detecting leaf diseases in tomato plants (Harakannanavar et al.,

2022). However, these machine learning-based methods are usually

made less practical in embedded devices given the large amount of

computations in the data preprocessing and feature extraction

phases (Sujatha et al., 2021).

In recent years, deep learning techniques have made great

progress in leaf disease detection (Ngugi et al., 2021; Khan et al.,

2022; Bhuiyan et al., 2023; Kaur et al., 2022; Li et al., 2022b).

Specifically, Jiang et al. utilized convolutional neural network

(CNN) to obtain features from rice leaf diseases. Then, support

vector machine (SVM) is employed to perform classification and

prediction of specific diseases (Jiang et al., 2020). Zeng et al.

addressed the challenges posed by complex environments and

relatively small disease areas in crop disease images using a

selfattentive convolutional neural network (SACNN) (Zeng and

Li, 2020). With the emergence of target detection models, such as

Faster-RCNN (Ren et al., 2015) and YOLO series (Redmon et al.,

2016; Redmon and Farhadi, 2017), they can accurately detect the

category and location of the target, which attracts more and more

researchers to employ it in agriculture for crop spots on leaves for

accurate classification and localization. However, the majority of

disease detection models have a large number of parameters that are

not well suited for deployment on mobile devices, which makes

them difficult to meet the practical requirements of agricultural
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applications (Maddikunta et al., 2021; Johannes et al., 2017). In

addition, Jiang et al. designed the INAR-SSD module for detecting

apple leaf diseases, and the detection capability of the SSD network

on various leaf diseases was enhanced by designing the inception

module (Jiang et al., 2019). Due to the stacking of a large number of

inception modules, INAR-SSD is not suitable for mobile devices.

Therefore, in the last three years, researchers were largely focused

on reducing the complexity of models to enhance the practicality.

For instance, Bi et al. adopted a lightweight method for apple leaf

disease detection by employing the MobileNet model (Bi et al.,

2022). However, the presence of numerous convolutions and

bottleneck modules still causes a substantial number of

parameters. Barman et al. introduced a smartphone-based model

for classifying citrus leaf diseases (Barman et al., 2020). Although

the model was deployed on mobile devices, its application was

limited to indoor experimental data, restricting its use in the

practical detection of leaf diseases in complex outdoor

environments. Hu et al. employed a lightweight method based on

knowledge distillation to detect maize leaf diseases, which decreased

the complexity of the model. But, it is difficult to guarantee the

applicability of this method in real-world environments, which

contain changes in weather and light (Hu et al., 2023). Xu et al.

devoted to reducing the number of parameters and computation

through effective model design in order to improve the efficiency of

apple leaf disease detection. The study used three different

categories of diseases and conducted experiments in dense

scenarios as well as leaf shade scenarios. These research efforts

provide an important foundation for disease detection. But only

relying on these three disease categories and limited scenario setups

may not be sufficient to deal with more complex real-world

application. Therefore, expanding the disease categories and

adding more complex scenario types can help to improve the

generalization ability of the model so that it can better adapt to

the diverse challenges of practical applications (Xu and

Wang, 2023).

In modern agricultural production, the use of mobile devices to

detect apple leaf diseases has become an important trend. The

application of lightweight models has significantly improved the

efficiency and feasibility of this process. By running these optimized

models on mobile devices, farmers and agricultural experts are able

to quickly and accurately identify diseases on apple leaves and take

timely interventions accordingly. This real-time detection and rapid

response capability is critical for crop health management, helping

to not only increase yields but also improve the overall quality of

produce. In addition, the application of lightweight models

significantly reduces the reliance on expensive hardware

equipment, further lowering the cost of detection. The popularity

of mobile devices, coupled with the efficiency of lightweight models,

has made disease detection more accessible and economical,

providing a convenient solution for agricultural production.

Through these improvements, modern agriculture is better able to

achieve precise management and intelligent operations, increasing

overall production efficiency and product quality.

To sum up, scholars have introduced numerous effective

methods in the field of object detection, leading to significant

advancements in the detection of plant leaf diseases (Jackulin and
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Murugavalli, 2022; Orchi et al., 2021). In order to solve the

problems of the current apple leaf disease detection, such as large

number of parameters and calculations, lengthy inference time, and

difficulty in real-time monitoring, the paper proposes a lightweight

network model LCGSC-YOLO that takes both detection speed and

accuracy into account. The main contributions are as follows:
Fron
• The LCNet is utilized to reconstruct the backbone network,

which mainly consists of lightweight depth-wise separable

convolutions. These convolutions effectively reduce the

number of model parameters and computations.

• The GSConv and VOVGSCSP modules are used to replace

the original Conv and C3 modules in the neck network,

which reduces the number of model parameters and

computations while guaranteeing the fusion capability

among different feature layers.

• The combination of coordinate attention and LCNet

embedded in the tail of backbone makes the network

achieves better feature extraction performance. Moreover,

the coordinate attention is embedded behind each

VOVGSCSP module to enhance the feature fusion

capability of the network, which eventually ameliorates

the problem of accuracy degradation caused by

model lightweighting.
The later sections are organized as follows: the second part

describes and shows the detailed contents of the dataset and

elaborates on the methodology proposed in the paper. The third

part analyzes and discusses the experimental procedures and results

of this paper. The fourth section draws the conclusion of this paper.
2 Materials and methods

2.1 Datasets

The apple leaf disease data utilized in the paper have been

selected from the Phytopathology 2021 (FGVC8) dataset and the

AppleLeaf9 dataset. The images in the datasets are all derived from

outdoor scenes. Seven common diseases have been chosen for the

study. Frog_eye_leaf_spot, Powdery_mildew, Rust, and Scab were

selected from FGVC8. Alternaria leaf spot, Grey spot, and Mosaic

were selected from AppleLeaf9. Moreover, under natural conditions

Frog_eye_leaf_spots are mixed with Rust and Scab to form two

categories of disease occurrence scenarios, respectively. In total,

there are seven disease names and nine disease categories. The

specific number of images in each category is shown in Table 1. The

representative images of different disease categories are shown

in Figure 1.

All collected images were labeled using the LabelImg tool and

saved in an XML file. In addition, the images in the datasets are

enhanced with changes such as rotation, brightness, contrast, and

addition of noise. Finally, there are 18320 images in the datasets, and

the specific number of images in each category is shown in Table 1.

During the datasets labeling process, this study has assumed all the
tiers in Plant Science 03
browning areas on the leaves to be spots caused by pests and diseases.

However, this study recognizes that browning may also be caused by

other reasons such as environmental factors or human intervention,

and this simplifying assumption may limit the comprehensiveness of

the labeling and the generalization ability of the model. In order to

improve the accuracy and rigor of the study, this study plans to

introduce a detailed comparative analysis of types of browning not

caused by pests and diseases in future studies. This will help

understand the multiple causes of browning and make appropriate

adjustments in datasets labeling to ensure that the model can

accurately identify and distinguish among various browning types

and improve overall detection. The links to the datasets used in this

study are provided below: https://drive.google.com/drive/folders/

1MRfK5eOm5-6KZTngPzpzjp9gx1NyEvZY?usp=sharing.

