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The world has undergone a remarkable transformation from the era of famines to

an age of global food production that caters to an exponentially growing

population. This transformation has been made possible by significant

agricultural revolutions, marked by the intensification of agriculture through

the infusion of mechanical, industrial, and economic inputs. However, this

rapid advancement in agriculture has also brought about the proliferation of

agricultural inputs such as pesticides, fertilizers, and irrigation, which have given

rise to long-term environmental crises. Over the past two decades, we have

witnessed a concerning plateau in crop production, the loss of arable land, and

dramatic shifts in climatic conditions. These challenges have underscored the

urgent need to protect our global commons, particularly the environment,

through a participatory approach that involves countries worldwide, regardless

of their developmental status. To achieve the goal of sustainability in agriculture,

it is imperative to adopt multidisciplinary approaches that integrate fields such as

biology, engineering, chemistry, economics, and community development. One

noteworthy initiative in this regard is Zero Budget Natural Farming, which

highlights the significance of leveraging the synergistic effects of both plant

and animal products to enhance crop establishment, build soil fertility, and

promote the proliferation of beneficial microorganisms. The ultimate aim is to

create self-sustainable agro-ecosystems. This review advocates for the

incorporation of biotechnological tools in natural farming to expedite the

dynamism of such systems in an eco-friendly manner. By harnessing the

power of biotechnology, we can increase the productivity of agro-ecology and

generate abundant supplies of food, feed, fiber, and nutraceuticals to meet the

needs of our ever-expanding global population.
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1 Introduction

The term “sustainability” finds its origin from the Latin word

“Sustinere”, which denotes the enhancement of environmental

quality and the resource base that can uphold and endure future

societal development. The term “sustainable” was used for the first

time at the United Nations Conference on Human Environment,

Stockholm in 1972 focusing on the preservation of environment for

the benefit of human beings across the globe. The major outcome of

the Stockholm Conference (1972) was the establishment of the

United Nations Environment Programme (UNEP), which became

the leading global environmental authority for setting the global

environmental agenda. Later on in 1992 in Rio de Janeiro, Brazil,

the UN General Assembly called for the United Nations Conference

on Environment Development (UNCED) commonly known as the

Rio Summit or Earth Summit, 1992 with primary goals of socio-

economic development while preventing environmental

deterioration (Grubb et al., 2019). A number of multilateral

environmental agreements have taken place since 1992. However,

the global environment has continued to suffer in terms of loss of

biodiversity, desertification, and increasing natural disasters.

Over the past two decades, there has been a growing concern

about the need for sustainable agriculture to address the food and

fiber requirements of society while also providing enduring

solutions for both present and future generations. A fundamental

prerequisite for sustainable agriculture is to guarantee social equity

and economic viability for farmers and all individuals engaged in

agriculture and its associated enterprises. This will encourage them

to maintain a healthy environment and support the development of

climate-resilient agriculture. One of the popular approaches toward

sustainable agriculture is natural farming, popularly known as Zero

Budget Natural Farming (ZBNF). The Indian civilization thrived on

natural farming for ages and India was one of the most prosperous

countries in the world. Traditionally, the entire agriculture was

practiced using natural inputs where the fertilizers, pesticides, etc.

were obtained from plant and animal products. This continued till

the advent of colonial rule in India, which introduced plantation

agriculture and turned the focus of farmers from self-sufficient

crops to cash crops like indigo, jute, tea, and tobacco. Furthermore,

the burgeoning population, the pressure to grow cash crops, and

drastic climatic calamities led to the shift of the farming sector

toward high-input agriculture.

The concept of natural farming was regained by the Japanese

scientist Fukuoka in the 1970s through his book The One Straw

Revolution: An Introduction to Natural Farming, in which he

mentioned it as a do-nothing technique. The concept of natural

farming revolves around the idea of self-sufficiency of the natural

ecosystem without much human intervention. In India, Padma Shri

recipient Mr. Subhash Palekar became the first to adopt the ZBNF

system in the 1990s. His concern with the increasing indebtedness

and suicide among farmers in India due to the increasing costs of

fertilizers and pesticides and their long-term devastating effects on

the environment compelled him to advocate the use of low-input

technologies in agriculture that should be available within

farmlands. He started the natural farming concept in Karnataka

and subsequently converted over 50 lakh farmers into practicing
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ZBNF in various states of India. This method promotes soil

aeration, minimal irrigation, intercropping, bunds, and topsoil

mulching with crop residue and strictly prohibited intensive

irrigation like flooding and deep ploughing tillage practices.

However, these traditional practices will not be sufficient to

provide food to the estimated 9.7 billion population in 2050.

Recently, the Indian Council of Medical Research (ICMR) has set

guidelines for per person per day calorie intake to achieve

nutritional sufficiency (Chellamuthu et al., 2021). Incorporating

modern biotechnological techniques into agriculture is the

prerequisite to attaining this goal and mitigating the climate

crisis (Figure 1).

However, adopting biotechnology in natural farming system is

not that easy. There exists an ideological war between natural

farming and biotechnology-assisted farming, leading to complete

incompatibility among these two systems (Purnhagen and

Wesseler, 2021).

Biotechnology in agriculture encompasses a diverse range of

techniques, which may include traditional breeding methods that

modify living organisms or their components to create or enhance

products, improve plants or animals, or engineer microorganisms

for particular agricultural applications. It is not exclusive but

includes the tools of genetic engineering. It has emerged as a

promising tool for crop improvement and led to significant

enhancement in agricultural productivity in the 21st century

through agricultural revolutions. Within the Indian biotech

sector, agricultural biotechnology stands as the third largest

segment (as reported by Business Standard in 2013). It is widely
FIGURE 1

Catalyzing sustainable growth through Zero Budget Natural Farming
for India’s burgeoning population.
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recognized as a pivotal sector that plays a significant role in driving

the socio-economic development of the country (ABLE INDIA,

2013; Shukla et al., 2018; Lima, 2022). A new biotechnological

revolution is estimated to revolve around deciphering the gene

codes of living beings leading to “gene revolution”.

Biotechnology often carries a perplexing association with

industrial, commodity-based farming, monoculture practices, the

extensive use of pesticides, and patented seeds. However, the most

significant misinterpretation lies in conflating biotechnology—a

production process—with an inherently unsafe and perilous

product. This misperception forms the foundation of the

stringent regulatory framework that many countries apply to

biotech crops.

The current review seeks to advocate the idea that integrating

biotechnology with natural farming can offer a promising solution

to address key challenges in achieving sustainable agriculture. These

challenges include the need to produce sufficient food within the

constraints of limited arable land and finite resources, particularly

in the face of stresses like drought, salinity, high temperature, and

diseases. The aim is to achieve these goals while reducing reliance

on synthetic fertilizers and pesticides.
2 Strategies for natural farming/
eco-agriculture

McNeely and Scherr (2001) have outlined six approaches to

achieve the desired outcomes from natural farming. These are

stated below:

Participation of local farmers for the creation of bio-

diversity reserves. In Wayanad, Kerala, India, a “model” farm

has been developed involving local farmers for the cultivation of

a diversity of spices, medicinal plants, cash crops, and wild yet

economically important trees (Syzygium travancorium and

Cinnamomum malabatrum). The fauna in this farm consists

of farm animals, honeybees, and fish. The economic

sustainability of the farm is guaranteed by the consistent

revenue generated from a diverse array of crops including
Frontiers in Plant Science 03
medicinal, agricultural, and plantation crops as well as

through the management of farm animals.
i. Using traditional practices of controlling pests, rain water

harvesting, and soil health management using least external

inputs have enabled the self-sustainability of the farm.

