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Doležel, Cabrera and Endo. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 22 April 2024

DOI 10.3389/fpls.2024.1396553
Gametocidal genes: from a
discovery to the application in
wheat breeding
Mahmoud Said 1,2*, Eszter Gaál 3, András Farkas 3,
István Molnár 1,3, Jan Bartoš 1, Jaroslav Doležel 1,
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Some species of the genus Aegilops, a wild relative of wheat, carry chromosomes

that after introducing to wheat exhibit preferential transmission to progeny. Their

selective retention is a result of the abortion of gametes lacking them due to

induced chromosomal aberrations. These chromosomes are termed

Gametocidal (Gc) and, based on their effects, they are categorized into three

types: mild, intense or severe, and very strong. Gc elements within the same

homoeologous chromosome groups of Aegilops (II, III, or IV) demonstrate similar

Gc action. This review explores the intriguing dynamics of Gc chromosomes and

encompasses comprehensive insights into their source species, behavioral

aspects, mode of action, interactions, suppressions, and practical applications

of theGc system in wheat breeding. By delving into these areas, this work aims to

contribute to the development of novel plant genetic resources for wheat

breeding. The insights provided herein shed light on the utilization of Gc

chromosomes to produce chromosomal rearrangements in wheat and its wild

relatives, thereby facilitating the generation of chromosome deletions,

translocations, and telosomic lines. The Gc approach has significantly

advanced various aspects of wheat genetics, including the introgression of

novel genes and alleles, molecular markers and gene mapping, and the

exploration of homoeologous relationships within Triticeae species. The

mystery lies in why gametes possessing Gc genes maintain their normality

while those lacking Gc genes suffer abnormalities, highlighting an unresolved

research gap necessitating deeper investigation.
KEYWORDS
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1 Introduction

When introduced to common wheat (Triticum aestivum L., 2n =

6x = 42, AABBDD) some chromosomes of Aegilops species exhibit a

surprisingly elevated rate of transmission to succeeding generations,

leading to segregation distortion. These chromosomes are widely

recognized as “Gametocidal (Gc)” and have been used in breeding

programs aiming at widening genetic diversity of common wheat

(Endo, 2015). The evolution of common wheat genome over

thousands of years of domestication and breeding resulted in a

narrow gene pool, including the loss of genes related to resistance

and tolerance to biotic and abiotic stress, and quality traits. To

address this challenge, breeders seek to introduce new genes and

alleles by broadening the genetic diversity through interspecific or

intergeneric hybridization with wild relatives. Crop wild relatives,

particularly in the tribe Triticeae, offer a promising source of novel

genes and alleles (Hajjar and Hodgkin, 2007). Despite their potential,

the utilization of wild genetic diversity in wheat breeding faces

hurdles like hybridization barriers, abnormalities, and sterility of F1
hybrids (Kishii, 2019). Reduced pairing during meiosis poses an

additional challenge, especially when transferring genes from tertiary

gene pool species (Qi et al., 2007).

Further challenges include linkage drag and insufficient

compensation for substituted wheat chromatin. Hence, the

integration of alien chromosome segments into the wheat genome

necessitates induced chromosome rearrangements, achievable

through methods such as meiotic manipulation (Copete-Parada

et al., 2021; Türkösi et al., 2022; Liu et al., 2023), ionizing irradiation

(Schubert et al., 2004; Guo et al., 2021; Kim et al., 2022), tissue

culture (Lapitan et al., 1984; Li et al., 2000; Zhang et al., 2016),

CRISPR (Clustered Regularly Interspaced Short Palindromic

Repeats) (Kosicki et al., 2018; Schmidt et al., 2020) or the Gc

system (Endo, 1985; Farkas et al., 2023; Türkösi et al., 2024). An

approach that utilizes the Gc system enables the identification of

alien chromosomal regions containing target genes and facilitates

the analysis of their homoeologous relationships to overcome non-

collinearity between donor and wheat chromosomes. This process is

crucial for well-compensating translocations beneficial for wheat

improvement (Qi et al., 2007; Han et al., 2014; Farkas et al., 2023;

Türkösi et al., 2024). Numerous studies have successfully

implemented the Gc action for this purpose to produce wheat

aneuploid lines including deletions, translocations, and telosomic

lines. This strategy made it possible to construct cytological

chromosome maps, study homoeologous relationships, and

localize chromosome breakpoints, genes, and DNA markers,

where the lack of markers or genes in wheat aneuploids correlates

with the absence of the chromatin segment (Endo and Gill, 1996;

Nasuda et al., 2005; Sakata et al., 2010; Ishihara et al., 2014; Kwiatek

et al., 2016, 2017; Farkas et al., 2023; Türkösi et al., 2024).

In the context of wheat breeding, Gc genes have been extensively

studied, in terms of the transmission mode of the alien chromosomes,

particularly concerning chromosome aberrations and segregation

distortion in interspecific hybridizations with Aegilops species
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(Endo, 1982; Tsujimoto and Tsunewaki, 1984, 1985a; Endo, 2015).

Segregation distortion occurs commonly in wide hybridization,

wherein the allele(s) of a heterozygous locus segregate at

frequencies divergent from the anticipated Mendelian ratios of 0.5

(Sandler and Novitski, 1957; Sandler et al., 1959; Endo, 2015; King

et al., 2018). This deviation results from the preferential retention of

chromosomal blocks carrying genes beneficial for reproductive

viability (Niranjana, 2017). Whenever the transmission rate of a

chromosome or a locus deviates from the expected Mendelian ratio,

the resulting phenomenon is collectively referred to as “drive”. This

term encompasses both transmission advantages and segregation

distortion, reflecting deviations from the Mendelian principle of

equal segregation (Houben, 2017). Segregation distortion observed

in inter- and intra-specific hybrids mostly arises from, either pre-

fertilization barriers like abortion of female or male gametes, such as

pollen tubes competition in the style, or post-fertilization obstacles

like abortion of zygote/embryo (Lyttle, 1993; Manabe et al., 1999). In

this aspect, Gc factors distinguish themselves from other segregation

distorters (Sds) in that their impact is evident in bothmale and female

gametophytes, and they do not confer any reproductive advantage.

Nevertheless, the presence of Sds at specific loci can pose

challenges in introgression breeding if they are closely linked to

agronomically important genes. Likewise, gene transfer from

Aegilops species carrying Gc factor(s) can lead to partial plant

sterility. Therefore, during introgression breeding, the Gc genes

need to be removed from the progenies to avoid segregation

distortion of agronomically desirable genes linked to them and to

avoid a decrease in fertility (Marais and Pretorius, 1996).