As illustrated in Figure 1, apple leaf disease detection faces

several challenges. Firstly, different categories of leaf diseases have

different shapes and sizes, which makes feature extraction more

difficult. Secondly, most leaf diseases are small and densely

distributed, which increases the difficulty of the localization

process. Finally, under outdoor conditions, natural light and

raindrops may interfere with leaf disease recognition.

A series of different scenes were selected as part of the experimental

datasets for this study. The dark scene simulated the detection of leaf

diseases in a low light or night environment. The rainy scene

symbolized the effects of rain on the leaf surface, such as raindrop

shading and water droplet retention. The lighting scene emphasizes the

situation of leaves under direct sunlight or bright light. The dense scene

contains a large number of diseases, which is closer to the leaf disease

situation in real farms and provides a more rigorous testing

environment for evaluating the performance of the detection

algorithms. The multiple leaves scene and the two-spots scene

further increase the complexity of the scenarios by taking into

account multiple leaves and the interactions between two spots on

the leaves. By conducting experiments in these different scenarios, the
TABLE 1 The number of images of different disease categories in
the dataset.

Categories of
leaf disease

Number

Original
Images

Enhanced
Images

Total

Frog_eye_leaf_spot 367 2569 2936

Powdery_mildew 400 2800 3200

Rust 313 2191 2504

Scab 460 3220 3680

Alternaria_leaf_spot 253 1771 2024

Grey_spot 163 1141 1304

Mosaic 145 1015 1160

Rust+Frog_eye_leaf_spot 107 749 856

Scab+Frog_eye_leaf_spot 82 574 656

Total 2290 16030 18320
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applicability of the proposed leaf disease detection method in practical

applications can be comprehensively evaluated and more reliable

technical support can be provided for agricultural production.
2.2 Design for LCGSC-YOLO

With the aim of achieving a lightweight model on apple leaf

disease detection to make it more convenient to be applied to

embedded devices, the paper proposes a lightweight method and

names it LCGSC-YOLO. Figures 2A, B show the detailed

framework of YOLOv5 and the proposed LCGSC-YOLO in the

paper, respectively.

YOLO is chosen as the main framework in this study mainly

because of its efficiency and real-time performance. YOLO is able to

predict both bounding box and class probabilities of targets in a

single network, which allows it to perform well when dealing with

complex backgrounds and dense targets while maintaining low

computational requirements and fast inference speed. Some other

target detection framework, although advantageous in different
Frontiers in Plant Science 04
aspects, such as SSD performs better in terms of speed but may

not be as good as YOLO when dealing with small targets and

complex backgrounds. Faster R-CNN, although it performs well in

terms of detection accuracy, its two-phase structure results in slower

inference and higher computational requirements, which limits its

application in real-time detection. Taking these factors into

consideration, YOLO is chosen in this study to meet our

requirements for real-time performance and computational

efficiency, while effectively handling complex backgrounds and

high-density targets. The YOLOv5 version is chosen because it

has demonstrated excellent stability and maturity in the field of

target detection, providing a solid foundation for innovation in

this study.

YOLOv5 is made up of four parts: the input layer, the backbone

network, the neck network and the prediction head. As presented in

Figure 2A, it can be seen that the backbone network of YOLOv5

stacks numerous Conv and C3 modules. The Spatial Pyramid

Pooling-Fast (SPPF) module is utilized to capture multi-scale

target information and then connects to the neck network

(Zhang et al., 2023). In the neck network, besides the Conv and
FIGURE 1

The representative images of different disease categories. (A) Scab. (B) Rust. (C) Powdery_mildew. (D) leaf spot. (E) Altermaria leaf spot. (F) Grey spot.
(G) Mosaic. (H) Rust+ Frog_eye_leaf_spot. (I) Scab+ Frog_eye_leaf_spot.
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C3 modules, the Concat module is employed to aggregate the

feature maps of different layers, thus reducing feature map

information loss. The detection head module mainly performs

multi-scale target detection of feature maps (Sun et al., 2022).

Due to the large number of Conv and C3 modules in the

original YOLOv5 framework, it is difficult to embed it for utilizing

in mobile devices (Xu and Wang, 2023). Therefore, an efficient

LCGSC-YOLO for apple leaf disease detection is proposed in the

work. The framework of LCGSC-YOLO is shown as Figure 2B.

Compared to YOLOv5, the main innovations of LCGSC-YOLO are
Frontiers in Plant Science 05
described below: 1) LCNet is used to reconstruct the backbone

network and is categorized into LCNet-3 and LCNet-5 according to

the convolutional kernel size. LCNet greatly reduces the number of

parameters and computations of the model. 2) In the neck network,

we are utilizing the GSConv module and the VOVGSCSP module to

replace the Conv and C3 modules from the YOLO framework. 3)

The coordinate attention(CA) is inserted at the tail of the backbone

and after each VOVGSCSP module, which alleviates the problem of

detection accuracy reduction caused by the lightweighting of

the model.
FIGURE 2

The framework of the two models. (A) The YOLO model. (B) The proposed LCGSC-YOLO model.
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In the next section, the effectiveness of each module will be

analyzed step by step. Firstly, this study demonstrates that the

lightweight design of LCNet effectively reduces the computational

complexity through theory and formulas. Similarly, this study

analyzes that GSConv optimizes the convolution operation by

mixing convolution kernels, which further reduces the computation.

Secondly, the introduction of CA attention mechanism makes the

accuracy of the model improved. Finally, the experimental results show

that the combination of LCNet and GSConv makes a significant

reduction in the number of parameters and the number of Floating

Point Operations (FLOPs) of the model, while the CA attention

mechanism further enhances the performance and accuracy of

the model.
2.2.1 Design of the LCNet module
To be more conveniently applied to embedded devices, the

paper compresses the model parameters as much as possible with

the guarantee of relatively high detection accuracy. The backbone of

LCGSC-YOLO is structured by utilizing LCNet (Cui et al., 2021).

The LCNet is utilized to decrease the number of parameters and

computations in the feature extraction process. As shown in

Figure 3, depending on the size of the convolutional kernel, the

LCNet is divided into two types of modules: LCNet-3 and LCNet-5.

The LCNet-3 has only 3 × 3 depth-wise (DW) convolution module

and point-wise (PW) convolution module to extract features, while

the LCNet-5 utilizes 5 × 5 convolution and introduces a squeeze-

and-excitation (SE) attention module.

The 5 × 5 convolution used in the LCNet-5 module captures a

larger range of features which helps to recognize more complex

patterns in an image, especially when local features are not sufficient

to describe the overall structure. Although a single 5 × 5

convolutional kernel has a large number of parameters, the total

number of parameters may be relatively small compared to the use

of multiple 3 × 3 convolutional kernels in the same target region.

The introduction of the SE module enables the fusion of

information between different channels and improves the

accuracy of model detection.

Within each LCNet-3 and LCNet-5 module, the first layer of the

network performs a down-sampling operation on the feature maps

to reduce the size of the feature maps to one-half of their original

size. In addition, the number of input feature map channels is

expanded to twice the original number. The subsequent layers

extract only the holdout features without modifying the width

and height of the feature map as well as the number of channels.

