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Agriculture is the primary source of human survival, which provides the most

basic living and survival conditions for human beings. As living standards continue

to improve, people are also paying more attention to the quality and safety of

agricultural products. Therefore, the detection of agricultural product quality is

very necessary. In the past decades, the spectroscopy technique has been widely

used because of its excellent results in agricultural quality detection. However,

traditional spectral inspection methods cannot accurately describe the internal

information of agricultural products. With the continuous research and

development of optical properties, it has been found that the internal quality of

an object can be better reflected by separating the properties of light, such as its

absorption and scattering properties. In recent years, spatially resolved

spectroscopy has been increasingly used in the field of agricultural product

inspection due to its simple compositional structure, low-value cost, ease of

operation, efficient detection speed, and outstanding ability to obtain

information about agricultural products at different depths. It can also separate

optical properties based on the transmission equation of optics, which allows for

more accurate detection of the internal quality of agricultural products. This

review focuses on the principles of spatially resolved spectroscopy, detection

equipment, analytical methods, and specific applications in agricultural quality

detection. Additionally, the optical properties methods and direct analysis

methods of spatially resolved spectroscopy analysis methods are also reported

in this paper.
KEYWORDS
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1 Introduction

With the improvement of living standards, people have higher

and higher requirements for the quality and safety of agricultural

products (Rejeb et al., 2022). Nondestructive testing techniques for

the quality of agricultural products have also become more and

more widespread in recent years (Tian et al., 2023). With the

development of optical technology, some efficient and mature

optical nondestructive detection techniques have emerged (Mei

and Li, 2023; Mohd Ali et al., 2023), such as visible and near-

infrared (Vis-NIR) spectroscopy (Guo et al., 2023) and

hyperspectral imaging (HSI) (Chen et al., 2021; Tian et al., 2021;

Zhang et al., 2022; Zhao et al., 2023), which have been widely used

in nondestructive quantities for physical and chemical

characterization of agricultural products. These optical inspection

techniques can be mainly used to measure the spectral information

of agricultural products to obtain the diffuse reflectance (or

transmittance) of the samples and then combine this spectral

information with existing chemometrics algorithms to establish a

prediction model for the quality of agricultural products. Although

existing intelligent information processing techniques are more

mature, such as deep learning and machine learning (Audu and

Aremu, 2021; Dhanya et al., 2022; Ryo, 2022), these methods have

been widely developed and can further enhance the ability to detect

the quality of agricultural products. Nevertheless, the spectral

information which has already been obtained, can be only

analyzed by these methods, and if the spectral information

obtained is better, then the quality of agricultural products will be

more accurately detected. When light enters the surface of an object,

a series of optical phenomena such as scattering and absorption will

occur, and this optical information is very important for the

detection of the quality of the spectrum. The common spectral

acquisition methods often produce significant errors and cannot

accurately describe the absorption and scattering information of the

light. In order to describe more accurately the laws of propagation

of light in the organization of an object as well as more specific

properties, special studies have been made on optical

properties (OP).

When light enters a turbid medium, a series of optical

phenomena occur, such as reflection, refraction, absorption, and

scattering. Absorption and scattering of light are the most dominant

OP of light in biological tissues. The absorption coefficient (µa) and

the reduced scattering coefficient (µs’) are specific descriptions of

the absorption and scattering properties of light. The µa is mainly

related to the chemical composition of the biological tissue, while

the µs’ is closely associated with the structural and physical

properties of the sample tissue. Conventional optical inspection

techniques can only detect the total effect of light absorption and

scattering, but it is not easy to measure the specific parameters of

these OP accurately. Researchers have made great efforts to

distinguish between scattering and light absorption effects in

tissues. Currently, indirect measurement techniques for optical

parameters, represented by time-resolved (TR) (Cubeddu et al.,

2001; Zude et al., 2011; Vanolia et al., 2020), spatial-resolved (SR)

(Ma et al., 2021b; Huang et al., 2022), frequency-domain (FD) (Hu

et al., 2020a), spatial-frequency domain imaging (SFDI) (Hu et al.,
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2018; Sun Z. et al., 2021) and integrating sphere (IS), are used by

measuring intact or partial tissue via obtaining certain specific

parameters (such as diffuse reflectance R, diffuse transmittance T,

and collimated transmittance Tc, etc.) of intact tissue or slices and

combining them with specific optical transmission models and

inversion algorithms, the optical parameters of the sample can be

obtained indirectly, and the absorption and scattering properties of

tissues from light can be separated or obtained simultaneously, thus

the chemical and physical information of sample can be eventually

reflected. Compared with other detection techniques towards

optical properties, spatially resolved spectroscopy (SRS) is simple,

low cost, and is widely used and relatively mature in nondestructive

testing of agricultural products.