Surprisingly, a pollen-killer (Ki) locus exhibiting dominant action

was discovered on the long arm of wheat chromosome 6B with

similar Gc action, but its effect is limited to only male gametophytes

(Loegering and Sears, 1963; Kota and Dvorak, 1988). Another

instance of genes with Gc-like action was reported in Thinopyrum

ponticum (Podp.) Barkworth & D.R. Dewey [Syn. Agropyron

elongatum (Host) P. Beauv., Lophopyrum ponticum (Popd.) A.

Löve, Elytrigia pontica (Popd.) Holub] in which the chromosome

carrying Sd: Sd1 and/or Sd2 gene(s) (Kota and Dvorak, 1988;

Niranjana, 2017) exhibited preferential transmission through the

female gametes but not through the male gametes (Kibirige-

Sebunya and Knott, 1983). In homozygotes for the Sd genes, the

seed set remains normal. However, a notable decrease in seed set

occurs in heterozygotes, indicating the impact of the Sd genes on

reproductive outcomes in these plants. The Sd1 locus was mapped

proximal to a leaf rust resistance gene Lr19 (Zhang and Dvorá̌k,

1990). While Gc, Ki, and Sd genes contribute to segregation

distortion, the behavior of Gc elements is unique. Plants carrying

Gc genes in the hemi- (Gc/-) or heterozygous (Gc/gc) form are semi-

sterile, whereas homozygous (Gc/Gc) plants are fully fertile

(Tsujimoto, 2005).

In this review, we present the narrative of the Gc elements,

specifying species carrying them; provide an overview of their

discovery, interactions, mechanisms, and suppressors; and discuss

their principal applications in wheat breeding.
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2 Discovery

During wheat breeding programs, scientists observed that

certain chromosomes introduced from Aegilops species displayed

an unexpectedly high transmission frequency to the next generation

(Endo, 1990, 2015; Endo and Gill, 1996; Friebe et al., 1999). These

chromosomes carry unique genes ensuring their persistence

through selective abortion of gametes lacking them (Figure 1).

The term “Gc” is derived from “Gamete” (egg or sperm) and

“Cidal” (capable of killing), signifying gamete-killer (Endo, 1990,

2015). Gc genes, responsible for this action, distort Mendelian

segregation in their favor without apparent phenotypic benefits,

making them evolutionarily selfish genetic elements (Kwiatek et al.,

2017). Originally coined by Maan (1975), the Gc term describes the

preferential transmission of an alien chromosome into common

wheat, leading to its rapid increase in frequency and eventual

fixation in the population (Tsujimoto, 2005).

In the process of interspecific hybridization, the stable maintenance

of alien chromosomes transferred into wheat depends on their ability

to substitute homoeologous chromosomes of the host plant. Notably,

they are eliminated from the offspring if they do not compensate for the

loss of wheat chromosomes (Taketa et al., 1995; Molnár‐Láng et al.,

2005; Szakács and Molnár-Láng, 2010). Conversely, chromosomes

carrying Gc genes selfishly persist in host plants. Hence, upon the

emergence of a Gc element through mutation or introgression, it

undergoes swift proliferation within the population due to preferential

transmission. These Gc factors quickly reach fixation and embed

themselves in the genome, as they eliminate gametes devoid of them.

In this context, Gc genes exhibit a pronounced selfish and parasitic

nature toward the host species. Nevertheless, it remains uncertain

whether Gc genes retain functionality within their original species. The

concept of selfish genes inducing gamete abortion due to allelic

interactions is not unique to wheat. Similar phenomena have been
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reported in various plant species, including tomato (Rick, 1966),

tobacco (Cameron and Moav, 1957; Moav et al., 1968), and rice

(Sano, 1990). Analogous DNA elements have been identified in the

animal kingdom, such as the P element of the Sd system in Drosophila

melanogaster (Lyttle, 1993) and t haplotypes in mice (Silver, 1985,

1993). Supernumerary B chromosomes are another group of selfish

DNA elements, lacking apparent selective advantages, and have been

reported across eukaryotic phyla (Jones, 1995; Jones andHouben, 2003;

Jones et al., 2008; Aldrich et al., 2017; Houben, 2017; Ma et al., 2017;

Blavet et al., 2021; Karafiátová et al., 2021).
3 Sources and behavioral aspects

Several species of the genus Aegilops carry Gc genes (Table 1),

which were discovered in the offspring of wheat × Aegilops crosses.

However, dissimilar behavior of Gc elements from various Aegilops

species and different homoeologous chromosome groups of the species

were observed (Endo, 1988a; Endo, 1988b; Endo, 2015). Thus, Gc

effects may vary from (a) Mild, permitting slight anomalies in retained

wheat chromosomes, through (b) Intense or Severe, where

gametophytes lacking the alien chromosome may undergo severe

chromosome abnormalities and become abortive, to (c) Very Strong,

resulting in extensive chromosomal breakages when only gametes with

the Gc factors are functional, leading to full transmission of the Gc

carrier chromosome to the next generation. For instance, chromosome

2Ccy from Ae. cylindrica Host (jointed goatgrass) in wheat cv. Chinese

Spring (CS) has a mild Gc effect ranging from lethal to semi-lethal. On

the other hand, chromosome 3Ct of Ae. triuncialis L. (barb goatgrass)

has an intense or severe Gc action in wheat CS, but mild or semi-lethal

in other cultivars (Endo, 1988b; Tsujimoto, 2005; Niranjana et al.,

2017). Moreover, it is considered that the Gc action of Ae. longissima

Schw. et Musch., Ae. sharonensis Eig (Sharon goatgrass), and Ae.

speltoides Tausch [syn. T. speltoides (Tausch) Gren.] is very strong,

inducing extreme chromosomalmutations in gametophytes lacking the

Gc chromosome, ensuring completely transmission of the Gc carrier

chromosome (Miller et al., 1982; King et al., 1991a, 1991b; Nasuda

et al., 1998; Friebe et al., 2003).