The working principle of LCNet-3 and LCNet-5 is shown

in Figure 3.

Depth-wise separable convolution is divided into two

components: the first is the depth-wise convolution and the other

is the point-wise convolution (Chollet, 2017). Depth-wise

convolution is a 2D convolution of each channel from the input

image to reduce the number of parameters. Point-wise convolution

uses 1 × 1 convolution for all channels based on depth-wise

convolution, which greatly reduces the amount of computation.
Frontiers in Plant Science 06
The schematic diagrams of depth-wise convolution and point-wise

convolution are shown in Figures 3A, B, respectively.

In the following, computing the number of floating point

operations (FLOPs) helps to illustrate and compare the complexity

of standard convolution and depth-wise separable convolution.

Assume that the convolution kernel size is Ak � Ak,Ai � Ai �
C1 is the size of the input feature map, and the size of the output

feature map is Ai � Ai � C2.

The number of standard convolution calculations is indicated as

Equation 1:

FLOPs(S) = Ai � Ai � C1 � C2 � Ak � Ak (1)

The number of depth-wise convolution calculations can be

written as Equation 2:

FLOPs(D) = Ai � Ai � C1 � Ak � Ak (2)

Equation 3 demonstrates the number of pointwise convolution

calculations:

FLOPs(P) = Ai � Ai � C1 � C2 (3)

The number of depth-wise separable convolution calculations is

displayed by Equation 4:

FLOPs(DP) = Ai � Ai � C1 � Ak � Ak + Ai � Ai � C1 � C2 (4)

The ratio of the number of depth-wise separable convolution to

the number of standard convolution calculations is:

FLOPs (DP)
FLOPs (S)

=
Ai � Ai � C1 � Ak � Ak + Ai � Ai � C1 � C2

Ai � Ai � C1 � C2 � Ak � Ak

=
1
C2

+
1

Ak � Ak
(5)

According to the Equation 5, the depth-wise separable

convolutions can achieve a reduction in computations depending

on the number of output channels and the size of the convolution

kernel. Thus, depth-wise separable convolutions can greatly

decrease the computations when the number of network layers is

continuously increasing.

SE attention improves the performance of neural networks (Hu

et al., 2018). As shown in Figure 3C, the SE attention involves two

primary processes: squeeze and excitation. In the squeeze phase,

global average pooling is first performed on the feature maps of each

channel. It generates a single weight for each channel and the

purpose of this step is to integrate the global information for each

channel. In the excitation step, two fully connected layers are

introduced. The output of these layers is passed through an

activation function that produces a weight. Then, the weight is

applied to the original feature map, which effectively assigns

different importance to each channel.

Therefore, the LCNet-3 and LCNet-5 modules reconstruct the

proposed lightweight backbone network of LCGSC-YOLO for fast

feature extraction. Compared with the original YOLO framework,

LCNet as the backbone network can dramatically decrease the

number of parameters and the computations.
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2.2.2 Design of GSConv and VOVGSCSP modules
For a further reduction of the parameters and computations of

the model, the GSConv module and the VOVGSCSP module are

used to replace the original Conv and C3 modules, which are

embedded in the neck network.

GSConv is a convolution strategy in depth-wise separable

convolution (Li et al., 2022a). It has less parameters and cheaper

computation cost than standard convolution. (convolution + BN +

activation function). The implementation flow of GSConv is shown

in Figure 4A. In the basic module of GSConv, the number of input

channels is C1 and the number of output channels is C2. Firstly, the

input is processed by standard convolution to change the number of

channels to C2=2, which generates a hidden feature map with fewer
Frontiers in Plant Science 07
channels and reduces the number of parameters. Then, the hidden

layer is processed using DW convolution and the number of

channels remains C2=2. Next, the result after the first standard

convolution is connected with the result after DW convolution by

Concat operation. Finally, the shuffle operation is introduced to

achieve fast fusion of information among different channels, which

enhances the extracted semantic information. The shuffle operation

is shown in Figure 4B.

Here, we also provide a brief analysis of FLOPs. Suppose that

the output feature map width and height are denoted as W and H,

respectively. K1 means standard convolutional kernel size and K2

represents DW convolutional kernel size. C1 and C2 indicates the

number of channels for feature map input and output, respectively.
FIGURE 3

The structure of the LCNet module. (A) Depth-wise Convolution. (B) Pointwise Convolution. (C) SE Block.
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Equation 6 represents the number of standard convolution

calculations:

FLOPs(SC) = W �H � K1 � K2 � C1 � C2 (6)

The number of GSConv calculations is demonstrated in

Equation 7:

FLOPs(GS) = W � H � K1 � K2 � (C1 + 1)� C2=2 (7)

Ratio of GSConv to standard convolution calculations:

FLOPs(GS)
FLOPs(SC)

=
W � H � K1 � K2 � (C1 + 1)� C2=2

W � H � K1 � K2 � C1 � C2

=
C1 + 1
2C1

(8)

From Equation 8, it is possible to draw the following

conclusions. As the number of channels continues to increase, the
Frontiers in Plant Science 08
FLOPs of GSConv are nearly half that of standard convolution. Due

to the increase in the number of input image channels in the

LCGSC-YOLO model after backbone feature extraction, the

number of feature map channels is raised from 3 to 512, as

shown in Figure 3. When the number of channels is 512, the

computations amount of GSConv is almost close to half that of the

standard convolution. Therefore, the application of the GSConv

module will reduce the computations significantly over the

standard convolution.

Next, GSConv is utilized to form the GS bottleneck, which shown

as in Figure 4C. It consists of two GSConv layers. The first GSConv

layer halves the number of channels. Further, the output is residually

concatenated with the former GSConv. Finally, the VOVGSCSP

module consists of multiple GS bottlenecks modules. In the

VOVGSCSP module, the Conv module compresses the channel

number to one-half of the original number. Then, the result after

the GS bottlenecks module is concatenated with the result after the
FIGURE 4

The structure of GSConv and VOVGSCSP modules. (A) GSConv. (B) The channel shuffle operation. (C) GS bottleneck. (D) VOVGSCSP. (E)
Modules relationships.
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Conv module. The network diagram of the VOVGSCSP is displayed

in Figure 4D.

As a result, we choose to merge GSConv into the Neck network

with a large number of channels. Specifically, the GSConv module

and the VOVGSCSP module are utilized to substitute the original

Conv and C3 modules, which can significantly reduce the

computations. In addition, Figure 4E shows the relationship of

the connections among the modules.
2.2.3 The introduction of coordinate
attention module

By improving the lightweighting of each module of the YOLO

framework, the number of parameters and computations of the

model can be dramatically decreased and the inference speed of the

model can be improved. However, this inevitably brings about a

degradation in model detection accuracy caused by the

lightweighting of the model.

As a consequence, introducing a coordinate attention (CA)

module (Niu et al., 2021) at key positions of the network is an

effective strategy to increase the accuracy of the model to leaf

disease. With the above operational improvements, the ability of the

network to recognize and localize leaf diseases can be improved

without adding too much computation.

