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Introduction: Asian citrus psyllid (ACP, Diaphorina citri) is an important

transmission vector of “Candidatus Liberibacter asiaticus” (CLas), the causal

agent of Huanglongbing (HLB), the most destructive citrus disease in the

world. As there are currently no HLB-resistant rootstocks or varieties, the

control of ACP is an important way to prevent HLB. Some viruses of insect

vectors can be used as genetically engineeredmaterials to control insect vectors.

Methods: To gain knowledge on viruses in ACP in China, the prevalence of five RNA

and DNA viruses was successfully determined by optimizing reverse transcription

polymerase chain reaction (RT-PCR) in individual adult ACPs. The five ACP-

associated viruses were identified as follows: diaphorina citri bunyavirus 2, which

was newly identified by high-throughput sequencing in our lab, diaphorina citri

reovirus (DcRV), diaphorina citri picorna-like virus (DcPLV), diaphorina citri

bunyavirus (DcBV), and diaphorina citri densovirus-like virus (DcDV).

Results: DcPLV was the most prevalent and widespread ACP-associated virus,

followed by DcBV, and it was detected in more than 50% of all samples tested.

DcPLV was also demonstrated to propagate vertically and found more in salivary

glands among different tissues. Approximately 60% of all adult insect samples

were co-infected with more than one insect pathogen, including the five ACP-

associated viruses and CLas.

Discussion: This is the first time these viruses, including the newly identified ACP-

associated virus, have been detected in individual adult ACPs from natural

populations in China’s five major citrus-producing provinces. These results provide

valuable information about the prevalence of ACP-associated viruses in China, some

of which have the potential to be used as biocontrol agents. In addition, analysis of

the change in prevalence of pathogens in a single insect vector is the basis for

understanding the interactions between CLas, ACP, and insect viruses.
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Asian citrus psyllid, Candidatus Liberibacter asiaticus, insect viruses, Huanglongbing,
co-infection
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1357163/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1357163/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1357163/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1357163/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1357163&domain=pdf&date_stamp=2024-02-06
mailto:Liujinxiang@cric.cn
https://doi.org/10.3389/fpls.2024.1357163
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1357163
https://www.frontiersin.org/journals/plant-science


Liu et al. 10.3389/fpls.2024.1357163
1 Introduction

Citrus is the most widely cultivated fruit tree in southern China

and is an important economic fruit (Zhou, 2018). Moreover, China

leads the world’s production with its yield amounting to 44.6 million

metric tons and accounting for 28% of the global output in summer

2021 and winter 2021/22 citrus seasons according to the World Citrus

Organization (WCO, https://worldcitrusorganisation.org/). However,

Huanglongbing (HLB) is a threat to citrus production and causes

premature fruit drop, resulting in a 30-100% yield reduction and

producing the most severe economic losses to the citrus industry

(Zhou, 2020; Chinyukwi et al., 2023). Candidatus Liberibacter asiaticus

(CLas) is the bacterial pathogen causing HLB. Citrus trees affected by

CLas have reduced water absorption and accumulation of nutrients,

which may cause plant death (Atta et al., 2020). While Asian citrus

psyllid (ACP) is an insect vector that transmits CLas, it is also an

important factor in the prevalence of HLB (Vyas et al., 2015; Snyder

et al., 2022). At present, effective methods for the prevention and

control of HLB have not been found (Ghosh et al., 2022). The

prevention and control of its vector, ACP, is one of the most

important measures to prevent HLB epidemics. ACP population

control relies heavily on insecticides, but chemical strategies lead to

the development of chemical resistance among ACP populations,

pollute the environment, and may have negative effects on beneficial

organisms (Leong et al., 2022). To avoid the development of

insecticide-resistant insect populations, biological control strategies

are being considered.