Development of such modal farms will not only reinforce

agricultural productivity but also promote the wellbeing of

the ecosystem, thus helping conservation naturally.

ii. Integrating cultivated areas with natural habitats to preserve

high-quality wildlife environments that are compatible

with farming.

iii. Mitigating or even reversing the conversion of wild lands

into agricultural use by increasing farm productivity.

iv. Minimizing agricultural pollution through the

implementation of more resource-efficient methods for

managing nutrients, pests, and waste.

v. Enhancing the quality of habitats in and around farms through

the careful management of soil, water, and vegetation

resources. Notably, the “biodiversity-rich hotspot” in Orissa,

India serves as an excellent example of this approach. On the

global scale, “Equator Initiative” is a worldwide movement

committed to identifying and supporting innovative

partnerships that alleviate poverty through the conservation

and sustainable use of biodiversity.
3 Biotechnological interventions in
natural farming

Biotechnology identifies and addresses multifarious aspects of

agriculture, leading to a sustainable way of improving the overall

productivity of agro-ecosystems. However, we can broadly classify

the aspects into three major criteria: modifying plants, modifying

the soil, and development of alternatives to fuel inputs for

agricultural equipments (Figure 2). These aspects have been

discussed in detail in the review.
FIGURE 2

Various approaches for integrating biotechnological tools in natural farming system.
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3.1 Modifying plants

Conventional plant breeding and selection techniques take

much time (six to seven generations) and effort to develop plants

with desirable traits. However, when supplemented with novel

biotechnological tools like genetic engineering, molecular biology,

and micro-propagation, such techniques may result in desirable and

stable genotypes within two to four generations (Table 1).
Frontiers in Plant Science 04
3.1.1 High-yielding varieties
Intergeneric and interspecific hybridization followed by

marker-assisted selection (MAS) enabled the development of semi

dwarf high-yielding varieties, thus marking the advent of green

revolution. Molecular biologists have identified the candidate genes

influencing plant height, spike length, seed characteristics, and

number of spikelets in wheat (Albahri et al., 2023; Jiang et al.

2023), as well as DREB (dehydration-responsive element binding)
TABLE 1 Some examples of successful utilization of biotechnological tools for improving plants.

S.
no.

Name
of plant

Trait Candidate gene Technique
used

Reference

1. Maize Drought tolerance ARGOS8 CRISPR/Cas9 Shi et al., 2017

Herbicide tolerance IPK1 ZFN Shukla et al., 2009;
Sedeek et al., 2019

Northern leaf blight and southern
leaf blight

GST, Htn1, pan1, remorin Cloning Ahangar et al. 2022;
Wani et al., 2022; Yang
et al., 2017

Head smut ZmWAK Wani et al., 2022; Yang
et al., 2017

Maize leaf blight and ear mold Hm1 Wani et al., 2022; Yang
et al., 2017

Quality protein opaque2, vte4, crtRB1 Marker-assisted
backcrossing
and selection

Hossain et al., 2023

Phytic acid content ZmIPK CRISPR/
Cas9, TALEN

Liang et al., 2014; Sedeek
et al., 2019

Drought betA, TsVP, CSPs, TPP Overexpression Wei et al., 2011

2. Wheat Armyworm Myc transcription factor 7, Methylesterase 7,
Polcalcin Phlp 7-like, Alkaline alpha
galactosidase 3, Probable galactinol-sucrose

Cloning Hafeez et al., 2021

Resistance to Stem rust (Puccinia
graminis f. sp. tritici)

More than 63 genes including Sr13, Sr21, Sr22,
Sr31, Sr35, Sr45, Sr46, Sr50, Sr59, Sr60

Wide hybridization.
Backcrossing and
MAS (STS, KASP)

Yazdani et al., 2023;
Bouvet, 2022

Resistance to stripe
rust (Puccinina)

More than 80 genes including Yr15, Yr45,
Yr61, Yr81-83

Wide hybridization.
Backcrossing
and MAS

Yang et al., 2023; Li J.
et al., 2020

Yield-related traits (1,000 kernel
weight, spike length, spike
compactness, flowering time)

TaTAP46, TaSDIR1, QGw4B.4
QSc/Sl.cib-5A, QSc/Sl.cib-6A
FT-D1, TaCol-B5

MAS (CASP, dCASP,
STARP, KASP)

Song et al., 2023; Liu H.
et al., 2022; Chen L.
et al., 2022

Grain quality (protein content,
pre-harvest sprouting tolerance)

GPC, Glu-D1, KASP, SSR Jiang et al., 2021; Song
et al., 2023; Rai and
Han, 2023

Heat, cold drought TaFER-5B, TaPYL4, ZmPEPC Overexpression Ayadi et al., 2019; Zhang
et al., 2019

TaERF3, TaDREB2 CRISPR Kim et al., 2018

3. Rice Rice blight Xa3, Xa4, Xa5, Xa7, Xa10, Xa13, Xa21, Xa23,
Xa33, Xa38, Xa40, and recessive genes

MAS (SSR) Chukwu et al., 2020; Hsu
et al., 2020; Fiyaz
et al., 2022

Grain size and weight GS3, Gn1a, GW2, GW5, TGW6, DEP1 CRISPR/Cas9 Sedeek et al., 2019

Drought tolerance OsPYL9, OsERA1, OsDST CRISPR Ogata et al., 2020;
Usman et al., 2022;
Santosh Kumar
et al., 2021

(Continued)
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genes associated with photosynthesis, nitrogen utilization and

flowering in rice (Ikeda et al., 2001; Chandler et al. 2022; Wei

et al., 2022), male sterility, albino phenotype, and number and

weight of kernels in maize (Chen et al., 2018; Kelliher et al., 2019).

Characterization and manipulation of such genes can help transfer

of these into locally adapted high-yielding cultivars by hybridization

followed by MAS or by genome editing technologies.

3.1.2 Enhancing physiological efficiency of plants
Genetic manipulation offers the potential to enhance critical

yield-determining traits in plants, including photosynthesis, shoot-

to-root biomass ratio, inflorescence architecture, stomatal regulation,

nutrient acquisition, and utilization efficiency. One effective strategy

for assessing and improving photosynthetic efficiency in plants

involves the examination and manipulation of key enzymes.

Rubisco, a pivotal enzyme responsible for converting atmospheric

CO2 into biomass and a significant player in the global carbon cycle,

has been a prime target for enhancing crop production. Methods to

boost Rubisco activity encompass enhancing the enzyme’s

carboxylation capacity, reducing its oxygenation rates through

genetic modification, and introducing the complete carbon-

concentrating mechanism from cyanobacteria into crop plants via

genetic engineering to enhance their photosynthetic capabilities

(Hines et al., 2021; Iñiguez et al., 2021). As an example,

incorporating Rubisco activase from thermophilic cyanobacteria

into plants sensitive to high temperatures has shown promising

results in improving crop yield by enhancing photosynthesis under

elevated temperature conditions (Ogbaga et al., 2018).