As shown in Figure 5, the CA attention mechanism performs

feature extraction in both directions of the input feature map, which

not only obtains the relationship among the channels, but also takes

into account the positional information about the directions. It

helps the model to better localize and identify the target. The feature

information in both directions can be fused by Concat, and then

non-linear activation is performed using the h_wish function to

obtain intermediate features of the coded information. The

intermediate information feature map is divided in both height

and width directions to get two different dimension vectors. Finally,

nonlinear activation is performed with a sigmoid function to

generate the corresponding attentional weights.

In consequence, the coordinate attention (CA) is embedded in

the tail of the backbone and the end of each VOVGSCSP module,

which enhances the recognition capability of the model for various

apple leaf diseases. CA attention is not only excellent in

performance, but also has lightweight characteristics, which can
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be flexibly adopted in the corresponding network framework. As a

result, it alleviates the accuracy loss from model compression

without incurring substantial computational costs.
3 Experiments analysis and discussion

3.1 Implementations and settings

The experiments are performed in Ubuntu system with an Intel

Xeon(R) Silver 4214R CPU@2.40 GHz x48 processor, 128 GB of

RAM, a graphics card NVIDIA Corporation TU102GL [Quadro

RTX 8000], CUDA 12.2, Pytorch 2.1.0, Python 3.9.18. The

hyperparameters of the experiments are set as follows: the Epochs

of the model are set to 300, the Initial learning rate of the model is

given as 0.01, the model optimizer is selected as SGD, and the Batch

size is fixed to 32. All apple leaf disease data are classified by a ratio

of 7 to 2 to 1 as training set, validation set, and test set.
3.2 Evaluation indicators

Aiming to objectively evaluate the validity of the experimental

results, the paper chooses mean accuracy precision (mAP), precision

(P), recall (R) as the objective evaluation metrics of the experiment

(Hossin and Sulaiman, 2015). The mAP denotes the sum of the mean

accuracies of all categories divided by all categories. The P means the

ratio of the actual number of positive samples in the predicted sample

to the number of all positive samples. The R represents the ratio of the

number of actual positive samples in the predicted sample to all

predicted samples. The assessment metrics were calculated according

to the following Equations 9–12.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =
Z 1

0
P(R)dR (11)
FIGURE 5

The structure of coordinate attention.
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mAP = o
n
i=1APi
n

(12)

TP (True Positive) indicate the number of positive samples that

the model correctly predicts as positive. FP (False Positive)

expresses the number of negative samples that the model

incorrectly predicts as positive. FN (False Negative) signifies the

number of positive samples that the model incorrectly predicts as

negative (Zhu et al., 2023).

Moreover, the number of parameters (Para) and FLOPs are

employed to assess the complexity of the model (Justus et al., 2018).

Assume that the convolution kernel size is Ak � Ak,Ai � Ai � C1 is

the size of the input feature map, and the size of the output feature

map is Ai � Ai � C2. The fewer the number of parameters and

FLOPs, and the lower the complexity of the model, which means it

is more suitable to be applied in resource-constrained

embedded devices.

The number of depth-wise separable convolution parameters is

indicated as Equation 13:

Para(DP) = Ak � Ak � C1 + C1 � C2 (13)

The calculation formula of FLOPs for depth-wise separable

convolution is shown in Equation 4.

Finally, frames per second (FPS) is utilized to evaluate the

inference speed of the model (Kiani Galoogahi et al., 2017), larger

values of FPS indicate that more data is processed within the

same time.
3.3 Ablation experiments

A series of testing experiments validate the effectiveness of the

different lightweighting modules proposed in the paper. In order to

ensure the generalization ability of the model, this study has

adopted the method of dividing the validation set. The datasets

have been divided according to 70% for training, 20% for validation,

and 10% for testing. With this validation strategy, this study

evaluated the performance of the model on unseen data. Test 1

indicates YOLOv5s, which is treated as a baseline model. Test 2

means reconstructing the backbone of the YOLO by LCNet. Test 3

demonstrates the adoption of the GSConv module and the

VOVGSCSP module to replace the Conv and C3 modules in the

YOLO framework, respectively. Test 4 indicates a combination of

improvements from Test 2 and Test 3. The results of the objective

assessment of the model detection performance with different

improvement modules are listed in Table 2.
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The conclusion can be obtained by analyzing the experimental

results of Test 1 and Test 2. In comparison for YOLOv5s, the

number of parameters and FLOPs of YOLO-LCNet are decreased

by 48.22% and 60.63%, respectively, and increases the FPS by 60%.

It demonstrates that utilizing the LCNet module to reconstruct the

backbone network of the YOLO framework can dramatically

decrease the complexity of the model and can quite obviously

increase the inference speed of the model. From Test 1 and Test

3, the modified neck network of YOLO with GSConv_VOVGSCSP

module (YOLO+GS_VOV) reduces the number of parameters and

FLOPs by 0.99M and 1.8G, respectively, while mAP is reduced by

only 0.5%. The consequences confirm that the introduction of the

proposed GSConv_VOVGSCSP (GS_VOV) module into the neck

network not only makes the model more lightweight but also has

little effect on the feature fusion capability among the different

network layers in the neck network. Based on the experimental

results of Test 4, it can be observed that the number of model

parameters and FLOPs in the YOLO framework introduced by

LCNet together with the GS_VOV module are only 37.12% and

35% of those in YOLOv5s, respectively. The model inference speed

attained 60 FPS, which is 1.71 times faster than that of YOLOv5s.

The above discussion and analysis demonstrate the effectiveness of

the proposed method.

It is clear from Table 2 that the lightweighting of the model

inevitably brings about the problem of detection accuracy

degradation. Therefore, it is very necessary to improve the

detection accuracy as much as possible without bringing in

higher computations.
3.4 Discussion of different
attention mechanisms

We take YOLO+LCNet+GS_VOV as the baseline network and

verify the influence in model performance after introducing

different attention modules. Test 4 is YOLO+LCNet+GS_VOV,

which combines the LCNet, GSConv and VOVGSCSP modules.

Test 5 represents the SE module that is added to Test 4, Test 6

indicates the CBAMmodule that is introduced to Test 4, and Test 7

is the proposed LCGSC-YOLO, which integrates the CA module

from Test 4. The objective evaluation results of introducing different

attention modules on the performance of YOLO+LCNet+GS_VOV

are reflected in Table 3, respectively.

Compared to Test 4, the results of Test 5, Test 6, and Test 7

demonstrate that adding the attention mechanism to YOLO
TABLE 2 The results of ablation experiments with different lightweighting improvement methods.