Viruses, as the most abundant microorganisms on Earth, are

present in all groups of organisms (Weitz and Wilhelm, 2012). With

the development of metagenomics, viruses from families, including

Baculoviridae, Parvoviridae, Flaviviridae, and Bunyaviridae, are being

increasingly discovered (Simmonds et al., 2017). Some viruses have

complex relationships with their insect hosts, affecting the growth and

development of insects or helping to spread pathogens (Bolling et al.,

2015; Marklewitz et al., 2015). Marutani-Hert et al. (2009) discovered

two diaphorina citri reovirus (DcRV) sequences in ACP through high-

throughput sequencing. Nouri et al. (2016) discovered diaphorina citri

picorna-like virus (DcPLV), diaphorina citri bunyavirus (DcBV),

diaphorina citri associated C virus (DcACV), and a DNA virus

called diaphorina citri densovirus (DcDV). According to

phylogenetic analysis, DcPLV is close to the Iflaviridae based on the

RNA-dependent RNA polymerase (RdRp); DcRV is closely related to

Fijivirus; DcDV placed closer to the viruses from the genus

Iteradensovirus based on NS2 amino acid; DcBV was most closely to

Phasmaviridae (Nouri et al., 2016; Chen et al., 2020). Britt et al. (2020)

found diaphoerina citri flavi-like virus (DcFLV) and another reovirus,

diaphorina citri cimodo-like virus (DcCLV), and detected the

prevalence of these viruses in Florida in 5 ACPs as a group sample.

They found that DcACV had the highest detection rate in ACPs in

Florida. However, it is unclear which virus is the most prevalent in

ACPs in citrus groves in China.

Interactions between viral and bacterial pathogens in insects

have been reported. Insect symbiotic bacterium Sulcia harbors a

viral pathogen (rice dwarf virus) and mediates its transovarial

transmission to offspring in leafhoppers (Jia et al., 2017). Teixeira

et al. (2008) reported that the bacterial symbiontWolbachia renders
Frontiers in Plant Science 02
Drosophila melanogaster more resistant to the Drosophila C virus,

reducing the viral load of infected flies. The effects of CLas infection

on the metagenome of the Diaphorina citri gut endosymbiont were

recently reported (Pan et al., 2023). Moreover, the titer of

Wolbachia has been demonstrated to have a positive correlation

with the CLas titer (Fagen et al., 2012). However, little is known

about the relationship between CLas and ACP-associated viruses.

Whether these insect viruses also have similar effects with CLas in

ACP needs to be further explored.

In the present study, the main objectives were to determine the

prevalence of the newly identified diaphorina citri bunyavirus 2

(DcBV2) which also belongs to Bunyavirales as well as DcBV

(unpublished data) and four previously identified ACP-associated

viruses, namely DcRV, DcPLV, DcBV, and DcDV, in individual

adult ACPs from citrus groves in China, using PCR-based methods

and to evaluate the relationship between CLas and ACP-associated

viruses. Adult ACP populations were collected from five of China’s

major citrus-producing and ACP-inhabiting regions: Guizhou,

Jiangxi, Guangdong, Guangxi, and Sichuan. This study will

provide foundational knowledge of the above viruses with regard

to their infection rate in ACP in five major citrus-producing and

ACP-inhabiting provinces.
2 Materials and methods

2.1 Materials

A total of 551 ACPs were gathered in Guizhou, Jiangxi,

Guangdong, Guangxi, and Sichuan from 2019 to 2023 during the

outbreak (Supplementary Table S1). ACP samples were collected

randomly from semi-unmanaged citrus orchards by manual

aspiration with flukes. The fluke is made of leather tube, mesh

yarn and suction head. Immediately after collection, they were

stored in 50 ml centrifuge tubes and transported to the Citrus

Seedling Detoxification Center Laboratory of the Citrus Research

Institute of Southwest University on dry ice and stored at −80°C for

later use.
2.2 Total RNA extraction

Each ACP was removed and placed in a 1.5 mL centrifuge tube.