Enhancing photoprotection in plants holds promise for

increasing crop yield. Plants have evolved mechanisms to

dissipate excess sunlight, safeguarding themselves from damage,
Frontiers in Plant Science 05
albeit at the expense of photosynthetic efficiency (Kromdijk et al.,

2016). Research into genes associated with non-photochemical

quenching, such as PsbS, has revealed that modifying their

expression levels can bolster photoprotection, consequently

improving photosynthetic efficiency (Murchie et al., 2015).

Likewise, optimizing a plant’s nitrogen use efficiency (NUE)

involves modulating nutrient absorption, allocation, and

metabolism. Employing biotechnology to manipulate key genes

governing nutrient uptake and utilization efficiency is an effective

strategy for creating enhanced crop varieties. Genes such as

Ammonium transport (AMT), nitrate transport (NRT), glutamine

synthetase (GS), and glutamate synthase (GOGAT) play pivotal

roles in nitrogen metabolism. Studies have demonstrated that

transgenic crops overexpressing these genes exhibit elevated tissue

nitrogen levels, increased amino acids, and enhanced biomass and

greater seed production (Curatti and Rubio, 2014). For instance, the

gene OsDREB1C, responsible for promoting nitrogen use efficiency

and resource allocation while shortening growth, has led to a

substantial increase in rice yield, ranging from 41.3% to 68.3%

compared to wild types when overexpressed (Wei et al., 2022).

3.1.3 Development of resistant plant varieties
Insect resistance: The development of insect-resistant transgenic

plants stands as a remarkable achievement in agricultural

biotechnology, with extensive research efforts carried out by both

public and private institutions. The introduction of heterologous

DNA is commonly accomplished through genetic transformation

methods mediated by Agrobacterium tumefaciens, biolistic

techniques, or a combination of both (Tabashnik et al., 2013;

Carrière et al., 2015). Among the most widely commercialized

transgenic crops is cotton, which incorporates cry genes sourced
TABLE 1 Continued

S.
no.

Name
of plant

Trait Candidate gene Technique
used

Reference

4. Oilseed crops like
sunflower,
soybean, safflower

Oleic acid content FAD2 Mutation breeding Schuppert et al., 2006;
Cao et al., 2013; Msanne
et al., 2020

5. Safflower g-Linolenic acid (GLA) D6DES Transgene expression Nykiforuk et al., 2012

6. Sorghum Tiller number, grains per panicle,
grain weight

Bmr2, bmr12, SbSWEET4-3, SbVIN1,
SbTST1, SbTST2

MAS Zhang et al., 2015;
Somegowda et al., 2022

Plant height Dw1, Dw2, Dw3, and Dw4 MAS Hilley et al., 2016

Grain quality Sh1, SbWRKY, qGW1, KS3 GWAS and MAS Kimani et al., 2020

Flowering and height MSD1, MSD3, y1, Wx,DGAT1, AMY3 GWAS Rhodes et al., 2017;
Dampanaboina
et al., 2019

7. Cherry Size FW2.2/CNR, Auxin response, cell
differentiation, pectin biosynthesis

Bi-parental mapping,
association mapping

De Franceschi et al.,
2013; Liu Z. et al., 2022

8. Grapes Weight Aux/IAA9,
DELLA protein

Bi-parental mapping,
association mapping

Razi et al., 2020; Doligez
et al., 2013; Ban
et al., 2016

9. Logan Weight FW2.2/CNR,
P450, EXP4

Bi-parental mapping, De Mori and
Cipriani, 2023

10. Walnut Weight, size Beta-galactosidase, RBK1, BEL1-like Association mapping Bernard et al., 2021
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from Bacillus thuringiensis (Sanahuja et al., 2011). This innovation

has proven highly effective in conferring insect resistance (Tabashnik

et al., 2013; Carrière et al., 2015). Furthermore, various other notable

examples of introducing and expressing foreign genes in crop plants

include API (arrowhead proteinase inhibitor) in wheat, tobacco, and

tomato; OC-I (cysteine proteinase inhibitor: oryzacystatin-I) in rice;

Vgb (Vitreoscilla hemoglobin) in maize and tobacco; SacB

(levansucrase-encoding gene) in tobacco, rye grass, and tobacco;

JERF-36 (Jasmonic ethylene-responsive factor) in poplar trees;

BADH (betaine aldehyde dehydrogenase gene) in tobacco, maize,

and tomato; and NTHK1 (Nicotiana tabacum histidine kinase-1) in

tomato and apple (Tabashnik et al., 2008; Wang et al., 2018).

Specifically, transgenic plants like cotton (Gossypium hirsutum),

soybean (Glycine max), and maize (Zea mays) have demonstrated

resistance to lepidopteran and coleopteran larvae (caterpillars and

rootworms), leading to substantial reductions in pesticide usage and

production costs, all while enhancing crop yields.

Disease resistance: Modifying host–pathogen interactions,

signaling mechanisms, and associated proteins has led to the

development of disease-resistant crop varieties. In wheat, the

cloning and utilization of several adult plant resistance (APR)

genes have enabled the creation of transgenic lines resistant to

rust and powdery mildew pathogens at both seedling and adult

stages (Krattinger et al., 2009; Risk et al., 2013; Ellis et al., 2014). The

introduction of the Lr34 allele, which codes for resistance against

leaf rust, into various crops such as rice, barley, sorghum, maize,

and durum wheat, as well as Lr67 into barley, has conferred

resistance to a wide range of biotrophic pathogens (Risk et al.,

2013; Krattinger et al., 2016; Sucher et al., 2017). Advanced

techniques like Targeting Induced Local Lesions in Genomes

(TILLING) and genome-editing methods such as Zinc Finger

Nucleases (ZFN), Transcription Activator-Like Effector Nucleases

(TALENs), and notably Clustered Regularly Interspaced Short

Palindromic Repeats (CRISPR) and Crisper-associated protein

(Cas) have become powerful tools in functional genomics and

crop breeding. Simultaneous modification of the three homeologs

of EDR1 in wheat has resulted in powdery mildew-resistant plants

(Zhang Y. et al., 2017). Moreover, rice lines with broad-spectrum

resistance to Xanthomonas have been created by editing the

promoter regions of SWEET11, SWEET13, and SWEET14 genes

(Xu et al., 2019). Powdery mildew resistance has been achieved

through editing MLO (Mildew Resistance Locus) in various plant

species, including wheat (Wang et al., 2014; Acevedo-Garcia et al.

2017), tomato (S. lycopersicum) (Nekrasov et al., 2017), and

grapevine (Vitis vinifera) (Wan et al., 2020).

Herbicide resistance: Weeds are a persistent issue in

agriculture, hindering crop growth by competing for essential

resources like water, nutrients, sunlight, and space. They also act

as carriers for various insects and harmful microorganisms.