Model P/% R/% mAP/% Para/M FLOPs/G FPS

Test 1 YOLOv5s 93.8 93.4 96.6 7.03 16.0 35

Test 2 YOLO+LCNet 92.9 92.2 95.3 3.64 6.3 56

Test 3 YOLO+GS_VOV 93.6 92.5 96.1 6.04 14.2 39

Test 4 YOLO+LCNet+GS_VOV 92.1 91.6 94.2 2.61 5.6 60
Bold values represents the best performance.
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+LCNet+GS_VOV can enhance the detection performance of the

model. Although all the listed attention mechanisms improve

detection accuracy, they simultaneously increasing the number of

parameters and decreasing the model inference speed. However, the

task at this stage is to maximize accuracy within a limited range of

parameters variation. The key is to reach a balance between

lightweighting and accuracy. Therefore, in this paper, CA is

chosen at this stage because of the desire to increase the detection

accuracy as much as possible. As can be observed in Test 4 and Test

7, the mAP of LCGSC-YOLO is 1.3% higher than that of YOLO

+LCNet+GS_VOV, while the number of parameters and

computations only increase by 0.35 M and 1.1 G, respectively.

Even though there is some computational cost associated with the

approach, it has very little effect on the inference speed of the model.

LCGSC-YOLO inference speed is reduced by only 7 FPS. With the

above results, the CA attention mechanism can effectively alleviate

the problem of detection accuracy degradation caused by the model

lightweighting. Therefore, the addition of CA attention mechanism

to the proposed lightweight model can make the model

performance more excellent.

After introducing the CA attention module in the lightweight

model, the research further conducts ablation experiments by

combining CA with above modules of lightweight to verify the

independence of the CA module and to prove that there is no

dependency among the modules. The results in Table 4 show that

Test 8 represents YOLO+GS_VOV+CA, Test 9 denotes YOLO

+LCNet+CA, and Test 10 indicates YOLOv5s+CA. Compared

with Test 3 in Table 2, Test 8 shows the increase in accuracy and

recall after the introduction of the CA module, proving that the CA

module plays an active role in model performance optimization.

Similarly, the comparison between Test 9 and Test 2 shows that the

introduction of the CA module improves the detection

performance, which mAP improves to 95.9%. Test 10 further

demonstrates the effectiveness of the CA module in the YOLOv5s

model, with mAP reaching 97.1%. The above experimental results
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validate that the CA module is able to produce improvements on

multiple lightweight modules. However, although the detection

performance is improved, this improvement is accompanied by

both increase in the number of parameters and computational

complexity. Therefore, there is a balance between accuracy and

model complexity.

As a conclusion, LCGSC-YOLO has several advantages. Firstly,

the model with small number of parameters do not require a large

amount of storage space. Secondly, the model is low computation

and can be run with limited hardware resources. Finally, the model

training and inference speed is fast and can process the data quickly.

Therefore, LCGSC-YOLO is more suitable to be deployed in

embedded devices for detecting apple leaf diseases.
3.5 The selection of lightweight
backbone networks

In this subsection, aiming to validating the performance of

different backbone networks, the backbone of the YOLO framework

is reconstructed by the current mainstream lightweight modules.

YOLO-MN3 means the backbone of YOLO is constructed by

employing the MobileNetv3 module (Howard et al., 2019), and

YOLO-SN2 illustrates that it is reconstructed by applying the basic

modules of ShuffleNetv2 (Ma et al., 2018), YOLO-GN and YOLO-

EN2 denote that the YOLO backbone is composed of modules

applying GhostNet (Khan et al., 2022) and EfficientNetv2 (Tian

et al., 2020), respectively, and the backbone with the LCNet is

known as YOLO-LCNet. Table 5 lists the results of the test

experiments for different lightweight backbone networks.

As can be noticed from Table 5, all of listed different lightweight

modules can to some degree decrease the number of parameters and

computations of the model, but inevitably causes a loss of accuracy.

Compared with YOLO-MN3, YOLO-SN2, YOLO-GN and YOLO-

EN2, YOLO-LCNet has lower model complexity and quicker
TABLE 3 Results of introducing different improvements in YOLO+LCNet+GS_VOV.

Model P/% R/% mAP/% Para/M FLOPs/G FPS

Test 4 – 92.1 91.6 94.2 2.61 5.6 60

Test 5 +SE 92.8 91.7 94.7 2.81 5.9 58

Test 6 +CBAM 93.2 91.9 95.0 2.84 6.9 50

Test 7 +CA 93.4 92.0 95.5 2.96 6.7 53
Bold values represents the best performance.
TABLE 4 Results of ablation experiments after introduction of CA attention.

Model P/% R/% mAP/% Para/M FLOPs/G FPS

Test 7 – 93.4 92.0 95.5 2.96 6.7 53

Test 8 YOLO+GS_VOV+CA 93.9 92.9 96.5 6.38 15.1 37

Test 9 YOLO+LCNet+CA 93.2 92.8 95.9 4.18 6.9 52

Test 10 YOLOv5s+CA 94.5 93.8 97.1 7.26 16.8 33
Bold values represents the best performance.
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inference speed. Specifically, the mAP of YOLOv5 is only 1.3%

higher compared to YOLO-LCNet, but the number of parameters

and FLOPs of YOLO-LCNet are 48.22% and 60.63% lower than that

of YOLOv5, respectively. In addition, compared to YOLOv5, the

model inference speed of YOLO-LCNet is 60% faster than it. In a

word, Using LCNet to reconstruct the backbone network of YOLO

is a better choice to reduce model complexity and enhance model

inference speed.
3.6 Comparative experiments

In this section, the experimental results of the proposed method

are compared with other methods related to leaf disease detection.

Specifically, INAR-SSD (Jiang et al., 2019) as a detection model for

apple leaf disease detection with the ALDD dataset. BTC-YOLOv5s

(Li et al., 2023) and MGA-YOLO (Wang et al., 2022) are improved

lightweight apple leaf disease detection models based on the FGVC8

datasets. Khan et al. employ YOLOv4 to apple leaf disease detection

(Khan et al., 2022). The experimental results of different models are

presented in Table 6. The reason for selecting the above comparison
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methods is that they have some similarities with the method

proposed in this study in terms of theoretical and technical

characteristics. For example, both INAR-SSD and YOLOv4

belong to the classical methods in the field of target

detection.BTC-YOLOv5s and MGA-YOLO are improved versions

based on a lightweight target detection model, and their design ideas

and technical features have some similarities with the method

proposed in this study. In addition, these comparative methods

use similar datasets when dealing with leaf disease detection tasks,

and all attempt to address common challenges in leaf disease

detection, such as light variations and leaf disease morphological

diversity. Therefore, by comparing with these methods, the

innovations and usefulness of the method proposed in this study

can be better assessed in the context of current research hot spots

and technological trends, as well as its strengths and limitations in

solving the leaf disease detection problem.

As shown in Table 6, the proposed LCGSC-YOLO model has

fewer number of parameters and computations compared with

other experimental models. Moreover, it also shows excellent

performance in terms of detection accuracy and inference speed.

In comparison with INAR-SSD, LCGSC-YOLO achieves a 10.4%
TABLE 5 Comparison of experimental results of different lightweight improved backbone.