A volume of 200 mL of Trizol reagent (Invitrogen, Beijing, China),

and three 1.5 mm steel balls were added to the tube. These were

then ground at 50 Hz for 2 min in a high-throughput tissue grinder

(SCIENTZ-48L, Ningbo, China) at −20°C. Total RNA of individual

adult ACPs was extracted according to the Trizol reagent

instruction manual (Invitrogen, Beijing, China). RNA samples

were stored at −20°C for later use.
2.3 RT-PCR detection of ACP virus

Using the total RNA of individual ACPs as a template, the

primers shown in Table 1 were used for RT-PCR to detect DcRV,
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DcPLV, DcBV, DcDV, CLas, and DcBV2. b-Actin of ACP was

used as the internal reference gene to verify successful RNA

extraction. RT-PCR was carried out in a 10 mL reaction mixture

containing 5 mL of 2×1 Step Buffer, 0.4 mL of the forward primer

(10 mM), 0.4 mL of the reverse primer (10 mM), 0.4 mL of

PrimeScript 1 Step Enzyme Mix (Takara, Sichuan, China), 2.8

mL RNase Free dH2O, and 1 mL RNA. RT-PCR cycling

parameters were as follows: 50°C for 30 min, 94°C for 2 min,

and 35 cycles of denaturation at 94°C for 30 s, extension at 55°C

for 30 s, and 72°C for 1 min. The RT-PCR products were

separated by 1.2% agarose gel electrophoresis and purified

using the Easy Pure® Quick Gel Extraction Kit (Transgene,

EG101-02). The purified products were connected to the

pGEM-T Easy vector (Promega, Bei j ing , China) and

transferred to Escherichia coli DH5a (WeiDi, Shanghai,

China). The positive clones were sent to Qingke or BGI

Biotechnology Co., Ltd. for sequencing. The sequencing results

of the positive clones of each fragment were compared with

sequences recorded in the NCBI database.
2.4 Collection of ACPs’ offspring

The nascent male and female ACPs were reared on the new

shoots of clean orange jessamine and covered with gauze ribbons to

prevent ACPs from escaping. After the male and female ACPs

mated and laid eggs, we removed the ACP parents and left the

offspring to grow. Then when ACP generation had developed to 5th

instar nymph, they were individually taken out to determine

whether they were infected with DcPLV using RT-PCR as

methods shown in 2.2.
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2.5 RT-qPCR for DcPLV detection

We collected 80 adult ACPs, dissected them with forceps in

0.1 M phosphate-buffered saline (PBS, pH 7.2) under a stereo

microscope (Leica, Wetzlar, Germany) and collected guts, salivary

glands, testes, ovaries, Malpighian tubules, and remnant tissues.

RNA was extracted from each tissue with 4 biological replicates per

sample. The concentration of RNA isolated from various organs of

ACP was shown in Supplementary Table S2.

First-strand cDNA was synthesized using an All-In-One 5×RT

MasterMix kit (abm, Chongqing, China) according to the

manufacturer’s instructions. RNA isolated from various organs of

the insect was added to 20 µl reactions with 1 µg as a template for

reverse transcription. Quantification PCR was performed in 20 µL

reactions with 100 ng cDNA using a BlasTaq™ 2×qPCRMasterMix

kit (abm, Chongqing, China) and primers (forward primer:

AAACAGTGGCGAGGAACGAT, reverse primer: CCACCAAA

TCCGGTCTGTCA) at concentrations of 0.25 mM according to

the manufacturer’s instructions in the CFX96 touch system (Bio-

Rad, Berkeley, California, USA). b-Actin of ACP was selected to

normalize the DcPLV-expression level.
2.6 Statistical analysis

All detection data were calculated using Excel software.

Quantitative analyses for the relative levels of gene accumulation

were analyzed according to the 2^−DDCt method. One-way analysis

of variance (ANOVA) followed by the Tukey’s Honestly Significant

Difference test were used for multiple comparisons (different numbers

of “*” denoted by p < 0.05). All statistical analyses were performed

using GraphPad Prism 8.0 software.
TABLE 1 List of primers used to detect CLas and 5 Asian citrus psyllid (ACP)-associated viruses.