Uncontrolled weed growth can significantly reduce crop yields,

leading farmers to use methods like herbicides containing

glyphosate and glufosinate, tilling, and manual weeding to

manage them. Glyphosate herbicides work by inhibiting the

EPSPS enzyme, vital for producing aromatic amino acids,

vitamins and other plant metabolites. However, these methods

can lead to problems like groundwater contamination and
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environmental damage, causing declines in plant and animal

species (Mazur and Falco, 1989; Powles, 2018). Biotechnological

advancements have given rise to herbicide-resistant crop varieties,

such as those tolerant to glyphosate and glufosinate (Tan et al.,

2006). These crops are engineered with genes like CP4-EPSP

synthase and GOX (glyphosate oxidoreductase), which produce

glyphosate-tolerant EPSPs and glyphosate-degrading enzymes

(Shaner, 2000; Owen and Zelaya, 2005).

Abiotic stress resistance: The advancement of functional omics

and computational biology software and tools has enabled the

identification of candidate genes responsible for abiotic stress (AbS)

from diverse gene pools. Techniques like RNA-Seq, random and

targeted mutagenesis, gene shifting, complementation, and synthetic

promoter trapping are valuable for analyzing AbS-responsive genes

and understanding tolerance mechanisms, including post-

translational modifications (PTM), protein degradation, and

interactions with non-coding miRNA (Chantre Nongpiur et al.,

2016). Genome-wide association studies (GWAS) have gained

popularity for discovering and characterizing stress-responsive

genes, which, when introduced into crop plants, enhance their

tolerance to various AbS conditions (Le et al., 2021). Chan et al.

(2006) reported a total of 13,022 AbS-related ESTs from Hordeum

vulgare, 13,058 genes from Oryza sativa, 17,189 from Sorghum

bicolor, 2,641 from Secale cereale, 20,846 from Triticum aestivum,

and 5,695 regulators from Z. mays using the gene index of the TIGR

database (http://www.tigr.org/tdb/tgi/) (Chan et al. 2006). Identifying

these ESTs and incorporating them into widely cultivated elite

cultivars through in vitro mutagenesis, genetic transformation,

tissue culture, and MAS using omics tools have resulted in the

development of several abiotic stress-tolerant plant varieties (Cassia

et al., 2018). However, discovering and maintaining ESTs in a crop is

very tedious and time-consuming as compared to maintaining cDNA

libraries of the transcribed loci, the majority of which come from

DREB/CBF, ERF, NAC, D-ZipI, and WRKY families (Noor et al.,

2018; Jeyasri et al., 2021). Additionally, recent research has identified

and dissected the QTLs for plant height, spike length, and seed

characteristics in recombinant inbred lines by combining linkage

mapping and weighted gene co-expression network analysis

(WGCNA) (Villalobos-López et al., 2022; Wei et al., 2022).

3.1.4 Bio-fortification
“Bio-fortification,” also known as “biological fortification,”

involves enhancing the nutritional value of food crops by

increasing nutrient availability to the consumer population,

utilizing modern biotechnology techniques, conventional plant

breeding, and agronomic practices (Malik and Maqbool, 2020;

Shahzad et al., 2021; Krishna et al., 2023).

Bio-fortification can be achieved by following various

conventional approaches like intercropping and mixed cropping

or by utilizing biotechnology in modifying rhizosphere of the crops.

Intercropping or mixed cropping of cereals along with legumes

employs complementation (partitioning resources or reducing

competition between species) and facilitation (positive interaction

between the species leading to enhanced growth, reproduction, and

survival of both) as the major ecological phenomena leading to

improved resource use efficiency. Complementarity of nutrient
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uptake (N, P, Fe, and Zn) in cereal–legume mixed-cropping/

intercropping systems provides a unique advantage for the system

to be sustainable in the long run (Dissanayaka et al., 2021; Ebbisa,

2022). Furthermore, plant-growth-promoting microorganisms

(PGPMs) enhance the bioavailability of nutrients like P, K, Fe,

Zn, and Si to plant roots through chelation, acidification,

decomposition of organic matter, and suppression of soil-borne

pathogens and can replace inorganic fertilizers and pesticides

(Maitra and Ray, 2019; Karnwal, 2021).

Bio-fortification is a socially, economically, and environmentally

sustainable approach, especially in developing countries, as compared

to alternative fortification strategies. To date, staple crops like rice,

wheat, maize, sorghum, and vegetables such as common bean, potato,

sweet potato, and tomato have been fortified through genetic

manipulation, conventional breeding, and agronomic methods.

Cassava, cauliflower, and banana have undergone bio-fortification

using both transgenic and breeding techniques, while barley, soybean,

lettuce, carrot, canola, and mustard have been bio-fortified through

transgenic and agronomic approaches. Transgenic-based approaches

offer the advantage of targeting multiple crops once a beneficial gene

is identified. Notable successful examples of transgenically fortified

crops include high-lysine maize, high-unsaturated-fatty-acid

soybean, high-pro-vitamin A and iron-rich cassava, and pro-

vitamin A-rich Golden rice. Golden rice, in particular, marked a

significant breakthrough with the potential to combat vitamin A

deficiency (Burkhardt et al., 1997; Ye et al., 2000; Beyer et al., 2002;

Datta et al., 2003; Paine et al., 2005).
3.2 Modifying soils

3.2.1 Bioremediation
Bioremediation is a process that primarily harnesses

microorganisms, plants, or microbial/plant enzymes to detoxify

and degrade contaminants in various environments. In modern

crop production, xenobiotics are predominantly organic

compounds that do not readily break down naturally. As a result,

their accumulation in the environment can lead to their entry into

the food chain and water resources, posing risks to the health of

animals and humans (Germaine et al., 2006; Chen et al., 2011).

Plant–microbe associations, such as plant–endophytic or plant–

rhizospheric partnerships, offer potential for enhancing nutrient

uptake and the degradation of organic pollutants, thereby

contributing to environmental restoration (Zhang et al., 2017).

Bioremediation of complex hydrocarbons can be through

natural attenuation/intrinsic bioremediation (using indigenous

microflora for decomposing pollutants), bioaugmentation

(applying potential microbes for faster decomposition), bio-

stimulation (modifying the microenvironment for facilitating

microbial action), and surfactant-assisted biodegradation (Kebede

et al., 2021).

Furthermore, rhizosphere microorganisms can be used to

remove heavy metals from soils through biosorption (adsorption

of heavy metals on the cell wall constituents, i.e., carbohydrates,

proteins, and teichoic acids of microorganisms), bioaccumulation

(accumulation of heavy metals inside the cytoplasm through an
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import-storage system mediated by metal transporter proteins),

bioleaching (solubilizing metal sulfides and oxides from ore

deposits and secondary wastes), biomineralization (conversion of

complex metal ions into carbonates, sulfates, oxides, phosphates,

etc. through metabolic pathways), and biotransformation

(alteration of metal complexes into those with more polarity to

make them water soluble) (Tayang and Songachan, 2021).

Examples of successful utilization of microorganisms for

biosorption of complex hydrocarbons include removal of lead and

cadmium by Staphylococcus hominis strain AMB-2 (Rahman et al.,

2019); and cadmium, lead, and copper by fungi Phanerochaeta

chrysosporium (Say et al., 2001), Spirulina platensis, Chlorella

vulgaris, Oscillatoria sp., and Sargassam sp. (Leong et al., 2021).