Thus, the mode of action of Gc elements from Ae. longissima, Ae.

sharonensis, and Ae. speltoides differs from that of Gc genes of Ae.

triuncialis and Ae. cylindrica and results in dissimilarities in terms of

intensity and frequency of chromosome anomalies. Nevertheless, the

detailed nuances of the Gc chromosome’s influence from Ae. caudata

L. [syn. Ae. markgrafii (Greuter) Hammer], Ae. ovata L. [syn. Ae.

geniculata Roth., T. ovatum (L.) Raspail], Ae. geniculata Roth (ovate

goatgrass; syn. Ae. ovata L. pro parte), and Ae. biuncialis Vis. [syn. Ae.

lorentii Hochst., Ae. macrochaeta Schuttl. et Huet, T. lorentii (Hochst),

T. macrochaetum (Schuttl. et Huet) K. Richt, T. biunciale K. Richt]

remain largely unexplored, particularly in terms of the intensity of

the action.
4 Interactions

Some reports on the interaction between different Gc elements

have been published, but the results are controversial. By observing
FIGURE 1

A schematic illustration depicting the Gc action on gametogenesis
in wheat (2n + 2 = 42 + 1 Gc´ + 1 alien = 44 chromosomes). Both
male and female gametes lacking the Gc genes experience failure or
exhibit chromosome abnormalities. Green, brown, and orange
arrows indicate alien, Gc, and wheat-alien translocated
chromosomes, respectively. Gc´, stands for the Gc chromosome in
a monosomic state.
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double monosomic addition lines derived from three different Gc

chromosome sources, Endo (1982) found that the Gc genes of Ae.

triuncialis do not interfere with the Gc effects of Ae. longissima or

Ae. sharonensis. In addition, he found that the Gc elements of Ae.

longissima dominated the action of those from Ae. sharonensis,

since only the Ae. longissima chromosome was necessary for

gametes to function in double monosomic addition lines. Endo

(1985) further reported that Gc factors located on chromosome 4Sl

of Ae. longissima or 4Ssh of Ae. sharonensis are epistatic to those on

chromosome 2Sl and 2Ssh, irrespective of the species.

Tsujimoto (1995) investigated the functional relationship

between six Gc elements using plants carrying two different Gc

factors and identified three functional groups. The First Group

includes Gc elements located on chromosomes belonging to the

Aegilops homoeologous group 2. For instance, Gc transferred from

Ae. speltoides to chromosome 2B of common wheat showed similar

function to those on chromosome 2Ssh of Ae. sharonensis. The

Second Group includes Gc genes on chromosomes 4Ssh of Ae.

sharonensis and 4Sl of Ae. longissima. These genes were epistatic to

the Gc genes in the first group in terms of gamete abortion and

preferential transmission (Endo, 1985). Although by themselves,

the Gc elements in the first group cause chromosome breakage at

low frequency (Tsujimoto and Tsunewaki, 1985b; Tsujimoto and

Noda, 1989), these genes enhance breakage by the Gc genes of the

second group. Conversely, the Gc genes in the second group may

enhance breakage by those in the first group. The Third Group

includes the Gc genes on chromosome 3Ct of Ae. triuncialis and is

independent in terms of the action of the Gc factors in the first or

second group. It is important to note that the activity of the second

and third Gc element groups are partially suppressed by the Gc

inhibitor genes located on chromosomes 4B and 3B, respectively, in

certain common wheat strains (Tsujimoto and Tsunewaki, 1984,

1985a; Endo, 1988b, 1988a; King and Laurie, 1993).

Based on the interactions between the different Gc genes,

Tsujimoto (1995) proposed the re-designation of the gene

symbols following the rules for gene symbolization in wheat.

Namely, Gc1, Gc2, and Gc3 for the Gc genes in the first, second,

and third groups, respectively, followed by the genome symbol
Frontiers in Plant Science 04
carrying the gene. The relationships between these Gc factors and

those on chromosome 2Ccy of Ae. cylindrica, chromosome 4Mg of

Ae. geniculata and chromosome 6Ss of Ae. speltoides have not yet

been examined.
5 Mechanisms

The molecular mechanism by which Gc genes cause chromosome

breakage and induce gamete abortion is not fully understood. Themost

frequent deletions are produced by a break of one arm of the

chromosome followed by a loss of the acentric fragment distal to the

breakpoint. This results in defective chromosomes (Werner et al., 1992)

that may be stabilized by the action of telomerase. The effect of Gc in

the male germline manifests itself as a mixture of normal and

nonreproductive pollen, while that in the female germline appears as

sporadic seed sets on spikes. Homozygotes for the Gc genes, that is,

wheat disomic alien chromosome addition lines, do not show such

gametic abortion because all gametes carry an alien chromosome with

Gc elements (Endo and Tsunewaki, 1975; Endo, 1982, 2015; Endo and

Gill, 1996).

The mode of Gc action differs from other Sd systems in two key

aspects: (a) its selfish nature, which destroys gametes lacking Gc

genes, and (b) its impact on bothmale and female gametogenesis. For

instance, in plants monosomic for chromosome 4Ssh from Ae.

sharonensis, approximately 50% of meiocytes at the first post-

meiotic mitosis contained chromosome fragments and these

fragments comprised a pair of equal-length segments of two sister

chromatids (Finch et al., 1984). In monosomic conditions, the

transmission frequency of chromosome 4Ssh through both the male

and female gametes was shown to be at least 97.8% in various genetic

backgrounds (King et al., 1991b). The ability of 4Ssh to cause

chromosome fragmentation is reported not only in meiospores but

also in developing embryos and endosperms. The types of aberration

were similar to those seen at first pollen grain mitosis in plants

monosomic for chromosome 4Ssh. Therefore, it was assumed that a

single mechanism might be responsible for aberrations in meiocytes,

embryos, and endosperm (King et al., 1991b).
TABLE 1 Gc chromosomes in species of Aegilops.

Species Ploidy level Genomic formula Gc chromosome References

Ae. caudata 2x CcCc 3Cc* Endo and Tsunewaki (1975)

Ae. longissima 2x SlSl 2Sl, 4Sl Maan (1975); Endo (1982)

Ae. sharonensis 2x SshSsh 2Ssh, 4Ssh Tsujimoto and Tsunewaki (1984, 1988)

Ae. speltoides 2x SsSs 2Ss, 6Ss Tsujimoto and Tsunewaki (1984, 1988)

Ae. cylindrica 4x CcyCcyDcyDcy 2Ccy Endo (1979)

Ae. triuncialis 4x CtCtUtUt 3Ct Endo and Tsunewaki (1975)

Ae. ovata 4x UgUgMgMg 4Mg Kwiatek et al. (2016)

Ae. biuncialis 4x UbUbMbMb 4Mb Farkas et al. (2023)