Viruses Primers Tm Product size

DcRV
F: 5’ TTTTCCCAGGTACATCGA 3’
R: 5’ ACCATTCAGCCAGTCCTA 3’

54°C 900 bp1

DcPLV
F: 5’ TAGGTGAACGTGATAATCCTGGTAT 3’
R: 5’ CAGAACGTCTGTTATGAATCGGAC 3’

56°C 698 bp1

DcBV
F: 5’ CTATGAAGGCAGGAACAGAGACAA 3’
R: 5’ GTTTCATCCCCACCTTCCACTAA 3’

58°C 624 bp2

DcDV
F: 5’ AGTCGGTGAGACTGATATCTTCGAGACC 3’
R: 5’ GTTTAGTTCGCTTGTCGGTTACACAGG 3’

61°C 1068 bp1

CLas
F: 5’ GCGCGTATGCAATACGAGCGGCA 3’
R: 5’ GCCTCGCGACTTCGCAACCCAT 3’

60°C 1160 bp3

DcBV2
F: 5’ GCTGAAAGAAAGTAAAGGAGTG 3’
R: 5’ GCAGCCTACGGATTTGAGGTG 3’

55°C 905 bp4

b-Actin
F: 5’ CCCTGGACTTTGAACAGGAA 3’
R: 5’ CTCGTGGATACCGCAAGATT 3’

57°C 170 bp5
1Britt et al., 2020; 2Accession number: PP025819; 3Jagoueix et al, 1994; 4Accession number: PP025816; 5Liu et al., 2020; CLas, Candidatus Liberibacter asiaticus;diaphorina citri reovirus, DcRV;
diaphorina citri picorna-like virus, DcPLV; diaphorina citri bunyavirus, DcBV; diaphorina citri densovirus-like virus, DcDV; diaphorina citri bunyavirus 2, DcBV2; F: Forward Primer; R: Reverse
Primer; bp: base pair.
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3 Results

3.1 ACP-associated virus and CLas
screening with RT-PCR in individual insects

Using the RNA in adults of ACPs as a template and the primers

listed in Table 1, the target gene fragments of six pathogens, DcRV,

DcPLV, DcBV, DcDV, CLas, and DcBV2, and the internal reference

gene b-Actin were successfully detected (Supplementary Figure S1).

The blasting results in the NCBI database showed more than 98%

similarity, indicating that the target fragments of each pathogen and

internal reference gene were successfully amplified.

ACPs were collected from Guizhou, Guangdong, Guangxi,

Sichuan, and Jiangxi in southern China to detect infection by

CLas and 5 viruses in individual insects. As shown in Table 2,

Figure 1, the detection rate of DcPLV was 55.35% in all ACP

samples. In this study, 551 ACPs were collected, 305 of which had

DcPLV. The detection rate of DcPLV was highest in ACPs in

Guizhou and Guangdong, with detection rates of 69.44% and

66.39%, respectively. The detection rate of DcRV was also high in

Guangdong and Sichuan ACPs (57.14% and 46.30%, respectively),

while it was 28.49% in all samples. However, DcRV and DcDV were

not detected in ACPs from Guizhou. DcBV had a slightly higher

detection rate than DcBV2, both of which belong to Bunyavirales.

In addition, the infection rate of CLas in all ACPs was 19.78%.
3.2 Co-infection of CLas and 5 ACP-
associated viruses in individual ACPs

Among all evaluated ACPs, 61.16% were co-infected with multiple

symbionts, as shown in Table 3. Of the combinations of two symbionts

co-infecting ACPs, DcPLV+DcBV had the highest co-infection rate,

reaching 10.16% of all samples, followed by CLas+DcPLV with 4.17%.

Among the co-infections involving three pathogens, DcRV+DcPLV

+DcBV had the highest infection rate (3.45%), followed by CLas

+DcPLV+DcBV (3.27%). In addition, the infection rate of ACPs

infected with more than 4 pathogens was 4.36%.
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Among 109 CLas-positive ACPs, 83.49% were co-infected with

one or more ACP-associated virus (data not shown). The infection

rates of DcRV, DcDV, DcBV and DcBV2 in CLas-positive samples

were lower than those in CLas-free ACPs, especially for DcRV. The

detection rate of DcRV was close to 50% lower in CLas-positive

ACPs than in CLas-free ACPs (Figure 2). A similar result was seen

for the detection of CLas in DcRV-infected ACP (Figure 3). No

decrease in the detection of DcPLV was observed between CLas-

positive and CLas-free ACPs (Figure 2). A similar result was

observed for CLas detection in DcPLV- infected ACPs (Figure 3).
3.3 Distribution and transmission of DcPLV
in ACPs

To understand the distribution of DcPLV in different organs of

ACPs, we assessed the levels of DcPLV in the guts, testicles, ovaries,

salivary glands, Malpighian tubules, and remnant tissues. RT-qPCR

results showed that DcPLV was highest in salivary glands among

the 5 tissues. In Malpighian tubules, we hardly detected

DcPLV (Figure 4).