Bioaccumulation has been shown in Pseudomonas putida 62 BN

(Rani et al., 2013), Bacillus cereus M116 (Naskar et al., 2020), and

fungi Monodictys pelagic and Aspergillus niger (Sher and Rehman,

2019). Researchers have shown that bioleaching by microorganisms

is an economic as well as eco-friendly approach toward efficient

extraction of metals gold, cobalt, copper, uranium, zinc, etc. from

low-grade ores (Tayang and Songachan, 2021). Even arsenic

bioleaching has been possible with Acidithiobacillus ferrooxidans

and Acidithiobacillus thiooxidans (Zhang and Gu, 2007). Metal

immobilization through biomineralization of metals from Bacillus

sp (Zhang et al., 2019), Acinetobacter sp., and Micrococcus sp.

oxidized toxic As(III) into harmless and less soluble As(III) and

decreased its toxicity, as shown by Nagvenkar and Ramaiah (2010).

Rhizoremediation can bolster phytoremediation by promoting

the growth of microbial communities and their associated activities,

facilitated by root exudation, turnover, and the possible induction of

enzymes responsible for degradation due to the secretion of

secondary metabolites in plants (Didier et al., 2012). Certain

common garden and ornamental plants, including Glandularia

pulchella , Aster amellus , Portulaca grandiflora, Petunia

grandiflora, and Zinnia angustifolia, have been recognized for

their capacity to degrade pollutants and dyes (Khandare and

Govindwar, 2015) and effectively remove polychlorinated

biphenyls from the soil (Erdei, 2005; USEPA, 2005; Erakhrumen

and Agbontalor, 2007; Passatore et al., 2014; Kurade et al., 2021).

Notably, Typha domingensis, in combination with xenobiotics

effluent-degrading endophytic bacteria, achieved a substantial

improvement in the removal of parameters like biochemical

oxygen demand (BOD) (77%), chemical oxygen demand (COD)

(79%), total suspended solids (TSS) (27%), and total dissolved solids

(TDS) (59%) (Shehzadi et al., 2014). An efficient plant–bacterial

synergistic system has been employed for treating substantial

volumes of xenobiotic effluents in wastewater wetlands (Kabra

et al., 2013) (Table 2).

3.2.2 Restructuring soil through composting
Manure fertilization is a sustainable practice by turning harmful

waste into a bioavailable resource. However, improper management

can also lead to serious eco-environmental concerns through release

of pathogens, toxic micro-pollutants, greenhouse gases, and nuisance

odors. Composting, the process of decomposition of complex waste

organic matter into the simpler readily assimilable biomolecules, is a

sustainable way to address the aforesaid problem but is limited by a
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slow rate (Gautam et al., 2012; Singh et al., 2021). The

microorganisms effectively contributing toward composting include

fungi (Ascomycetes, Fungi imperfecti, Basidiomycetes, Trichoderma,

and Phanerochaete), bacteria (Bacillus spp., Cellulomonas, Cytophaga,

and Sporocytophaga), and actinomycetes (Thermoactinomyces,

Streptomyces, Micromonospora, and Thermomonospora). The

process of composting is mediated by extracellular production of

laccase, which facilitates humification and polymerization in livestock

manure. Genetically engineered microbes that produce large amounts

of extracellular laccase not only enhance the fertilizer quality of end

products but also manage their eco-environmental risks by

inactivating pathogens, detoxifying micro-pollutants, and stabilizing

organic nutrients, but the process is quite fast, thus preventing the

loss of C and N into environment (Jiang et al., 2021; Niu et al., 2021).

3.2.3 Microbe-mediated bio-fortification
There are vitamins and minerals that are required in the human

body in trace amounts, but their deficiency is manifested as several

physiological disorders. Many of such vitamins and minerals are not

even synthesized by plants. A good example is Vitamin B12, which

cannot be synthesized by plants; hence, bio-fortification of this

vitamin can be achieved by the help of microbes like bacteria and

archea in the plant rhizosphere (Ku et al., 2019; Krishna et al. 2023).

Phyto-stimulation by plant growth-promoting rhizobacteria (PGPRs)

benefits the plants by increasing the nutrient availability (Kaur et al.,

2020; Chouhan et al., 2021). Recent research has identified the

contribution of PGPRs in the bio-fortification of iron, zinc,

selenium, and other elements in several crops (Kaur et al., 2020;

Singh and Prasanna, 2020; Mushtaq et al., 2021; Khanna et al. 2023).

3.2.4 Bio-fertilizers
Bio-fertilizers are formulations containing live microbes that

contribute to soil fertility enhancement by nitrogen fixation from
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the atmosphere, phosphorus solubilization, and decomposition of

organic matter. This improves nutrient bioavailability and

accessibility to plants, leading to enhanced growth and

productivity (Okur, 2018; Abbey et al., 2019). Utilizing bio-

fertilizers offers several advantages, including cost-effectiveness,

increased nutrient availability, improved soil health and fertility,

protection against soil-borne pathogens, enhanced tolerance to

biotic and abiotic stress, and reduced environmental pollution

(Chaudhary et al., 2021; Chaudhary et al., 2022a). Researchers

may follow diverse approaches like cultivation on selective media,

metabol ic analyses through high-performance l iquid

chromatography-mass spectrometry (HPLC-MS) and gas

chromatography-mass spectrometry (GC-MS), proteomic studies

using two-dimensional electrophoresis and matrix-assisted

laser desorption and ionization coupled to time-of-flight

mass spectrometry (MALDI-ToF/MS), and metagenomic/

metatranscriptomic tools for identifying potential plant growth-

promoting microbes (Pirttilä et al., 2021). Notable examples of bio-

fertilizers include nitrogen-fixing microbes such as Rhizobium,

Azotobacter, Bacillus, Clostridium (Sumbul et al., 2020; Gohil

et al., 2022); phosphorus-solubilizing microbes like Bacillus,

Rhizobium, Aspergillus, and Penicillium (Zhang et al., 2020);

potassium-solubilizing microbes (Bacillus, Clostridium, and

Acidithiobacillus) (Ali et al., 2021; Chen R. Y. et al., 2022); sulfur-

solubilizing microbes (Bacillus, Beggiatoa, and Aquifer) (Kusale

et al., 2021); zinc-solubilizing microbes (Bacillus, Pseudomonas,

and Serratia) (Nitu et al., 2020); phytohormone-producing

microbes (B. thuringiensis) (Batista et al., 2021); siderophore-

producing microbes (Pseudomonas and Bacillus) (Sarwar et al.,

2020); organic matter-decomposing microbes (Bacillus ,

Pseudomonas, and Trichoderma) (Baldi et al., 2021; Galindo et al.

2022); and PGPRs such as Rhizobium, Pseudomonas, and Bacillus

(Khati et al., 2018; Chaudhary et al., 2022b). Bio-fertilizer
TABLE 2 Some examples of use of biotechnologically modified microbial formulations in agriculture.

S.
no.

Trait Microorganisms involved Technique used References

1. Nutrient solubility, crop yield of soybean Pseudomonas spp., Bacillus spp., Klebsiella
spp., Aspergillus spp., and Azotobacter spp.