Ae. geniculata 4x UgUgMgMg 4Mg Tsujimoto and Tsunewaki (1984, 1988); Kynast et al. (2000)
*Letters in superscript format refer to the genome source species, that is, Cc, C genome of Ae. caudata; Sl, S genome of Ae. longissima; Ssh, S genome of Ae. sharonensis; Ss, S genome of Ae.
speltoides; Ccy, C genome of Ae. cylindrica; Ct, C genome of Ae. triuncialis; Mg, M genome of Ae. ovata as well as M genome of Ae. geniculata; Mb, M genome of Ae. biuncialis.
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The mode of Gc action is “sporophytic” in nature, as the genetic

composition of the sporophyte dictates the sterility of the

gametophyte that lacks the Gc genes (Maan, 1975; Niranjana

et al., 2017). In the case of Gc factors with very strong

gametocidal action in wheat CS and other wheat cultivars, such as

chromosomes 4Ssh from Ae. sharonensis, 4Sl from Ae. longissima

and 2Ss, 6Ss from Ae. speltoides, chromosome fragments in the form

of single chromatid segments were observed during early embryo

and endosperm development of plants carrying the Gc chromosome

(King and Laurie, 1993; de Las Heras et al., 2001). Broken

chromosome ends tend to fuse and form dicentric chromosomes

and the break-fusion-bridge cycle is evident (McClintock, 1941;

Werner et al., 1992). However, weaker Gc genes like the one located

on Ae. cylindrica chromosome 2Ccy (Endo, 1988b), only induces

moderate breakages, and the Gc chromosome is not always

selectively retained. In the offspring of such plants, the recovery

of chromosomal rearrangements is possible and allows for the

production of deletion stocks in wheat. Endo (1988b) proposed

that in cases of intense Gc action, gametophytes lacking the alien

chromosome may experience significant chromosome breakages,

leading to sterility and ensuring the exclusive transmission of the

alien chromosome. On the contrary, when the Gc action is mild,

gametophytes without the alien chromosome are fertilized, suffering

slight chromosome damage, and develop into plants with

chromosomal aberrations (Endo, 1988b; Tsujimoto, 2005;

Niranjana et al., 2017). In case of chromosome 2Ccy, it has been

suggested that the breaks occur mainly in the period between the

end of meiosis and the interphase prior to the first mitosis of the

pollen grain nucleus (Nasuda et al., 1998). The observation of

deletions of similar size in sister chromatids at anaphase and

telophase of the first pollen mitosis suggests that the breaks occur

before DNA replication (Nasuda et al., 1998).
5.1 Induction-prevention phenomena

Two phenomena seem to be involved in the mechanism

responsible for preferential transmission of the Gc chromosomes

(Endo, 1990; Tsujimoto, 2005; Niranjana, 2017). The first of them is

the induction of chromosome breakage, and the second one is the

prevention of chromosome breakage. A breaking element is

responsible for double-strand breaks in DNA resulting in deletions

and translocations. It is conceivable that, when the breaking element

alone is present, it induces too many double-strand breaks to be

repaired by DNA repair mechanisms. When both breaking and

preventive elements are present, the chromosome aberrations do not

occur in gametes, because the Gc action is neutralized. The inhibitor

may suppress the formation of double-strand breaks by efficient repair

mechanisms (Niranjana, 2017). For instance, Friebe et al. (2003)

documented the creation of a knockout wheat strain containing the

Gc locus within chromosome 4Ssh ofAe. sharonensis. This strain lost its

chromosome-breaking function while preserved the inhibitor element.

Molecular marker mapping localized the Gc elements on a region

proximal to a block of sub-telomeric heterochromatin on chromosome

arm 4SshL (Knight et al., 2015; Niranjana, 2017).
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5.2 Restriction-modification system

Tsujimoto and Tsunewaki (1985b) noted that the phenomena

associated with Gc action in wheat are similar to hybrid dysgenesis

observed in fruit flyDrosophila. Hybrid dysgenesis includes sterility,

lethality, mutation, chromosome breakage, male recombination, or

segregation distortion, and appears only in the F1 progeny of a cross

between P or I strain of males and the M or R strain of females

(Crow, 1983; Kidwell, 1983; Tsujimoto, 2005). Later, Tsujimoto and

Noda (1989, 1990) and Tsujimoto (2005) mentioned the similarity

between the nature of Gc action and the restriction-modification

systems found in many bacteria. In bacteria, a restriction

endonuclease in the host cuts alien DNA at/or around a

particular base sequence. On the contrary, host DNA is protected

from digestion through methylation. This restriction-modification

system might explain chromosome breakage caused by Gc genes in

gametogenesis and zygotic cells in wheat. Tsujimoto (2005)

proposed a model of Gc action in which the Gc genes produce

both a restriction enzyme (RE) and a modification enzyme (ME)

like DNA methylase. RE cleaves the specific restriction sites that it

recognizes. However, if the sites are protected by DNAmethylation,

RE cannot cleave. This would be the case in homozygotes for the Gc

genes, where no chromosome breakage appears. If the ME function

is incomplete and cannot protect all restriction sites, which is likely

soon after DNA replication, chromosome breakage may appear

with some frequency. After the meiosis of heterozygotes and

hemizygotes for a Gc element, haploid cells without the Gc genes

are generated. Prior to the first mitotic division in the

gametogenesis, DNA is replicated. In cells lacking ME, restriction

sites on one of the strands of the replicated DNA are not modified.

If RE remains in the cell longer than ME, or if RE is supplied from

other cells, for example, the pollen mother cells (PMCs), the

unmodified restriction sites are broken by RE. In the following

mitoses, unmodified DNA is broken in the same manner. Thus, the

gametes without the Gc factor become nonreproductive. In this

model, the hemi-modified or hemi-methylated DNA must be

deduced to cut by RE because chromosome breakage is observed

in the first pollen mitosis. This model can explain chromosome

breakage in zygotic cells, as outlined in Tsujimoto (2005). This

means that, when pollen carrying the Gc genes fertilizes an egg cell

without the Gc genes, unmodified DNA in the egg is exposed to RE

from pollen; thus, chromosomes are broken as a result. However,

ME soon modifies the DNA derived from the egg and protects

against RE. Thus, chromosome breakage ceases soon after

fertilization. A diagram illustrating the proposed mechanism of

how Gc likely works is presented in Figure 2.

In brief, these chromosomes harbor Gc genes, and the current

understanding suggests that Gc genes likely engage DNA

methylation and may mimic restriction-modification systems to

selectively induce chromosome breaks in gametes without Gc genes.