SRS was initially used in the medical field to determine the

absorption and scattering properties of light in blood with two

parallel optical fibers (Reynolds et al., 1976). This technique is

mainly used to measure the diffuse reflection of light at different

distances from the sample surface via a point light source and to

calculate the absorption and reduced scattering coefficients of light

in biological tissues by combining the diffuse reflection equation of

light. It has a banana-shaped transmission path, as shown in

Figure 1. As the distance between the light source and the

detector increases, the SRS method can detect deeper, which can

obtain more information about the interior of the corresponding

tissue and facilitate the detection of features inside biological tissues.

In summary, SRS is a convenient tool for obtaining spectral

information at different locations. Since SRS integrates spatial and

spectral information, it can help researchers to explore its

correlation with the chemical composition, physical structure and

OP of the samples to be measured, and to build corresponding

prediction models for the purpose of product quality prediction,

which has resulted in a wider application of this technology in more

fields. For example, agriculture (Huang et al., 2022), forestry (Ma

et al., 2021c), industrial construction (Wang et al., 2022), physical

and chemical materials (Bao et al., 2021; Liu et al., 2022),

astronomical observation (Bao et al., 2021; Comerford et al.,

2022), gas detection (Li et al., 2021), biomedicine (Niwayama and

Unno, 2021; De Man et al., 2023) and other fields, providing people

with crucial scientific basis and reliable data support. In the field of

biomedicine, SRS is widely used in human hemoglobin detection,
FIGURE 1

Transmission paths of light.
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skin pathology detection, and so on. It can help doctors to more

accurately identify hemoglobin levels and the human condition so

that they can precisely analyze the cause of the patient illness

(Zaytsev et al., 2022; Zhang et al., 2023). It can also be used to

identify blood species to enhance wildlife protection and preserve

national resource information (Zhang et al., 2021). In the field of

agriculture, SRS technology is more advantageous than traditional

spectral detection technology, and the prediction model established

by this technology can improve the prediction ability of the quality

for agricultural products, which is currently mainly applied in the

quality detection of SSC (Soluble Solids Content), firmness, pH,

bruise detection, etc. (Huang et al., 2018b). It can be seen that SRS

has a very wide range of utilization in detection with a broad

application prospect.

Traditional detection can only obtain the spectrum of a certain

place in the sample without gaining more information, and it

often collects the total effect of absorption and scattering of light,

which may lead to inaccurate prediction results. In contrast, the

SRS method can detect spectra at different distances to obtain

more spectral information. Moreover, the technique has the

advantage of separating the optical properties to analyze the

quality of the sample in a targeted manner. Currently, there are

many studies based on SRS in the quality inspection of agricultural

products, such as the inspection of fruits, meat products, and milk.

Since its detection methods establish models that can predict the

quality of agricultural products more accurately, it has been widely

used in the field of agriculture. There are fewer researchers who

have summarized the principles, development, and applications of

SRS in agriculture. Therefore, the main objective of this paper is to

provide a systematic introduction to different SRS systems and to

review the fundamentals, recent developments, and applications

of SRS in agricultural quality inspection. In addition, although SRS

has been relatively mature in agriculture, it is still faced with many

challenges and difficulties presently. The development status and

development trend of SRS techniques in agriculture are

also reported.
2 Spatially resolved spectral
detection systems

With the development of SRS technology, the application field

has become more widespread. When using this technique to detect

different kinds of samples, people find that some traditional test

samples are difficult to meet the needs of different varying detection

samples. Not only are there irregularities in the tested models, but

modern developments are also demanding faster, more convenient,

and more efficient detection configurations or systems, as well as

higher detection accuracy and lower device costs. Therefore,

researchers are constantly researching and developing more

appropriate spatially resolved related detection systems. The

following are the existing spatially resolved spectral detection

systems at this stage, which mainly include single-fiber, fiber-

array, charge-coupled device (CCD) line-scan, hyperspectral line-

scan, and multi-channel hyperspectral detection systems.
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2.1 Single fiber system

The earliest form of spatially resolved spectral detection was to

detect spectral information from different distances by two parallel

optical fibers in contact with the object under test (Reynolds et al.,

1976). This approach is known as the single fiber system. Only two

optical fibers are needed; one is connected to a light source to

provide a stable optical signal, and another is connected to a

spectrometer to receive the signal. The two fibers follow a certain

distance to obtain spatially resolved spectra. This type of format is

the simplest, but a large error still exists; it is hard to ensure that the

light source-detector distance (SDD) is accurate as well as stable

when the fiber is moving, and the two fibers also must be as close as

possible to the object under test, so as to avoid the impact of stray

light on the quality of the spectral information.