We collected 56 offspring of ACPs, 22 of which carried DcPLV.

The proportion of DcPLV-positive offspring was 39.29%. We also

performed RNA testing on the leaves of orange jessamine that ACPs

fed on and determined the presence of DcPLV. However, we did not

identify DcPLV in the leaves that ACPs did not feed on at the same

time as orange jessamine.
4 Discussion

HLB is a major threat to the citrus industry. Its vector, ACP, is

also a key control target. ACPs not only carry CLas but are also

hosts for many insect viruses. Prior to this study, Britt et al. (2020)

investigated insect viruses in ACPs in Florida with five ACPs as a

group sample and found that the most prevalent virus was DcACV.

To understand the prevalence of some insect viruses and CLas in

ACPs in China, this study collected ACP samples from the five main
TABLE 2 Total number and detection percentages of CLas and Asian citrus psyllid (ACP)-associated viruses in various surveyed regions.

Survey regions Total numbers of samples
Number of infected samples

CLas DcRV DcPLV DcBV DcDV DcBV2

Guizhou 108 30 0 75 48 0 27

Guangdong 119 21 68 79 10 29 29

Guangxi 103 26 36 41 47 2 34

Sichuan 108 13 50 36 54 27 24

Jiangxi 113 19 3 74 70 18 10

Total 551 109 157 305 229 76 124

Infection rate (%) 19.78 28.49 55.35 41.56 13.79 22.50
fron
CLas, Candidatus Liberibacter asiaticus; diaphorina citri reovirus, DcRV; diaphorina citri picorna-like virus, DcPLV; diaphorina citri bunyavirus, DcBV; diaphorina citri densovirus-like virus,
DcDV; diaphorina citri bunyavirus 2, DcBV2.
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FIGURE 1

Pie chart showing the percentage of CLas and five viruses detected in different regions. (A), Guizhou; (B), Guangdong; (C), Guangxi; (D), Jiangxi;
(E), Sichuan. Note that in the majority of the five regions of China, there were multiple samples that had multiple pathogens, therefore, most of the
percentages in the pie charts do not equal 100%. CLas, Candidatus Liberibacter asiaticus; diaphorina citri reovirus, DcRV; diaphorina citri picorna-like
virus, DcPLV; diaphorina citri bunyavirus, DcBV; diaphorina citri densovirus-like virus, DcDV; diaphorina citri bunyavirus 2, DcBV2.
TABLE 3 Co-infection of CLas and 5 viruses in Asian citrus psyllid
(ACP) samples.

Co-infection type Number Co-infection rate (%)

CLas+DcRV 6 1.09

CLas+DcPLV 23 4.17

CLas+DcBV 7 1.27

CLas+DcDV 2 0.36

CLas+DcBV2 3 0.54

DcRV+DcPLV 19 3.45

DcRV+DcBV 21 3.81

DcRV+DcDV 6 1.09

DcRV+DcBV2 16 2.90

DcPLV+DcBV 56 10.16

DcPLV+DcDV 9 1.63

DcPLV+DcBV2 19 3.45

DcBV+DcDV 5 0.91

DcBV+DcBV2 10 1.81

DcDV+DcBV2 2 0.36

CLas+DcRV+DcPLV 4 0.73

CLas+DcRV+DcBV 2 0.36

CLas+DcRV+DcDV 1 0.18

CLas+DcRV+DcBV2 2 0.36

(Continued)
F
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TABLE 3 Continued

Co-infection type Number Co-infection rate (%)