Liquid bio-inoculant based on sugar and
coconut water

Neneng, 2020

2. Seed germination in Capsicum Serratia liquefaciens CPAC53, S. plymuthica
CPPC55, P. tolaasii P61, and P.
yamanorum OLsSf5

Encapsulation of biofertilizers Quiroz-
Sarmiento
et al., 2019

3. Ca alginate Diuron
herbicide degradation

Delftia acidovorans and Arthrobacter Immobilization Bazot and
Lebeau, 2009

4. Heavy metal bioremediation Cronobacter muytjensii KSCAS2 Biosorption Saranya
et al., 2018

5. Lead and cadmium bioremediation Monodictys pelagic and Aspergillus niger Bioaccumulation Sher and
Rehman, 2019

6. Arsenic bioremediation Acidithiobacillus ferrooxidans and
Acidithiobacillus thio-oxidans

Bioleaching Zhang and
Gu, 2007

7. Bioethanol (1-butanol, isobutanol, and
isopentanol as ethanol
substitutes) production

Yeast (Saccharomyces cerevisiae),
Clostridium thermocellum

Engineering fermentative pathways, non-
fermentative keto acid pathways, and
isoprenoid pathways

Lane et al., 2020

8. Hydrogen production Caldicellulosiruptor Engineering glycolytic pathway Cha et al., 2013
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formulation includes the mixture of selected beneficial strain/s with

a suitable vehicle that preserves the viability of the microorganisms

in either a dormant or metabolically active state during transport,

storage, and application (Schoebitz et al., 2013). A successful

microbial formulation must overcome the conditions of

temperature, humidity, salinity, UV radiation, and water stress

present in the soil besides being effective and competitive against

the native microbial populations of the soil (Glare and Moran-Diez,

2016). Classically, bio-fertilizers may be formulated and applied in

the form of liquid (culture broths or formulations based mainly on

water, mineral, or organic oils) or solids (mixing the

microorganisms with a solid support, such as vermiculite, perlite,

sepiolite, kaolin, diatomaceous earth, natural zeolite, peat, or clay).

However, the failure of these to protect the microbes in drastic

abiotic conditions has paved the way for introduction of bio-

encapsulated microorganisms. The use of encapsulating polymers

like alginate, chitosan, gellan gum, gelatine, agar, bentonite, starch,

and laponite has proven to be highly effective in increasing the

viability of microorganisms by protecting them against the adverse

abiotic conditions (Rojas-Sánchez et al., 2022).

3.2.5 Bio-pesticides
Bio-pesticides are naturally occurring compounds or agents

derived from animals, plants, and microorganisms, including

bacteria, cyanobacteria, and microalgae. They are used for

controlling agricultural pests and pathogens. Key advantages of

bio-pesticides over chemical pesticides include their eco-friendly

nature, target specificity, and non-lethality to non-target organisms.

Bio-pesticides are highly effective even in small quantities and break

down quickly without leaving problematic residues. They employ

multiple modes of action, such as growth regulation, gut disruption,

metabolic poisoning, neuromuscular toxins, and non-specific multi-

site inhibition (Sparks and Nauen, 2015; Dar et al., 2021). These

diverse modes of action against targeted pests reduce the likelihood of

resistance development, which is common with chemical pesticides.

Additionally, when microorganisms are used as bio-pesticides

in the fields, they not only combat pathogens but also contribute to

plant health and soil fertility maintenance through various effects.

Major examples of bio-pesticides include microorganisms like

B. thuringiensis, Pseudomonas aeruginosa, Yersinia, and

Chromobacterium and fungi like Metarhizium, Verticillium,

Hirsutella, and Paecilomyces (Fenibo et al., 2021). Biochemical

pesticides encompass insect pheromones (Ghongade and Sangha

2021; Singh et al., 2021), plant-based extracts and essential oils

(Gonzalez-Coloma et al., 2013; Ujváry, 2001), insect growth

regulators (Feduchi et al., 1985; Arena et al., 1995), and

genetically modified organism (GMO) products, especially RNAi-

based plant-incorporated protectants (PIPs) (Parker and Sander,

2017; Wei et al., 2018; Ganapathy et al., 2021).

However, the wider adoption of biopesticides faces limitations

such as high production costs, challenges in meeting global market

demands, variations in standard preparation methods and guidelines,

determination of active ingredient dosages, susceptibility to

environmental factors, and relatively slower action.
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3.3 Development of alternatives to
petroleum-based fuels for
agricultural equipments

Presently, a significant number of farmers rely heavily on non-

renewable resources like diesel and gasoline to fuel their agricultural

equipment. This dependence poses several challenges: (1) the

depletion of a finite resource, (2) adverse environmental effects,

and (3) vulnerability to unpredictable price fluctuations.

Transitioning to biologically derived fuels, commonly known as

bio-fuels, such as ethanol or biodiesel, could offer a viable solution.

By utilizing crops like maize or soybean for bio-fuel production,

farmers may not only insulate themselves from the uncertainties of

fuel price hikes but also create an alternative revenue stream. This

shift toward bio-fuels aligns with sustainable practices, fostering

both economic resilience and environmental stewardship in the

agriculture sector.

Bio-fuel is the fuel (solid, liquid, and gaseous) extracted from

biomass (living organisms especially plants and microorganisms)

(Braun et al., 2008). For the production of bio-fuels, starch-based

agrowastes are prominently exploited due to their limited utility for

commercial production of animal and human consumables

(Nguyen et al., 2010). There are microorganisms that facilitate the

production of ethanol, bio-diesel, bio-ethers, bio-gas, syngas, and

bio-hydrogen from lignocelluloses degradation and subsequent

glucose fermentation. These include Kluyveromyces marxianus,

Clostridium shehatae, Thermoanaerobacter sp., Saccharomyces

cerevisae, Escherichia coli, Zymomonas mobilis, Pichia stipitis,

Candida brassicae, Mucor indicus, cyanobacteria (Synechocystis

sp., Desertifilum sp., Synechococcus sp., Phormidium corium,

Synechocystis sp., Oscillatoria sp., and Anabaena sp.) (Kossalbayev

et al . , 2020), and microalgae (Scenedesmus obl iquus ,

Chlamydomonas reinhardtii) (Martinez-Burgos et al., 2022).

Biotechnology is revolutionizing the production of ethanol

from cellulose by harnessing genetically modified yeasts and

bacteria, enhancing efficiency and sustainability. However, the

major constraints experienced by engineered microbial cell

factories include metabolic imbalance as a result of nutrient

depletion, metabolite accumulation, evolutionary pressure, genetic

instability, or other stress factors. Hence, bio-prospecting (screening

native strains isolated from diverse sources for novel and functional

enzymes) and analyzing their genome for gene of interest and

metabolome for possible alternate pathways to enhance the biofuel

production can be useful (Kim et al., 2002; Adegboye et al., 2021).

Successful examples include production of higher octane

hydrocarbons (substitutes to ethanol such as 1-butanol,

isobutanol, and isopentanol with improved fuel qualities),

through engineering fermentative pathways, non-fermentative

keto acid pathways, and isoprenoid pathways (Lo et al., 2017;

Adegboye et al., 2021).