Model P/% R/% mAP/% Para/M FLOPs/G FPS

YOLOv5s 93.8 93.4 96.6 7.03 16.0 35

YOLO-MN3 92.2 91.5 95.3 3.91 7.2 48

YOLO-SN2 93.2 91.6 95.5 3.85 6.9 48

YOLO-GN 93.5 93.3 96.2 5.39 8.6 43

YOLO-EN2 93.3 92.7 95.7 3.78 6.5 54

YOLO-LCNet 92.9 92.2 95.3 3.64 6.3 56
Bold values represents the best performance.
TABLE 6 Comparison of experimental results of different lightweighting methods.

Method INAR-SSD BTC-YOLOv5s YOLOv4 MGA-YOLO LCGSC-YOLO

Scab 85.9 91.2 91.7 94.5 96.3

Rust 82.3 89.1 90.2 92.8 94.2

Mosaic 83.5 88.7 89.8 93.1 94.9

Grey_spot 80.4 87.3 88.7 91.8 92.9

Powdery_mildew 92.1 93.4 94.5 96.8 99.2

Frog_eye_leaf_spot 90.4 92.6 93.1 95.9 98.6

Alternaria_leaf_spot 81.2 88.4 89.6 92.1 92.7

P/% 84.7 89.6 90.7 91.8 93.4

R/% 83.5 88.7 89.8 90.9 92.0

mAP/% 85.1 90.1 91.0 93.8 95.5

Para/M 23.62 15.8 60.81 11.26 2.96

FLOPs/G 89.62 53.16 44.8 28.4 6.7

FPS 7 12 14 21 53
Bold values represents the best performance.
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increase in detection accuracy and a 46 FPS improvement in

inference speed. In addition, the proposed method has only

12.53% of the number of parameters and 7.47% of the FLOPs of

INAR-SSD, respectively. Meanwhile, the comparison results with

BTC-YOLOv5s and MGA-YOLO show that the detection

accuracies of BTC-YOLOv5s and MGA-YOLO are 5.4% and 1.7%

less than that of LCGSC-YOLO, respectively. Besides, the model

inference speed of LCGSC-YOLO are 4.41 and 2.52 times faster

than that of them, respectively. However, the parameter amount

and FLOPs of LCGSC-YOLO are only 18.73% and 12.60% of those

of BTC-YOLOv5s, and about a quarter of those of MGA-YOLO. In

comparison of YOLOv4, LCGSC-YOLO has 57.85M and 38.1G

fewer parameters and FLOPs, respectively, while the model

inference speed of LCGSC-YOLO is 39 FPS more than YOLOv4.

The above analysis results illustrate that the proposed method is

superior to the comparative experimental methods in terms of

comprehensive performance.

Figure 6 shows the radar charts of the different model

experimental results. it can be concluded that INAR-SSD has the

largest FLOPs, YOLOv4 has the largest number of parameters, and

the mean average precision, precisions, and recalls of the different

modelling methods are almost overlapping. In addition, The FPS of

LCGSC-YOLO is obviously superior to the other methods, while the

number of parameters and FLOPs are lower than those of the

comparative experimental methods. In terms of the area

surrounded by the test results of different models, LCGSC-YOLO

mainly occupies the left area of the figure, which implies that

LCGSC-YOLO has better detection performance while having

fewer number of parameters and FLOPs.
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As illustrated in Figure 7, a 3D bar chart is drawn based on the

test results of different models, which can visualize the comparison

results of different models. It comes to a conclusion that the test

results of different models do not show much difference in terms of

mean average precision, precision, and recall. However, it can be

observed that from INAR-SSD to LCGSC-YOLO are gradually

increasing and decreasing in terms of the performance of FPS

and FLOPs, respectively. It proclaims that the computational

amount of the LCGSC-YOLO is gradually decreasing, and the

inference speed is continuously increasing. Overall, compared

with other models, LCGSC-YOLO has the lowest number of

parameters and computational amount as well as the fastest

inference speed.

To visualize the detection performance of the LCGSC-YOLO,

Figure 8 shows the detection results of INAR-SSD, BTC-YOLOv5s,

YOLOv4 and MGA-YOLO and LCGSC-YOLO on different disease

images, respectively. To improve readability, the detection

information in Figure 8 substitutes specific letters for disease

names. A represents Scab, B represents Rust, C denotes

Powdery_mildew, D denotes Frog_eye_leaf_spot, E indicates

Alternaria leaf spot, and F indicates Grey spot, G means Mosaic.

As shown in Figure 8, from the overall detection results, the proposed

LCGSC-YOLO outperforms other algorithms in detecting different

kinds of diseases. In particular, LCGSC-YOLO has better detection

performance in detecting small diseases. To be specific, as indicated

by the red circle from the Scab detection result images, it can be seen

that LCGSCYOLO can separately detect adjacent disease regions,

while other algorithms recognize them as a single disease. Moreover,

it is apparent from the result images of Rust diseases that
FIGURE 6

Radar plots showing the results of the five model tests.
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FIGURE 7

3D bar graphs of test results for five different models.
FIGURE 8

Comparison of different models for detecting apple leaf disease images. (A-G) indicates the name of the different diseases. The red circles show the
contrasting positions.
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LCGSCYOLO can detect small disease areas at the edge positions. In

addition, for the three diseases Frog_eye_leaf_spot, Alternaria leaf

spot, and Grey spot, all methods have varying degrees of miss

detection. In these three disease categories, it was difficult for all

methods to identify all diseases due to the simultaneous presence of

diseases in multiple leaves in the same scene. For Powdery_mildew

and Mosaic, the detection results of all methods were almost

the same.

To further illustrate the superiority of LCGSC-YOLO, Figure 9

compares the model detection capabilities of INAR-SSD, BTC-

YOLOv5s, YOLOv4, MGA-YOLO, and LCGSC-YOLO on specific

scenarios. The scenes from top to bottom are dark, rainy, strong

lighting, multiple leaves, two spots and dense scenes. As displayed

in Figure 9, for disease images in dark scenes, the other four

algorithms did not recognize small diseases, while LCGSC-YOLO

was able to recognize them. For images of rainy scenes, LCGSC-

YOLO accurately detected Grey spot that were difficult to recognize

due to rainfall reflection, but the other four algorithms identified the

disease spot as the same as adjacent disease spots. In the detection

results of two spots scenes and multiple leaves scenes, there were

varying degrees of missed detections. Due to the small size and

dispersion of all diseases, it is difficult for all methods to identify all
Frontiers in Plant Science 15
diseases. In lighting scenes, INAR-SSD incorrectly identifies a

disease in the light. In addition, in dense scenes, LCGSC-YOLO

can identify adjacent diseases separately. From the aforementioned

analysis, it can be concluded that LCGSC-YOLO also has

comparably equally excellent detection performance in

special scenarios.

