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Editorial on the Research Topic

Artificial intelligence-of-things (AIoT) in precision agriculture
Precision agriculture is becoming critically important for sustainable food production to

meet the growing food demand. In recent decades, technical advances in AI (artificial

intelligence) and IoT (internet-of-things) can help solve various agricultural field problems

and optimize resource utilization (e.g. water, pesticide, fertilizer, seed, energy), improve

production management and productivity, and reduce labor dependency. AI and IoT-

enabled applications are increasingly implemented for precision agriculture applications such

as crop growth monitoring, weed removal control, pest and disease detection, planting, crop

yield estimation, targeted spraying and pollination, smart irrigation and nutrient management,

field analysis, and plant phenotyping. For example, IoT-based applications using machine

learning and deep learning models are widely used to recognize fruits, vegetables, weeds, pests,

and diseases, and measure soil quality and nutrients. Such information helps inform better crop

management practices. Despite the progress of AI and IoT technologies in precision agriculture,

the combined use of these technologies in the form of AIoT are still in early stages with

numerous challenges in the form of data acquisition and connectivity, and optimization of AI

algorithms based on edge computing processing capabilities that still need to be addressed.

This Research Topic focuses on the recent advancement in the area of AI and IoT

applications on precision agricultural technologies for both field and specialty crops. This

Research Topic attracted nine research articles and three review articles. These articles

reveal the research advancements and trends of applied machine learning and deep

learning techniques for various precision agriculture applications.

Robotic harvesting plays an important role in addressing the labor shortage problems for

manual labor-intensive and time-sensitive harvesting operations. For example, Sun et al.

propose the YOLO-P to detect the pears for robotic harvesting in natural orchard

environment. They propose the shuffle block integrated with convolutional block attention

module (CBAM) as the backbone of YOLOv5 network. A total of 5,257 images consisting of

various backgrounds and illumination conditions were used to train and test the proposed

approach. Different ablation experiments were performed to check the robustness and
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generalization and obtained the 0.961 F1-score with 32 FPS (frames per

second). To facilitate autonomous driving of robot and roadside fruit

harvesting, Zhou et al. proposed the framework for synchronous road

extraction and roadside fruit recognition. Gray factor optimization

approach was adopted to extract the unstructured roads from images

while YOLOv7 was employed to detect the wine grapes. The proposed

synchronous approach helped to increase fruit detection by 23.84%.

In another study, Tang et al. estimated the tree-level almond yield

using aerially captured multispectral images and convolutional neural

networks. They used approximately 2000 almond trees for the yield

monitoring. Multispectral aerial images were collected at a height of

6,000 ft with 0.3 m spatial resolution. Then, convolutional neural

network (CNN) with spatial attention module was proposed to

estimate the yield estimation at tree-level. Their proposed approach

achieved the R2 and RMSE (root mean square value) of 0.96 and 6.6%,

respectively. Similarly, Ren et al. introduce the mobile robotic platform

for indoor farming to monitor strawberry yield. They first developed

the autonomous mobile robot platform (AMR) that uses the AprilTag

and inertial navigation to autonomously navigate the structural

environment of indoor farms. Then, they used the multilayer

perception robot (MPR), mounted on ARM, to collect the temporal-

spatial data of the strawberry plants within the strawberry indoor farm.

Their MPR achieved the positioning accuracy of 13.0 mm while

navigating the plant factory with 6.26% error rate in yield

monitoring performance.

Precision pest management is another area in precision agriculture

which involves accurate pest detection and identification for the precise

pesticide applications. For example, Peng et al. employed an ensemble

learning technique to fuse the selective kernel unit, representative batch

normalization module, and ACON activation with the Dense-Net-121

networks, naming it MADN, to detect and identify the crop pests.

Their proposed approach helped to achieve F1-score of 0.7528 in

identifying the pests.

To optimize coconut breeding, Liu et al. introduced a non-

destructive approach to segment the internal organs of coconuts

using Computed Tomography (CT) scanning and semantic

segmentation. They scanned the coconut during different stages

using the CT scan and constructed the CIDCO dataset. Then

DeepLabv3+ based semantic segmentation was employed by

introducing dense atrous spatial pyramid pooling and CBAM

modules. Their improved model helped to achieve F1-score of

0.905 to segment the internal organs of coconuts. Similarly, non-

destructive and automatic detection of defective kiwifruit is

critically important to maintain the postharvest quality of

kiwifruits and for consumer acceptability. To address this issue,

Wang et al. focused on detecting the defective kiwifruits for grading

lines by employing YOLOv5. They constructed a multiple-defect

kiwifruit dataset consisting of healthy, leaf-rubbing, damaged,

healed cuts or scarred, and sun-burn kiwifruits. Then, spatial-

depth and depth-wise separable convolutional modules were

combined with YOLOv5 to improve the detection performance of

the defective kiwifruits. Their approach helped to achieve an

average detection accuracy of 97.7% with 8.0 ms detection time.

It has been always a challenge for dataset availability and its

manual labeling to train AI based algorithms to solve the specific

precision agriculture application. To address this problem, Wang
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et al. introduce a deep reinforcement learning based augmentation

framework for the leaf rust images. Their proposed approach

consists of Deep Q-Learning (DQN) for selecting optimal

augmentation approach based on individual image, extracting

geometric and pixel indicators, and DeepLabv3+ to authenticate

augmented image and feedback the rewards. Experimental results

showed that the proposed approach helped to achieve Intersection-

over-Union (IoU) of 0.8426 in correctly classifying leaf rust spots

compared to the union of expected and predicted rust spots.

Measurement of plant phenotypic traits is critical in selecting the

high-yield crop varieties and timely identifying the need in actions for

optimal plant growth. To measure the soybean plant phenotyping

traits, He et al. proposed a generalized regression neural network based

approach. First, SfM (structure from motion) algorithm was used to

reconstruct the soybean plants. Then, different filtering (lowpass filter

and gaussian filter) and Laplacian smoothing methods were used to

segment different parts of soybeans (e.g. plants, stem, and leaves).

Ultimately, a generalized regression neural network was employed to

measure the phenotypic traits of the soybeans. Results indicated that

their proposed approach helped to achieve R2 of 0.9775, 0.9785, and

0.9487 for measuring the plant height, lead length, and leaf width,

respectively compared to ground truth measurements.

In addition to the above-mentioned studies, there are further

areas in which AI-assisted technologies could be used for precision

agriculture applications. For example, Nawaz et al. reviewed the

latest trends in applying data processing and deep learning

algorithms for remote sensing data. Furthermore, Estrada et al.

explored and reviewed machine learning applications for remote

forestry health assessment. Similarly, Johnson & Cheein presented a

comprehensive review on the use of mechatronics, AI and IoT

applications for potato harvesting.

With the papers published in this Research Topic ranging from

different precision agriculture applications and covering latest

advancements in the AI application to solve various agricultural

challenges, we hope readers will gain insights into the state-of-the-art

developments in rapidly growing precision and digital agriculture

domain and will provide further opportunities for scientists and

industries to take on the collective challenges faced by this sector.

The papers published in this Research Topic proved the critical role of

AI and IoT applications to address global food security issues and meet

the sustainable agriculture goals in the context of declining and aging

agricultural labor. However, more studies will be needed with

continuous innovations, and collective efforts from scientists and

industries working in the precision and digital agriculture domain.
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