This highlights a role for DNA methylation, with the Gc

chromosome carrying the modification machinery that protects

its own DNA and triggers breaks in non-methylated gametes, which

lack Gc genes. The mechanism likely involves the recognition of the

non-carrier chromosomes, followed by the activation of DNA
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repair pathways that result in double-strand breaks (Tsujimoto

et al., 1997; Tsujimoto, 2005). The recognition of non-carrier

chromosomes probably involves specific-sequences or structural

feature interactions that distinguish the Gc chromosomes from

others. Upon recognition, the process occurs through the action

of specific genetic elements present on the Gc chromosome. When

non-carrier gametes encounter Gc chromosomes during meiosis,

the Gc genes on the chromosome can trigger DNA breaks in the

non-carrier chromosomes during gametogenesis (Endo, 2007).
6 Suppressors

Based on the current knowledge, Gc action is triggered by

chromosomes from particular Aegilops species. However, Kihara

(1959) produced wheat alloplasmic lines with Ae. caudata

cytoplasm without any Gc chromosomes as discussed in

Tsunewaki (2015), while Friebe et al. (1992) reported the whole

set of wheat-Ae. caudata disomic addition lines. Also, Feldman

(1979) generated a series of seven wheat addition lines for all Ae.

longissima chromosomes. These facts may indicate that these

strains of the Aegilops species did not carry Gc genes. However, it

is known that certain cultivars of common wheat possess genes that

partially suppress the function of the Gc factors. If such cultivars
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with the suppressor were used as the nucleus donors of the

alloplasmic lines and the recipients of the alien chromosomes, the

Gc genes would not have been noticed. Moreover, if the alien species

has the suppressor, Gc effect will be removed in the early backcross

generations (Tsujimoto, 2005). It was reported that chromosome 3B

partially inhibits the Gc action of 3Ct from Ae. triuncialis

(Tsujimoto and Tsunewaki, 1984, 1985a), while 4B incompletely

suppresses Gc effects of 4Ssh from Ae. sharonensis or 4Sl from Ae.

longissima (Endo, 1988b, 1988a; King and Laurie, 1993).

For instance, plants with monosomic addition of chromosome

3Ct from Ae. triuncialis in the genetic background of common

wheat cultivars Jones Fife (JF) and CS showed both male and female

semi-sterility. However, semi-sterility did not appear in the

common wheat cultivar Norin 26 (N26). Chromosome 3Ct is

preferentially transmitted to the next generation from both male

and female sides in JF, but only from the female side in CS (Endo

and Katayama, 1978; Endo, 2007; Chen et al., 2008; Yamano et al.,

2010). In the JF genetic background, both male and female gametes

without chromosome 3Ct were unsuccessful whereas, in the CS

background, pollen without the Gc chromosome was functional.

This result suggested the existence of an incomplete suppressor in

the wheat CS background.

The recovery of fertility in the 3Ct monosomic addition in N26

suggested that chromosome 3Ct is transmitted as other alien
A B

FIGURE 2

A diagram demonstrates how the restriction-modification system explains chromosome breakage occurring during both gametogenesis (A) and in
zygotic cells (B) of wheat, adapted from Tsujimoto (2005) with modifications. RE represents the gene for the restriction enzyme (acting like a
scissor), while ME represents the gene for the modification enzyme (acting like a stapler). The RE acts by cleaving specific recognition sites on DNA.
However, when these sites are shielded by DNA methylation facilitated by the ME, the RE is unable to cleave. This scenario typically occurs in
individuals homozygous for the Gc gene, where chromosome breakage does not occur. The incomplete function of ME can result in the inability to
protect all restriction sites, leading to chromosome breakage. Following the meiosis of hemizygotes for the Gc gene, haploid cells lacking the Gc
gene are produced. Before the initial mitotic division during gametogenesis, DNA undergoes replication. As these cells lack ME, one strand of the
replicated DNA remains unmodified at restriction sites. If the RE persists in the cell longer than ME, or if RE is introduced by other cells, it can cleave
the unmodified restriction sites. In the following mitosis, unmodified DNA is cleaved similarly. Consequently, gametes lacking the Gc gene become
non-viable. In this model, hemi-modified or hemi-methylated DNA is hypothesized to be susceptible to cleavage by RE, as evidenced by
chromosome breakage observed during the first pollen mitosis.
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monosomes without Gc (Endo and Katayama, 1978; Yamano et al.,

2010). Tsujimoto and Tsunewaki (1984, 1985a) analyzed the genetic

factor in N26 that suppresses the Gc function of 3Ct. The data

indicated that a single dominant suppressor gene (Igc1) controls the

suppression of Gc action of the 3Ct. Through monosomic analysis,

Igc1 was mapped to chromosome 3B of the N26 variety. Moreover,

pollen grains carrying Igc1 had a slight advantage during

fertilization over pollen grains carrying igc1. The fact that both

the Gc genes and the suppressor were located on the chromosomes

of the same homoeologous group and that Igc1 is located in the B

genome, which originated from an outcrossing species, suggest that

Igc1 also has part of the Gc properties. On the other hand,

Tsujimoto (2005) reported that Igc1 cannot suppress the Gc genes

that exhibit very strong actions, such as those from Ae. sharonensis,

Ae. longissima or Ae. speltoides and that no Gc suppressors for these

Gc genes were discovered among hundreds of common wheat

cultivars tested.

Endo (1988a) reported chromosome breakage in the F1 progeny

of a cross between CS monosomic 4B and disomic alien addition

lines for chromosome 4Ssh from Ae. sharonensis or 4Sl from Ae.

longissima. Since mutations occurred more frequently when the

monosomic plant was female than when euploid CS was female,

chromosome 4B in the egg cell may partially suppress chromosome

breakage (Endo, 1988a). However, King and Laurie (1993) observed

chromosome anomaly in early zygotic and endosperm cells of the F1
progeny of monosomic 4B (female) crossed with the substitution

line of the chromosome 4Ssh for 4B. Similarly, Nasuda et al. (1998)

observed chromosome breakage in a line possessing the Gc

chromosome from Ae. speltoides. These findings suggest that 4B

might not be an effective suppressor in such instances. The

chromosomal abnormalities appeared to be specifically associated

with gametes lacking the Gc factor.

Friebe et al. (2003) further substantiated these findings through

direct demonstration via fluorescence in-situ hybridization (FISH).