In general, by combining the detection capabilities of different

models in different scenarios in Figures 8, 9, it is obvious that

LCGSC-YOLO shows excellent performance in detecting apple leaf

diseases. The model utilizes fewer parameters and lower

computational effort to achieve efficient leaf disease detection, and

especially excels in model lightweighting. However, despite the

obvious advantages of LCGSC-YOLO in terms of lightweighting,

it is still important to note that its performance may be degraded

when dealing with complex scenarios such as dense diseases,

multiple leaves or two spots. In addition, the model showed

missed detection in terms of detecting tiny diseases, which

requires further optimization of the method. Therefore, in the

future, the study will continue to explore the optimization of the

LCGSC-YOLO model to improve its robustness and adaptability,

and to further optimize its detection accuracy for more

comprehensive and stable apple leaf disease detection.
FIGURE 9

Comparison of the detection effects of different models on apple leaf disease images in special scenes. The different scenarios are represented from
top to bottom.
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4 Conclusions

To address the issues of complex background and high model

complexity of apple leaf disease detection in natural scenes, the

paper improves a lightweight model based on the YOLO framework

and names it LCGSC-YOLO. The LCNet is employed to reconstruct

the backbone network, which significantly decreases the complexity

of the model. The GSConv module and the VOVGSCSP module are

adopted into the neck network, which reduces the model

parameters and computations while enhancing the feature fusion

capability. The CA attention mechanism embedded in the network

effectively alleviates the problem of degradation of detection

accuracy caused by model lightweighting. Through experimental

analysis and comparison, the mAP of LCGSC-YOLO is 95.5% and

the inference speed is 53 FPS, which satisfies the requirements of

practical applications. Therefore, this method can provide technical

support for lightweight deployment of embedded devices in apple

leaf disease detection.

However, this study may have some limitations in terms of data

diversity and changes in environmental conditions. Firstly, the

diversity of plant varieties, growth stages, and pests and diseases

in agricultural scenarios requires a broadly representative and

comprehensive datasets, but the current datasets only cover

several of the most common disease categories, which cannot

comprehensively cover all diseases and scenario types. Secondly,

frequently changing light conditions can affect the accuracy of the

model in predicting diseases. To overcome these limitations, this

study plans to extend data collection, increase data diversity, and

employ data enhancement techniques and light invariant feature

extraction methods to improve the robustness and adaptability of

the model.

This research realizes the efficient detection of apple leaf

diseases. The main influencing factors, such as environmental

conditions and disease categories, were considered during the

study to ensure the generalization ability and applicability of the

model. However, apple health is also affected by a variety of other

factors that need to be further explored in future research. Future

research directions include, but are not limited to, the following:

firstly, the structure and parameters of the model will be further

optimized to improve its applicability and robustness in complex

situations. Secondly, this study will pay special attention to various

changing situations in natural scenarios and continuously expand

the datasets in order to evaluate the performance of the model more

comprehensively. In addition, other advanced techniques and

methods such as transfer learning, and federated learning will be

explored. With these improvements, this study expects to provide

more comprehensive and reliable technical support for apple

disease detection and management.
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A survey of deep convolutional neural networks applied for prediction of plant leaf
diseases. Sensors 21, 4749. doi: 10.3390/s21144749

Elbasi, E., Zaki, C., Topcu, A. E., Abdelbaki, W., Zreikat, A. I., Cina, E., et al. (2023).
Crop prediction model using machine learning algorithms. Appl. Sci. 13, 9288.
doi: 10.3390/app13169288

Harakannanavar, S. S., Rudagi, J. M., Puranikmath, V. I., Siddiqua, A., and
Pramodhini, R. (2022). Plant leaf disease detection using computer vision and
machine learning algorithms. Global Transit. Proc. 3, 305–310. doi: 10.1016/
j.gltp.2022.03.016

Hossin, M., and Sulaiman, M. N. (2015). A review on evaluation metrics for data
classification evaluations. Int. J. Data Min. knowledge Manage. process 5, 01–11.
doi: 10.5121/ijdkp.2015.5201

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., et al. (2019).
“Searching for mobilenetv3,” in Proceedings of the IEEE/CVF international conference
on computer vision, Long Beach Convention & Entertainment Center. (Los Angeles CA,
United States: IEEE), 1314–1324.

Hu, L.-Y., Hong, Y. A., Zhang, J.-Y., Yang-Tian Su, L., Gong, X.-Q., Kun, Z., et al.
(2022). Overexpression of mdmips1 enhances drought tolerance and water-use
efficiency in apple. J. Integr. Agric. 21, 1968–1981. doi: 10.1016/S2095-3119(21)
63822-4

Hu, Y., Liu, G., Chen, Z., Liu, J., and Guo, J. (2023). Lightweight one-stage maize leaf
disease detection model with knowledge distillation. Agriculture 13, 01–22.
doi: 10.3390/agriculture13091664

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition.
(Seoul, South Korea: IEEE), 7132–7141.

Hyson, D. A. (2011). A comprehensive review of apples and apple components and
their relationship to human health. Adv. Nutr. 2, 408–420. doi: 10.3945/an.111.000513

Jackulin, C., and Murugavalli, S. (2022). A comprehensive review on detection of
plant disease using machine learning and deep learning approaches. Measure.: Sensors
24, 01–10. doi: 10.1016/j.measen.2022.100441

Jiang, P., Chen, Y., Liu, B., He, D., and Liang, C. (2019). Real-time detection of apple
leaf diseases using deep learning approach based on improved convolutional neural
networks. IEEE Access 7, 59069–59080. doi: 10.1109/ACCESS.2019.2914929

Jiang, F., Lu, Y., Chen, Y., Cai, D., and Li, G. (2020). Image recognition of four rice
leaf diseases based on deep learning and support vector machine. Comput. Electron.
Agric. 179, 01–09. doi: 10.1016/j.compag.2020.105824

Johannes, A., Picon, A., Alvarez-Gila, A., Echazarra, J., Rodriguez-Vaamonde, S.,
Navajas, A. D., et al. (2017). Automatic plant disease diagnosis using mobile capture
devices, applied on a wheat use case. Comput. Electron. Agric. 138, 200–209.
doi: 10.1016/j.compag.2017.04.013

Justus, D., Brennan, J., Bonner, S., and McGough, A. S. (2018). “Predicting the
computational cost of deep learning models,” in 2018 IEEE international conference on
big data (Big Data). (Seattle, WA, USA: IEEE), 3873–3882.

Kaur, P., Harnal, S., Gautam, V., Singh, M. P., and Singh, S. P. (2022). An approach
for characterization of infected area in tomato leaf disease based on deep learning and
object detection technique. Eng. Appl. Artif. Intell. 115, 01–12. doi: 10.1016/
j.engappai.2022.105210
Frontiers in Plant Science 17
Khan, A. I., Quadri, S., Banday, S., and Shah, J. L. (2022). Deep diagnosis: A real-time
apple leaf disease detection system based on deep learning. Comput. Electron. Agric.
198, 107093. doi: 10.1016/j.compag.2022.107093

Kiani Galoogahi, H., Fagg, A., Huang, C., Ramanan, D., and Lucey, S. (2017). “Need
for speed: A benchmark for higher frame rate object tracking,” in Proceedings of the
IEEE International Conference on Computer Vision. (Seattle, WA, USA: IEEE), 1125–
1134.