Furthermore, genetic engineering plays a pivotal role in

developing high energy-yielding plant varieties, surpassing the

output of existing strains. Additionally, biotechnological

advancements open doors to the conversion of agricultural waste
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into viable fuel sources, making the most of sustainable resources

and minimizing environmental impact.

There are microbes like Gluconobacter sulfurreducens,

Actinobacillus succinogenes, Proteus spp., Shewanella putrefaciens,

Rhodoferax ferrireducens, and D. desulfurcans, which facilitate the

production of bio-electricity (Ieropoulos et al., 2005; Capodaglio

et al., 2013).
4 Conventional vs. modern
natural farming

Conventional natural farming is basically a do-nothing

technique that relies totally on natural inputs for the maintenance

of the agro-ecosystem, thus reducing the use of artificial fertilizers

and industrial pesticides. Agricultural biotechnology also exploits

the natural inputs (microbes, wild relatives of cultivated plants, and

agricultural wastes) but amplifies their effects with the application of

technology in them. Conventional natural farming requires

minimum inputs, hence called ZBNF. On the other hand,

biotechnology-assisted natural farming requires financial support

in research and development, but once the variety/product is ready

to be used in fields, it becomes self-sustainable.

Furthermore, biotechnology is a catalyst for introducing novel

concepts, methodologies, products, and procedures essential for

problem-solving, particularly addressing the specific requirements

of smallholder farmers in developing nations (Thompson, 2008;

FAO, 2011; Yuan et al., 2011). Biotechnology-assisted breeding

stands out for its unique ability to swiftly integrate advantageous

traits from wild crop relatives, enhancing both yield and nutritional

benefits. This approach also widens the spectrum of genes in

agricultural biodiversity, enhancing crop resilience against pests,

diseases, and the impacts of climate change (Asdal, 2008). The

heightened efficiency in selection processes significantly accelerates

breeding cycles, expediting the introduction of new plant varieties.

In contrast, traditional methods often necessitate years to eliminate

unfavorable traits and incorporate desired ones with elite

germplasm background.

Agricultural biotechnology holds the promise of addressing

critical issues in the pursuit of sustainable agriculture. These

challenges include the imperative to produce an ample food

supply within the constraints of diminishing arable land and

finite resources, notably water, all while contending with various

environmental stresses like drought, salinity, and heat.

5 Impact of biotechnology-assisted
natural farming on

Environmental health: Biotechnology-derived crops have often

been associated with concern regarding their potential impact on

species abundance and ecosystem biodiversity. However, the

utilization of bio-herbicides, as opposed to chemical herbicides,

can lead to a reduction in the population and variety of targeted

weeds and weed seeds within agricultural systems, all the while

mitigating greenhouse gas emissions (Chamberlain et al., 2007).
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Additionally, there have been worries about the loss of diversity

within crop species (Gepts and Papa, 2003). Nevertheless, research

focusing on cotton and soybean varieties in the USA suggests that

the introduction of transgenic varieties had little to no discernible

impact on genetic diversity (Bowman et al., 2003; Sneller, 2003).

Furthermore, numerous public sector collections of germplasm

from cultivated crops and their wild relatives exist with the

purpose of preserving genetic diversity.

In comparison to conventional insecticide use, Bt crops

demonstrate an ability to conserve non-target species, resulting in

increased arthropod abundance and diversity (Devine, 2005; Torres

and Ruberson, 2005; Cattaneo et al., 2006). They also facilitate more

effective biological control of pests that are not susceptible to Bt

toxins (Naranjo, 2005).

The non-restricted movements of beneficial arthropods

between different cropping systems can facilitate conservation of

non-target species in nearby (non-transgenic) crops (Prasifka et al.,

2009). One of the major threats to sustainability is the widespread

evolution of resistant pest populations. However, the limited

selection pressure on insect populations by insect-resistant crops

can delay the phenomenon. Furthermore, incorporating the non-

biotech-derived crops known as refuges provides susceptible insects

to mate with any resistant individuals emerging from Bt crops,

resulting in hybrid progeny that cannot survive on insect-resistant

plants (Environmental Protection Agency (EPA), 2001).

Economic status: The concept of natural farming is inherently tied

to the notion of economic sustainability, emphasizing the need for

agricultural practices to be financially viable and capable of generating

adequate income to support the livelihoods of farmers and individuals

in related sectors (Das et al., 2023). Economic incentives play a pivotal

role in driving the widespread adoption of sustainable agricultural

practices. Biotechnology-assisted natural farming, for instance,

facilitates the efficient implementation of precision agriculture,

ultimately leading to cost reduction. The diversification of crops and

livestock offers a means to mitigate risks associated with weather

extremes, market fluctuations, or disease/pest outbreaks.

Incorporating insect-resistant crops into cropping strategies

diminishes the need for expensive chemical insecticides and

pesticides. Modified soils aid in water conservation, thereby

reducing erosion-induced damage within agro-ecosystems. The

preservation of natural resources contributes to the reduction of

irrigation costs and enhances long-term productivity.

Social system: Agriculture, as a sector deeply rooted in

communities, fosters opportunities and collaborative relationships

among farming families and community members. Natural

farming, which relies on natural inputs and involves substantial

human engagement, not only aligns with cultural traditions tied to

farming but also safeguards the community’s cultural identity. It

acts as an avenue for job creation and wealth generation and spurs

economic growth within the community.
6 Conclusion

In conclusion, biotechnology in agriculture has emerged as a

multifaceted tool that encompasses a diverse range of techniques,
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ranging from traditional breeding methods to advanced genetic

engineering. This comprehensive approach has played a pivotal role

in the 21st-century agricultural revolutions, contributing significantly

to enhanced productivity and the socio-economic development of

countries, with agricultural biotechnology standing as a key segment

within the Indian biotech sector. The association of biotechnology

with industrial farming practices has led to misconceptions and a

stringent regulatory framework in many countries. It is crucial to

distinguish between the biotechnological production process and the

safety of the end product, addressing the misperception that underlies

regulatory challenges. Biotechnology, when applied judiciously,

addresses various aspects of agriculture, promoting sustainability in

three major criteria: improving plants, modifying soil, and developing

alternatives to fuel inputs for agricultural equipment.

The integration of functional omics, computational biology, and

advanced techniques like RNA-Seq and GWAS to modify critical

agro-morphological traits in plants besides altering host–pathogen

interactions, signaling mechanisms, and associated proteins holds

promise for disease-resistant high-yielding varieties. These

advancements are crucial for addressing contemporary challenges,

including climate change and resource constraints, in the pursuit of

sustainable agriculture.

As we anticipate a new biotechnological revolution focused on

deciphering gene codes and the “gene revolution,” it is imperative to

foster a balanced understanding of biotechnology’s potential in

synergy with natural farming practices. This synergy holds the key

to pioneering agricultural sustainability through innovative

interventions, encompassing microbe-mediated bio-fortification,

bioremediation, restructuring soil through composting, and

developing alternatives to petroleum-based fuels for agricultural

equipment. By embracing these innovative approaches, we can pave

the way for a sustainable future in agriculture that maximizes

productivity while minimizing environmental impact and

ensuring food security for generations to come.

In terms of environmental sustainability, genetically engineered

crops have proven to be advantageous over conventional insecticides,

conserving non-target species, enhancing arthropod abundance and

diversity, and promoting more effective biological control of pests.