They utilized a probe targeting a repetitive DNA sequence specific

to the Gc chromosome, revealing that chromosome breakage during

pollen mitosis occurred exclusively in gametes without the Gc

factors. Moreover, Friebe et al. (2003) produced a mutation of the

Ae. sharonensis Gc element (Gcmut), which does not induce

gametophytic chromosomal breakage in hemizygous (Gcmut/-) or

heterozygous (Gcmut/Gc) conditions, where the plants had fully

fertile spikes. The result clearly indicated that Gc encoded two

agents behaving like the abovementioned RE and ME systems for

chromosome breakage and DNA protection, respectively. Because

Gcmut lost the function of the RE, Gcmut/- plants did not show semi-

sterility or chromosome breakage; in addition, because of the ME-

like function of Gcmut, Gcmut/Gc plants were fertile and showed no

induction of chromosome breakage. The function of Gcmut is similar

to that of the Igc1 suppressor.
7 Application in wheat breeding

Given the ability of the Gc system to trigger chromosome

aberrations, numerous scientists took advantage of this approach

to produce wheat pre-breeding materials. Endo and Gill (1996)
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identified 436 wheat chromosome deletions in the progeny of a

monosomic Ae. cylindrica 2Ccy addition line of wheat CS. Thus,

about 80% of the deletions were established as homozygous stocks.

Svačina et al. (2020) developed a set of 113 deletion lines for

chromosome 3D in wheat CS by using the 2Ccy Gc system. The

deletion stocks have been extensively utilized for physical mapping

of DNA markers (Gill et al., 1996; Qi et al., 2003) and genes

(Nomura et al., 2003) to specific sub-arm chromosome regions of

wheat chromosomes. For instance, wheat chromosomal mutants

induced by the Gc effect enabled positional cloning of Pairing

homoeologous 2 (Ph2) from a 121.16Mb candidate region on 3DS

(Serra et al., 2021). Based on the analysis of a set of specifically

created 3DS deletion mutants using Gc genes action (Svačina et al.,

2020), combined with exome sequencing and transcriptome

analysis of ph2a and ph2b mutants versus wild-type, Serra et al.

(2021) identified TaMSH7-3D, a gene encoding a plant specific

DNA mismatch repair protein.

The Gc system was applied to induce chromosomal changes not

only in euploid common wheat but also in wheat-alien

chromosome addition lines (Figures 3, 4). Besides chromosome

deletions, the Gc-induced chromosome breaks lead to

translocations, including intergenomic translocations as well.

Structural rearrangements of cultivated barley (Hordeum vulgare

L.) chromosomes were obtained in common wheat by theGc system

(Shi and Endo, 1999). The rearranged alien chromosomes,

including deletions and wheat-alien translocations, were used for

the physical mapping of molecular markers on chromosome 7H

(Serizawa et al., 2001; Masoudi-Nejad et al., 2005), 5H (Ashida et al.,

2007), 3H (Sakai et al., 2009), and 4H (Sakata et al., 2010). Friebe

et al. (2000) used the Gc system of chromosome 2Ccy to induce and

study the nature of chromosomal rearrangements in rye

chromosomes added to wheat. Following backcrossing and

selfing, 33 deletions were identified, in either homozygous or

heterozygous states and covering all rye chromosomes except 7R.

The Gc system was also used to produce chromosome

rearrangements between Ae. ovata and hexaploid triticale by

expression of the Gc action located on chromosome 4Mg from

Ae. ovata (Kwiatek et al., 2016). Similarly, using the Gc mechanism

located on chromosome 4Mg from Ae. geniculata Kwiatek et al.

(2017) produced 41 triticale lines and seventeen of them carried

chromosome aberrations.

Similarly, Farkas et al. (2023) employed the Gc mechanism

located on chromosome 4Mb of Ae. biuncialis to create various

wheat cv. Mv9kr1 lines, including Mv9kr1-Ae. biuncialis disomic

4Ub addition, 4Mb(4D), and 5Mb(5D) substitutions, as well as

several introgression lines, leading to the establishment of species-

specific molecular markers and positively influencing the

morphology of spikes and seeds. These newly developed

cytogenetic stocks could prove valuable as a genetic resource for

introducing wild alleles of crucial genes that govern significant

agronomic traits into wheat through chromosome engineering.

Using Gc action of chromosome 2Ccy from Ae. cylindrica,

structural changes were obtained for wild barley (H. chilense

Roem. et Schult, 2n = 2x=14, HchHch) chromosomes 1Hch

(Cherif-Mouaki et al., 2011), 3Hch (Said et al., 2012), 4Hch (Said

and Cabrera, 2009), 2Hch, and 7Hch in wheat (Mattera et al., 2015;
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Palomino and Cabrera, 2019). Initially, chromosomes 2Hch and

7Hch, along with 2Ccy, were simultaneously acquired within

the wheat genetic background (Figure 3A). Subsequently,

chromosomes 2Hch and 7Hch were separated into different plants,

each still accompanied by 2Ccy (Figure 3B However, the emergence
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of chromosome breakages and translocations is anticipated in

subsequent generations, as depicted in the schematic illustration

of the Gc process (Figure 1). Indeed, the wheat chromosome

translocations with 7Hch by Mattera et al. (2015) (Figure 3C) and

with 2Hch were obtained by Palomino and Cabrera (2019)
FIGURE 4

Breakage by Gc action in chromosomes from wild barley (H. chilense) as alien disomic additions in wheat; adapted from Said and Cabrera (2009)
and Said et al. (2012) with modifications. The idiograms (left) in (A-C) show the breakpoints (arrows). Double FISH with the pAs1 (red) and GISH
(green) probes on mitotic metaphase of chromosome 3Hch and its deletions in the genetic background of wheat (A, B). FISH with pAs1 (red) probe
on mitotic metaphase of chromosome 4Hch and its deletion in the genetic background of wheat (C) (Said et al., unpublished). The chromosomes
were counterstained with DAPI (blue). Chromosome deletion (del), fraction length (FL), short and long arms (S and L, respectively).
A B

C D

FIGURE 3

Application of Gc action via chromosome 2Ccy from Ae. cylindrica to induce chromosomal breakage in H. chilense in the background of common
wheat. GISH on metaphase spreads showing Ae. cylindrica (red arrows) chromosome 2Ccy (A, B) and H. chilense (green arrows) chromosomes 2Hch

and 7Hch (A) and 7Hch (B) in CS genetic background. No chromosomal aberrations showed in the cells carrying monosomic 2Ccy (A, B). However,
after selfing or backcrossing, mutations are expected in the following generations in the zygotes lacking the 2Ccy chromosome. Homozygous
centromeric translocation (green arrows) 7HchS·5AL (C), adapted from Mattera et al. (2015) with modifications, and Robertsonian translocation (green
arrows) 2HchS·2DL (D), adapted from Palomino and Cabrera (2019) with modifications. FISH red signals are from probes GAA-satellite sequence (C)
and repetitive sequence pAs1 (D). Chromosomes were counterstained with DAPI (blue color).
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(Figure 3D). Moreover, illustrations by genomic in-situ

hybridization (GISH) and FISH are provided for chromosome

deletions, breakpoints, and Fraction length (FL) resulting from

the Gc action of 2Ccy on chromosomes 3Hch (Figures 4A, B) and

4Hch (Figure 4C).