CLas+DcPLV+DcBV 18 3.27

CLas+DcPLV+DcDV 3 0.54

CLas+DcPLV+DcBV2 3 0.54

CLas+DcBV+DcDV 1 0.18

CLas+DcBV+DcBV2 5 0.91

CLas+DcDV+DcBV2 1 0.18

DcRV+DcPLV+DcBV 19 3.45

DcRV+DcPLV+DcDV 9 1.63

DcRV+DcPLV+DcBV2 7 1.27

DcRV+DcBV+DcDV 2 0.36

DcRV+DcBV+DcBV2 6 1.09

DcRV+DcDV+DcBV2 1 0.18

DcPLV+DcBV+DcDV 7 1.27

DcPLV+DcBV+DcBV2 16 2.90

DcPLV+DcDV+DcBV2 1 0.18

DcBV+DcDV+DcBV2 1 0.18

Other 24 4.36

Total 337 61.16
Co-infection rate = Number of co-infected ACPs/total number of ACPs, CLas, Candidatus
Liberibacter asiaticus; diaphorina citri reovirus, DcRV; diaphorina citri picorna-like virus,
DcPLV; diaphorina citri bunyavirus, DcBV; diaphorina citri densovirus-like virus, DcDV;
diaphorina citri bunyavirus 2, DcBV2.
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citrus-producing regions in China, Guizhou, Jiangxi, Guangdong,

Guangxi, and Sichuan, and detected DcRV, DcPLV, DcBV, DcDV,

CLas, and the newly discovered virus DcBV2 in individual ACPs

using RT-PCR. DcPLV was the most prevalent virus in the collected

ACP samples in China in this study. Regional differences may result

in these population differences. In addition, we attempted to detect

two previously identified viruses, DcACV and DcFLV. However,
Frontiers in Plant Science 06
positive ACP samples were not found for these viruses. More

samples may be needed to determine whether the two viruses are

present. Chen et al. (2020) investigated the infection of ACPs with

DcRV in Fuzhou, Fujian, China, and their incidence rate was 58-

100%, similar to the detection rates of DcRV in Guangdong and

Sichuan. However, the detection rates of DcRV in ACPs in other

regions were relatively low. This suggests that the virus prevalence
FIGURE 2

Detection rate of Asian citrus psyllid (ACP)-associated viruses in Candidatus Liberibacter asiaticus (CLas)-positive and CLas-free ACP samples.
diaphorina citri reovirus, DcRV; diaphorina citri picorna-like virus, DcPLV; diaphorina citri bunyavirus, DcBV; diaphorina citri densovirus-like virus,
DcDV; diaphorina citri bunyavirus 2, DcBV2.
FIGURE 3

Detection percentage of Candidatus Liberibacter asiaticus (CLas) in Asian citrus psyllid (ACP)-associated virus-positive and virus-free ACP samples. +:
ACP-associated virus-infected, −: ACP-associated virus-uninfected. diaphorina citri reovirus, DcRV; diaphorina citri picorna-like virus, DcPLV;
diaphorina citri bunyavirus, DcBV; diaphorina citri densovirus-like virus, DcDV; diaphorina citri bunyavirus 2, DcBV2.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1357163
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2024.1357163
varies among countries and regions. To our knowledge, this is the

first time that a comprehensive survey has been conducted in China

to detect the prevalence of these viruses in individual ACPs. In

addition, the detection rate of CLas was lowest in ACPs in Sichuan,

at 12.04%, which is similar to the detection rate of CLas in citrus

samples from Sichuan province (Cui et al., 2022).

Studies have shown that some insect viruses may affect host

adaptation and reproduction (Vasilakis and Tesh, 2015). For

instance, ABV-1 reduced the total aphid nymphal duration and

induced reproduction (An et al., 2022). The aphid-lethal paralysis

virus affects the movement and lifespan of Rhopalosiphum padi

(Williamson et al., 1988). Zhang et al. (2022) found that crude

extract containing seven endosymbiotic viruses, including DcRV

and DcPLV, could significantly reduce the total egg production of

female populations after injection into ACPs. However, whether the

5 viruses (DcRV, DcPLV, DcBV, DcDV, and DcBV2) play a role is

not clear. In this study, DcPLV had the highest detection rate

among the ACPs. DcPLV has been suggested as a new and

unclassified picorna-like virus, although a phylogenetic tree

generated based on the RdRp placed DcPLV close to Iflaviridae
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(Nouri et al., 2016). The picorna-like viruses, with a close