The incorporation of insect-resistant crops not only reduces the need

for expensive chemical inputs but also contributes to soil

modification for water conservation, decreasing erosion-induced

damage and lowering irrigation costs. The implementation of

refuges alongside insect-resistant crops serves as a strategic measure

to delay the evolution of resistant pest populations, emphasizing the

importance of maintaining a balanced ecosystem.

The economic sustainability of natural farming is underscored

by its inherent link to financial viability and income generation for

farmers. Biotechnology-assisted natural farming facilitates precision

agriculture, reducing costs and offering a diversified approach to

mitigate risks associated with weather, market fluctuations, and

disease/pest outbreaks. On a societal level, the social system
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surrounding agriculture is positively influenced by the adoption

of natural farming practices. The alignment of natural farming with

cultural traditions fosters a sense of identity and community

resilience. It serves as a source of job creation, wealth generation,

and economic growth within the community, reinforcing the

interdependence of agriculture with social wellbeing.

In conclusion, the impact of biotechnology-assisted natural

farming on environmental health, economic status, and social

systems demonstrates the potential for a harmonious integration of

technological advancements with sustainable agricultural practices.
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Martıńez-Gómez, P. (2020). Assessment of genetic diversity of cultivated and wild
Iranian grape germplasm using retrotransposon-microsatellite amplified
polymorphism (REMAP) markers and pomological traits. Mol. Biol. Rep. 47, 7593–
7606. doi: 10.1007/s11033-020-05827-3.
frontiersin.org

https://doi.org/10.1111/pbi.12491
https://doi.org/10.1007/s12011-022-03159-w
https://doi.org/10.1126/science.aai8878
https://doi.org/10.3390/agronomy9110764
https://doi.org/10.1016/j.cej.2021.129040
https://doi.org/10.3390/agronomy11050927
https://doi.org/10.1002/bit.27202
https://doi.org/10.3390/plants10061088
https://doi.org/10.1016/j.jhazmat.2021.126278
https://doi.org/10.1007/s00122-020-03534-y
https://doi.org/10.1016/j.jgg.2013.12.001
https://doi.org/10.1016/j.jgg.2013.12.001
https://doi.org/10.1016/j.forpol.2021.102684
https://doi.org/10.1016/j.forpol.2021.102684
https://doi.org/10.1186/s12870-022-03968-0
https://doi.org/10.3390/horticulturae8030222
https://doi.org/10.1016/j.ymben.2016.10.018
https://doi.org/10.30954/2347-9655
https://doi.org/10.3389/fsufs.2020.571402
https://doi.org/10.1007/s12155-021-10358-1
https://doi.org/10.1146/annurev.pp.40.060189.002301
http://www.futureharvest.org
http://www.futureharvest.org
https://doi.org/10.1016/j.biochi.2020.09.020
https://doi.org/10.1186/s12284-015-0065-2
https://doi.org/10.21162/PAKJAS/21.1024
https://doi.org/10.1007/s10646-009-0429-8
https://doi.org/10.1093/ee/34.5.1193
https://doi.org/10.1016/j.eti.2020.101057
https://doi.org/10.1038/s41598-017-00578-x
https://doi.org/10.33258/birex.v2i3.1068
https://doi.org/10.1016/j.biortech.2010.04.053
https://doi.org/10.1016/j.biortech.2021.125906
https://doi.org/10.1016/j.biortech.2021.125906
https://doi.org/10.17582/journal.sja/2018/34.4.986.993
https://doi.org/10.1007/s11248-011-9543-5
https://doi.org/10.1371/journal.pone.0243376
https://doi.org/10.1080/07388551.2017.1378998
https://doi.org/10.26717/BJSTR
https://doi.org/10.1002/ps.1015
https://doi.org/10.1038/nbt1082
https://doi.org/10.1021/acs.est.7b03456
https://doi.org/10.1016/j.jhazmat.2014.05.051
https://doi.org/10.3390/microorganisms9040817
https://doi.org/10.3390/microorganisms9040817
https://doi.org/10.1201/9781351073189
https://doi.org/10.1002/aepp.13084
https://doi.org/10.29312/remexca.v10i8.1548
https://doi.org/10.1002/jobm.201900024
https://doi.org/10.1002/cche.10607
https://doi.org/10.1007/s13213-012-0545-1
https://doi.org/10.1007/s11033-020-05827-3
https://doi.org/10.3389/fpls.2024.1280846
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Badiyal et al. 10.3389/fpls.2024.1280846
Rhodes, D. H., Hoffmann, L., Rooney, W. L., Herald, T. J., Bean, S., Boyles, R., et al.
(2017). Genetic architecture of kernel composition in global sorghum germplasm. BMC
Genomics 18, 1–8. doi: 10.1186/s12864-016-3403-x.

Risk, J. M., Selter, L. L., Chauhan, H., Krattinger, S. G., Kumlehn, J., Hensel, G., et al.
(2013). The wheat Lr34 gene provides resistance against multiple fungal pathogens in
barley. Plant Biotechnol. J. 11, 847–854. doi: 10.1111/pbi.12077.

Rojas-Sánchez, B., Guzmán-Guzmán, P., Morales-Cedeño, L. R., Orozco-Mosqueda,
M. D. C., Saucedo-Martıńez, B. C., Sánchez-Yáñez, J. M., et al. (2022). Bioencapsulation
of microbial inoculants: mechanisms, formulation types and application techniques.
Appl. Biosci. 1, 198–220. doi: 10.3390/applbiosci1020013.

Sanahuja, G., Banakar, R., Twyman, R. M., Capell, T., and Christou, P. (2011).
Bacillus thuringiensis: a century of research, development and commercial applications.
Plant Biotechnol. J. 9, 283–300. doi: 10.1111/j.1467-7652.2011.00595.x.

Santosh Kumar, V. V., Yadav, S. K., Verma, R. K., Shrivastava, S., Ghimire, O.,
Pushkar, S., et al. (2021). The abscisic acid receptor OsPYL6 confers drought tolerance
to indica rice through dehydration avoidance and tolerance mechanisms. J. Of Exp. Bot.
72, 1411–1431. doi: 10.1093/jxb/eraa509.

Saranya, K., Sundaramanickam, A., Shekhar, S., Meena, M., Sathishkumar, R. S., and
Balasubramanian, T. (2018). Biosorption of multi-heavy metals by coral associated
phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. J. Environ. Manage.
222, 396–401. doi: 10.1016/j.jenvman.2018.05.083.

Sarwar, S., Khaliq, A., Yousra, M., Sultan, T., Ahmad, N., and Khan, M. Z. (2020).
Screening of siderophore-producing PGPRs isolated from groundnut (Arachis hypogea
L.) rhizosphere and their influence on iron release in soil. Commun. Soil Sci. Plant Anal.
51, 1680–1692. doi: 10.1080/00103624.2020.1791159.

Say, R., Denizli, A., and Arıca, M. Y. (2001). Biosorption of cadmium (II), lead (II)
and copper (II) with the filamentous fungus Phanerochaete chrysosporium. Bioresource
Technol. 76, 67–70. doi: 10.1016/S0960-8524(00)00071-7.
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