The Gc system proved to be effective in inducing structural

rearrangements in alien chromosomes added to common wheat

from Haynaldia villosa (L.) (Chen et al., 2008), Leymus racemosus

(Lam.) Tzvelev (Chen et al., 2005) and Agropyron cristatum (L.)

Gaertn (2n = 4x = 28, PPPP) (Liu et al., 2010; Luan et al., 2010;

Copete-Parada et al., 2021). The production of germplasms with

chromosomal rearrangements allowed the location of genes and/or

markers on specific sub-arm chromosome of wheat and wild

relatives (Said and Cabrera, 2009; Cherif-Mouaki et al., 2011; Said

et al., 2012; Ochoa et al., 2015; Said et al., 2019b; Farkas et al., 2023).

In this case, the absence of markers can be directly associated with

the chromosomal fragment that has been lost (Figures 3–5). These

lines also provide information on the homoeology and structure of

the chromosomes and can be useful for the identification of

functionally important chromosomal regions, particularly for the

location of genes that determine interesting traits in agriculture, as

well as to transfer new alleles from alien species to wheat.
8 Discussion

This paper reviews the principles and use of the Gc system to

induce chromosomal rearrangements in wheat with alien

chromosomes originating from its wild relatives. This is crucial

because maintaining and enriching genetic diversity of elite

germplasm by crossbreeding is an indispensable prerequisite for

adapting one of the world’s key food security crops to the demands

of farmers and consumers and adapting it to the changing climate.

Genetic diversity of the secondary and tertiary gene pool, including

wheat ancestors and wild relatives, serves as a precious resource for

this purpose.

This review is an update of the previous reviews treatises on the

Gc system (Endo, 1990, 2007) and synthesizes the main

characteristics of the topic that have changed over time to give

rise to current understandings about the mode of action,

interactions, suppressions, and practical applications of Gc genes

in wheat breeding. Furthermore, it fills a gap in a recent review by

Boehm and Cai (2024), which lacks a reference to the Gc system, by

reviewing the current knowledge on alien introgressions in wheat

breeding. The work also outlines essential strategies for leveraging

alien introgression to diversify the wheat genome, providing

indispensable guidance for researchers and breeders in their

pursuit of crop improvement.

Several approaches can be employed to induce chromosomal

aberrations. They differ in terms of mechanisms, affected cell

populations, heritability, safety concerns, and applications.

Moreover, each method has its own set of advantages

and disadvantages.

Ionizing irradiation and chemical agents causing chromosomal

breaks (clastogenes) affect a broad range of cells by directly

damaging DNA in both somatic and germ cells, causing various
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forms of DNA damage, including single- and double-strand breaks,

and nucleotide base modifications (Schubert et al., 2004; Durante

and Formenti, 2018; Kim et al., 2020, 2022; Guo et al., 2021).

Ionizing irradiation and clastogens induce chromosomal

rearrangements, encompassing duplications, and inversions,

among others, causing more infertility. Chromosomal aberrations

can be heritable if arising in germ cells but not if occurring in

somatic cells (Durante and Formenti, 2018; Kim et al., 2020, 2022;

Guo et al., 2021). Furthermore, the irradiation method generally

poses greater safety concerns due to its non-specificity and potential

for widespread genetic damage. It is crucial to mention that the

outcomes of irradiation and chemicals are unpredictable,

constituting a completely random process (Schubert et al., 2004;

Durante and Formenti, 2018; Kim et al., 2022).

In contrast, Gc chromosomes, being naturally occurring, act

selectively during gametogenesis, precisely targeting germ cells to

induce double-strand DNA breaks, but not affecting the somatic

cells of the plant (Endo, 2015; King et al., 2018). The resulting

chromosomal aberrations, such as deletions and translocations, are

always heritable as they arise in reproductive cells and are passed to

offspring (Nasuda et al., 2005; Sakata et al., 2010; Ishihara et al.,

2014; Farkas et al., 2023; Türkösi et al., 2024). Thus, using Gc

chromosomes is encouraged due to its perceived safety and efficacy

in producing inherited chromosomal rearrangements (Tsujimoto,

2005; Sakata et al., 2010; Ishihara et al., 2014). The number of

chromosome breaks induced by the Gc system per pollen can vary

depending on various factors such as Gc chromosome category, the

specific wheat genotype, environmental conditions, the presence of

suppressors and other genetic modifiers (Endo and Katayama, 1978;

Endo, 1988b, 2007; Tsujimoto, 2005; Chen et al., 2008; Yamano

et al., 2010; Niranjana et al., 2017).

Contrasting with the approaches discussed above, recently

developed CRISPR/Cas technology is renowned for its precision

in genome editing and can induce chromosome aberrations at

particular loci and induce double-strand breaks in somatic and

germ cells (Kosicki et al., 2018). The breaks can lead to various

chromosomal rearrangements such as deletions, inversions,

duplications, or translocations depending on repair mechanisms

and cellular context (Symington, 2016; Kosicki et al., 2018; Schmidt

et al., 2020). Researchers have devised methods to use CRISPR to

induce chromosomal rearrangements for studying chromosomal

structure, genetic engineering, and disease modeling (Zuo et al.,

2017; Kosicki et al., 2018; Schmidt et al., 2020). CRISPR’s ability to

manipulate genetic material at the chromosomal level offers

powerful tools beyond traditional genome editing applications

(Symington, 2016; Zuo et al., 2017; Haapaniemi et al., 2018;

Kosicki et al., 2018). However, despite CRISPR technology’s

significant advancements in animal and medical research, its use

for inducing chromosomal rearrangements in plants remains

limited (Schmidt et al., 2020).

The Gc system is a highly valuable and versatile approach with a

wide range of uses for wheat gene mapping and breeding. It is an

efficient tool to produce cytogenetic stocks, such as deletions,

translocations, and telocentrics of either wheat or alien

chromosomes introgressed into wheat. This plant material could

be used for gene tracking, DNA markers physical mapping,
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comparative genome analysis and to study homologous

relationships. It has been indispensable in widening genetic

diversity of cereals and improving the crop by insertion of alien

chromatin segments with traits of interest into the wheat genome.