taxonomic relationship to DcPLV, are also present in the wild

lime psyllid and the potato psyllid (Stuehler et al., 2023). Because of

this, we need to have some understanding of DcPLV. According to

our survey, DcPLV is not only capable of propagating vertically but

also has the potential to propagate horizontally. However, this does

not mean that DcPLV can infect plants; it was not found in the

leaves of the same plant not fed on by ACP. DcPLV was most

prevalent in the salivary glands, indicating that it may spread

horizontally. The picorna-like deformed wing virus has been

associated with wing deformities in adult honeybees. It can infect

the various developmental stages of bees (Mcmenamin and

Flenniken, 2018). However, another picorna-like virus,

helicoverpa armigera Nora virus (HaNV), has been shown to be

efficiently horizontally transmitted between hosts via contaminated

food and transmitted vertically from parent to offspring. Moreover,

HaNV is not overtly pathogenic to its host (Yang et al., 2019). The

high prevalence of DcPLV in China’s ACP populations indicates

that it might be well adapted to ACPs. However, whether DcPLV

can affect the growth habits of ACPs is unclear. It is unknown

whether DcPLV has the potential to be used as a genetically

engineered viral candidate to control insect vectors using RNA

interference technology. Therefore, more studies on DcPLV as a

virus vector are needed.

Previous studies have shown that the interaction between

different pathogens in insect vectors may be antagonistic or

cooperative (Domingo-Calap et al., 2020). The acquisition or

transmission of one symbiont in insects can be affected by

another symbiont. The Mal de Rıó Cuarto virus titer was reduced

after its planthopper vector was co-infected with a wheat

rhabdovirus (Dumon et al., 2018). Glaser and Meola (2010)

suggested that the infection of Wolbachia in vector insects can

induce resistance to the West Nile virus. The commensal bacterium

Sulcia can interact with the Rice dwarf virus to co-localize to

oocytes, helping the virus spread vertically through the egg to the

offspring of leafhoppers (Wu et al., 2019). Moreover, CLas has been

found to affect the endosymbiont abundance of ACPs using high-

throughput metagenome sequencing technology (Pan et al., 2023).

In the present study, CLas and four insect viruses (DcRV, DcDV,

DcBV and DcBV2), especially DcRV, are prone to mutually reduced

detection in the ACP population in the field. The number of ACPs

co-infected with CLas and DcRV decreased by about 50% compared

to those infected with only one pathogen, indicating that co-

infection had a negative effect on the insect host. DcRV, a new

species of the genus Fijivirus, is a persistent infection in its psyllid

host and is distributed throughout the bodies of ACPs, including

the gut and salivary glands (Chen et al., 2019). In addition, as CLas

has a circulative–propagative transmission cycle in psyllids, CLas is

associated with the gut, hemolymph, salivary glands, and fat bodies

(Glaser and Meola, 2010; Ammar et al., 2011). CLas induces

changes in different pathways including the insect’s metabolism

and immune system (Kruse et al., 2017). Because of the similar
FIGURE 4

Relative contents of diaphorina citri picorna-like virus (DcPLV) in
different tissues of Asian citrus psyllid (ACP). Data are means (± SE)
of four biological replications per sample; b-Actin was used to
normalize the expression of DcPLV as the reference gene. One-way
ANOVA followed by the Tukey’s Honestly Significant Difference test
were used for multiple comparisons (different numbers of “*”
denoted by p < 0.05). The greater the number of *, the greater
the variability.
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distribution, CLas and DcRV could compete for resources within

ACP, such as the metabolism of amino acids. CLas and DcRV could

also alter similar host-immune responses. Our results were just

analyzed based on infection from ACP in the field. More studies

need to be performed on the specific change in CLas content with

DcRV and other viruses in ACP under strict experimental control.
5 Conclusion

The infection rates of CLas and five insect viruses in ACP

samples from five main citrus-producing regions in China were

analyzed. DcPLV was the most prevalent and widespread ACP-

associated virus. DcPLV was also demonstrated to propagate

vertically and found more in salivary glands among different

tissues. Approximately 60% of adult insect samples were co-

infected with more than one insect pathogen. These results

provide valuable information about the prevalence of ACP-

associated viruses in China. In addition, analysis of the change in

endosymbiont infection in a single insect vector is the basis for

understanding the interaction between CLas, ACP, and

insect viruses.
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