Li, S., Li, K., Qiao, Y., and Zhang, L. (2022b). A multi-scale cucumber disease
detection method in natural scenes based on yolov5. Comput. Electron. Agric. 202, 01–
12. doi: 10.1016/j.compag.2022.107363

Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., and Ren, Q. (2022a). Slim-neck by gsconv: A
better design paradigm of detector architectures for autonomous vehicles. arXiv
preprint arXiv:2206.02424 120, 01–17. doi: 10.1007/s11554-024-01436-6

Li, H., Shi, L., Fang, S., and Yin, F. (2023). Real-time detection of apple leaf diseases in
natural scenes based on yolov5. Agriculture 13, 878. doi: 10.3390/agriculture13040878

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the European
conference on computer vision (ECCV). (Anchorage, Alaska, United States: Springer),
116–131.

Maddikunta, P. K. R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T. R., Khan,
W. Z., et al. (2021). Unmanned aerial vehicles in smart agriculture: Applications,
requirements, and challenges. IEEE Sensors J. 21, 17608–17619. doi: 10.1109/
JSEN.2021.3049471

Ngugi, L. C., Abelwahab, M., and Abo-Zahhad, M. (2021). Recent advances in image
processing techniques for automated leaf pest and disease recognition–a review. Inf.
Process. Agric. 8, 27–51. doi: 10.1016/j.inpa.2020.04.004

Niu, Z., Zhong, G., and Yu, H. (2021). A review on the attention mechanism of deep
learning. Neurocomputing 452, 48–62. doi: 10.1016/j.neucom.2021.03.091

Orchi, H., Sadik, M., and Khaldoun, M. (2021). On using artificial intelligence and
the internet of things for crop disease detection: A contemporary survey. Agriculture 12,
9. doi: 10.3390/agriculture12010009

Rastogi, A., Arora, R., and Sharma, S. (2015). “Leaf disease detection and grading
using computer vision technology & fuzzy logic,” in 2015 2nd international conference
on signal processing and integrated networks (SPIN). (Noida, India: IEEE), 500–505.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
Unified, realtime object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition. (Long Beach, USA: IEEE), 779–788.

Redmon, J., and Farhadi, A. (2017). “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern recognition. (Salt
Lake City,USA: IEEE), 7263–7271.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 39, 1137–
1149. doi: 10.1109/TPAMI.2016.2577031

Roy, A. M., and Bhaduri, J. (2021). A deep learning enabled multi-class plant disease
detection model based on computer vision. Ai 2, 413–428. doi: 10.3390/ai2030026

Sujatha, R., Chatterjee, J. M., Jhanjhi, N., and Brohi, S. N. (2021). Performance of
deep learning vs machine learning in plant leaf disease detection. Microprocessors
Microsys. 80, 103615. doi: 10.1016/j.micpro.2020.103615

Sun, T., Xing, H., Cao, S., Zhang, Y., Fan, S., and Liu, P. (2022). A novel detection
method for hot spots of photovoltaic (pv) panels using improved anchors and
prediction heads of yolov5 network. Energy Rep. 8, 1219–1229. doi: 10.1016/
j.egyr.2022.08.130

Tian, H., Wang, T., Liu, Y., Qiao, X., and Li, Y. (2020). Computer vision technology
in agricultural automation—a review. Inf. Process. Agric. 7, 1–19. doi: 10.1016/
j.inpa.2019.09.006

Wang, Y., Wang, Y., and Zhao, J. (2022). Mga-yolo: A lightweight one-stage network
for apple leaf disease detection. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.927424

Xu, W., and Wang, R. (2023). Alad-yolo: An lightweight and accurate detector for
apple leaves. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1204569

Zeng, W., and Li, M. (2020). Crop leaf disease recognition based on self-attention
convolutional neural network. Comput. Electron. Agric. 172, 01–13. doi: 10.1016/
j.compag.2020.105341

Zhang, J., Meng, Y., Yu, X., Bi, H., Chen, Z., Li, H., et al. (2023). Mbab-yolo: A
modified lightweight architecture for real-time small target detection. IEEE Access 11,
01–09. doi: 10.1109/ACCESS.2023.3286031

Zhu, S., Ma, W., Wang, J., Yang, M., Wang, Y., and Wang, C. (2023). Eadd-yolo: An
efficient and accurate disease detector for apple leaf using improved lightweight yolov5.
Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1120724
frontiersin.org

https://doi.org/10.1016/j.ecoinf.2023.102217
https://doi.org/10.1016/j.ecoinf.2023.102217
https://doi.org/10.1016/j.compag.2020.105661
https://doi.org/10.1016/j.compag.2020.105661
https://doi.org/10.1016/j.atech.2023.100214
https://doi.org/10.1007/s11036-020-01640-1
https://doi.org/10.1007/s11036-020-01640-1
https://doi.org/10.48550/arXiv.2109.15099
https://doi.org/10.3390/s21144749
https://doi.org/10.3390/app13169288
https://doi.org/10.1016/j.gltp.2022.03.016
https://doi.org/10.1016/j.gltp.2022.03.016
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.1016/S2095-3119(21)63822-4
https://doi.org/10.1016/S2095-3119(21)63822-4
https://doi.org/10.3390/agriculture13091664
https://doi.org/10.3945/an.111.000513
https://doi.org/10.1016/j.measen.2022.100441
https://doi.org/10.1109/ACCESS.2019.2914929
https://doi.org/10.1016/j.compag.2020.105824
https://doi.org/10.1016/j.compag.2017.04.013
https://doi.org/10.1016/j.engappai.2022.105210
https://doi.org/10.1016/j.engappai.2022.105210
https://doi.org/10.1016/j.compag.2022.107093
https://doi.org/10.1016/j.compag.2022.107363
https://doi.org/10.1007/s11554-024-01436-6
https://doi.org/10.3390/agriculture13040878
https://doi.org/10.1109/JSEN.2021.3049471
https://doi.org/10.1109/JSEN.2021.3049471
https://doi.org/10.1016/j.inpa.2020.04.004
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.3390/agriculture12010009
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3390/ai2030026
https://doi.org/10.1016/j.micpro.2020.103615
https://doi.org/10.1016/j.egyr.2022.08.130
https://doi.org/10.1016/j.egyr.2022.08.130
https://doi.org/10.1016/j.inpa.2019.09.006
https://doi.org/10.1016/j.inpa.2019.09.006
https://doi.org/10.3389/fpls.2022.927424
https://doi.org/10.3389/fpls.2023.1204569
https://doi.org/10.1016/j.compag.2020.105341
https://doi.org/10.1016/j.compag.2020.105341
https://doi.org/10.1109/ACCESS.2023.3286031
https://doi.org/10.3389/fpls.2023.1120724
https://doi.org/10.3389/fpls.2024.1398277
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	LCGSC-YOLO: a lightweight apple leaf diseases detection method based on LCNet and GSConv module under YOLO framework
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.2 Design for LCGSC-YOLO
	2.2.1 Design of the LCNet module
	2.2.2 Design of GSConv and VOVGSCSP modules
	2.2.3 The introduction of coordinate attention module


	3 Experiments analysis and discussion
	3.1 Implementations and settings
	3.2 Evaluation indicators
	3.3 Ablation experiments
	3.4 Discussion of different attention mechanisms
	3.5 The selection of lightweight backbone networks
	3.6 Comparative experiments

	4 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