The method provides remarkably novel breeding material carrying

new genes or alleles delivered from wild relatives. Producing

breeding material using the Gc strategy is a long-term investment,

but it is essential for developing new varieties that can meet the

needs of a growing population in a changing climate.

In plant breeding, accurately assessing the effects of Gc

chromosomes is essential for understanding their impact on

chromosomal rearrangements, genome stability, fertility, and

overall breeding objectives. The most popular cytogenetic FISH-

based techniques rely on hybridization of labeled probes to

particular DNA sequences and allow identification of

chromosome breaks (Molnár et al., 2016; King et al., 2017; Said

et al., 2021). The probes are typically designed to target specific

chromosome regions or whole alien chromosomes as in case of

GISH probes. However, the resolution of FISH techniques may not

be high enough to detect subtle chromosome rearrangements

meticulously. This may lead to underestimation of the actual

number of breaks induced by Gc chromosomes (Badaeva et al.,

1996, 2004; Molnár et al., 2009, 2011, 2016). In case of GISH, which

specifically targets alien chromosomes, it is essential to recognize its

limitations in precisely quantifying induced chromosome breaks or

rearrangements. If the rearrangements induced by a Gc

chromosome involve wheat chromosomes rather than the alien

chromosomes, they will not be captured (Said and Cabrera, 2009;

Mattera et al., 2015; Ochoa et al., 2015; Palomino and Cabrera,

2019; Said et al., 2019a; Said et al., 2019b).

Given these limitations, it is crucial to consider the potential

underestimation of chromosome breaks or rearrangements in the

plant breeding process, especially if Gc chromosomes or similar

elements are involved. Alternative techniques with higher
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resolution and sensitivity, such as molecular markers targeting

specific chromosome regions, or whole-genome sequencing

(Cherif-Mouaki et al., 2011; Said et al., 2019b, 2021), may be

needed to complement FISH to provide a more comprehensive

understanding of chromosomal alterations induced by Gc

chromosome. Clearly, incorporating multiple analytical

approaches to detect and character ize chromosomal

rearrangements ensures a more robust evaluation of breeding

materials and facilitates the development of improved cultivars

with desired traits.

The fundamental question of how gametes with Gc genes stay

normal while those without Gc do not remains unanswered,

representing a current research gap that requires further

investigation. Nevertheless, the abovementioned behavior aligns

with the Gc chromosomes’ self-preservation strategy, wherein

they eliminate gametes lacking them to ensure their own survival.

This performance mirrors their actions in their original species,

where they function as normal chromosomes without causing

gametic damage.

Although the accurate molecular mechanism is still under

investigation and the exact course may vary, research in this area

continues to uncover the complexities of Gc behavior in plants.

However, further efforts are required to fully clarify the intricate

details of this process.
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(2017). Rye B chromosomes encode a functional Argonaute-like protein with in vitro
slicer activities similar to its A chromosome paralog. New Phytol. 213, 916–928.
doi: 10.1111/nph.14110

Maan, S. S. (1975). Exclusive preferential transmission of an alien chromosome in
common wheat. Crop Sci. 15, cropsci1975.0011183X001500030002x. doi: 10.2135/
cropsci1975.0011183X001500030002x

Manabe, M., Ino, T., Kasaya, M., Takumi, S., Mori, N., Ohtsuka, I., et al. (1999).
Segregation distortion through female gametophytes in interspecific hybrids of
tetraploid wheat as revealed by RAPD analysis. Hereditas 131, 47–53. doi: 10.1111/
j.1601-5223.1999.00047.x

Marais, G. F., and Pretorius, Z. A. (1996). Gametocidal effects and resistance to wheat
leaf rust and stem rust in derivatives of a Triticum turgidum ssp. durum/Aegilops
speltoides hybrid. Euphytica 88, 117–124. doi: 10.1007/BF00032442

Masoudi-Nejad, A., Nasuda, S., Bihoreau, M.-T., Waugh, R., and Endo, T. R. (2005).
An alternative to radiation hybrid mapping for large-scale genome analysis in barley.
Mol. Genet. Genomics 274, 589–594. doi: 10.1007/s00438-005-0052-1
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Uncovering homeologous relationships between tetraploid Agropyron cristatum and
bread wheat genomes using COS markers. Theor. Appl. Genet. 132, 2881–2898.
doi: 10.1007/s00122-019-03394-1

Said, M., Recio, R., and Cabrera, A. (2012). Development and characterisation of
structural changes in chromosome 3Hch from Hordeum chilense in common wheat
and their use in physical mapping. Euphytica 188, 429–440. doi: 10.1007/s10681-012-
0712-2

Sakai, K., Nasuda, S., Sato, K., and Endo, T. R. (2009). Dissection of barley
chromosome 3H in common wheat and a comparison of 3H physical and genetic
maps. Genes Genet. Syst. 84, 25–34. doi: 10.1266/ggs.84.25

Sakata, M., Nasuda, S., and Endo, T. R. (2010). Dissection of barley chromosome 4H
in common wheat by the gametocidal system and cytological mapping of chromosome
4H with EST markers. Genes Genet. Syst. 85, 19–29. doi: 10.1266/ggs.85.19

Sandler, L., Hiraizumi, Y., and Sandler, I. (1959). Meiotic drive in natural populations
of Drosophila melanogaster. I. the cytogenetic basis of segregation-distortion. Genetics
44, 233–250. doi: 10.1093/genetics/44.2.233
Frontiers in Plant Science 13
Sandler, L., and Novitski, E. (1957). Meiotic drive as an evolutionary force. Am. Nat.
91, 105–110. doi: 10.1086/281969

Sano, Y. (1990). The genic nature of gamete eliminator in rice. Genetics 125, 183–191.
doi: 10.1093/genetics/125.1.183

Schmidt, C., Schindele, P., and Puchta, H. (2020). From gene editing to genome
engineering: restructuring plant chromosomes via CRISPR/Cas. aBIOTECH 1, 21–31.
doi: 10.1007/s42994-019-00002-0

Schubert, I., Pecinka, A., Meister, A., Schubert, V., Klatte, M., and Jovtchev, G.
(2004). DNA damage processing and aberration formation in plants. Cytogenetic
Genome Res. 104, 104–108. doi: 10.1159/000077473

Serizawa, N., Nasuda, S., Shi, F., Endo, T. R., Prodanovic, S., Schubert, I., et al. (2001).
Deletion-based physical mapping of barley chromosome 7H. Theor. Appl. Genet. 103,
827–834. doi: 10.1007/s001220100703
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