To avoid the impact of manual detection on the experiment, Xia

et al. fixed the light source fiber and the detection fiber by a

mechanical device (Xia et al., 2007), as shown in Figure 2, which

used a 20W halogen lamp (HL-2000-FHSA-HP, Ocean Optics Inc.,

Dunedin, USA) as the light source. It is connected to an optical fiber

and illuminates the sample surface at an incidence angle of 40°. The

detection fiber, connected to the spectrometer, is perpendicular to

the sample surface. The position of the detection fiber is moved by a

translation device to detect the spectral information at different

distances. Both the source and detection fibers have a core diameter

of 400 μm, and the closest distance between the two fibers is 1.5 mm

to avoid fiber collisions.

For more portability and ease of operation, Ye et al. developed a

slidable ring device consisting of a halogen lamp LA-150ue-A

(Hayashi Co., Japan), a removable detection fiber ring
FIGURE 2

Single fiber optic inspection device (Xia et al., 2007).
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illuminator, and a Mini-Spectrometer BLACK-Comet-SR100

(StellarNet Inc., USA) (Ye et al., 2021), as shown in Figure 3A.

Measuring with the ring illuminator close to the surface of the fruit

(Figure 3B). Figure 3C shows a schematic diagram of the ring

illuminator. A halogen light source enters the ring illuminator

through an optical fiber to form a ring beam, as shown in

Figure 3D. As the device inside and outside the machine have the

effect of shading to reduce the reflection of light from the sample

surface, the spectrum is received only through the small hole in the

middle of the signal to reduce the impact of mixed spectral

information. The detector and light source are in contact with the

sample, and the spectral information is detected by moving the

position of the detection fiber in the center of the ring.

The single fiber moving detection form is simple in structure,

easy to operate, low cost, and flexible. It can select the optimal

detection SDD so that the collected information is more

representative. However, this method is easily affected by many

factors, such as the accuracy and stability of the moving platform,

the strength of the light source fiber and the acquisition fiber fixed,

the extent of contact between the measured sample irregularities

and the acquisition fiber, all of which can make the system have a

significant error. In addition, the single fiber detection form has a

high demand on the fiber diameter, which requires the fiber

diameter to be as thin as possible so that the light SDD can be

closer. Xia et al. reduced the light SDD because of the limitation of

the fiber diameter adjusted, thereby adjusting the incident light

angle (Xia et al., 2007). Furthermore, the time required for single

fiber detection is long. Therefore, the use of a single fiber detection
Frontiers in Plant Science 04
format is not friendly for collecting a large number of samples, and a

faster and more efficient detection system needs to be developed.
2.2 Fiber array type system

Due to the significant error of a single fiber optic collection

system, the acquisition process of each distance can only follow the

sequence to collect, which is time-consuming and laborious, and

there will be a phenomenon of missed collection, so the researchers

have developed a form of detection based on fiber optic arrays to

achieve the simultaneous acquisition of multiple distances. Zhou

et al. evaluated the OP of turbid media utilizing a multi-fiber

detection format (Zhou et al., 2015), as shown in Figure 4. The

system was used to collect spatially resolved diffuse reflections at

633 nm with a light source (HL-2000, Ocean Optics, USA), an

illumination fiber, six detection fibers, and a spectrometer

(QE65pro, Ocean Optics, USA). All the acquisition fibers are

connected to a multiplexer, and the spectral signal is transmitted

to the spectrometer through the multiplexer.

Spectral information for every distance can be read by a fiber

array device connected to the multiplexer. Nevertheless, the

sequential reading of each spectral information needs to be set

up, and the setup is complicated with a longer reading time. Nguyen

Do Trong et al. investigated a new SRS fiber array device (Nguyen

Do Trong et al., 2011), shown in Figure 5, which consists of a

halogen light source (AvaLight-DHc, Avantes, Netherlands), an

illumination fiber and five detection fibers, a spectrometer, a CCD
A B

C D

FIGURE 3

Removable probe fiber optic ring device (Ye et al., 2021). (A) Slideable ring inspection system. (B) Inspection demonstration image. (C) Ring
illuminator object diagram. (D) Ring illuminator schematic diagram.
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camera, data acquisition, and control equipment. Spectral data were

collected at intervals of 0.15 mm between the detection fiber and the

illumination fiber over a range of 0.3-1.2 mm. The setup could split

the diffuse light into multiple wavelengths in the range of 500-1000

nm by means of a spectrometer and project them onto different

areas of a CCD camera (S7031-1008S, Hamamatsu, Japan). Finally,
Frontiers in Plant Science 05
a data acquisition card and a customized LabView program

(LabView 8.5, National Instruments, USA) were used to collect

spatially resolved information.

In order to collect spectral information at more distances, Ma

et al. designed a Vis-NIR SRS system (Ma et al., 2021b), as shown in

Figure 6, which consists of a 5 W halogen light source, a Vis-NIR

HSI camera and 30 silica fibers (core diameter: 100 μm, cladding:

110 μm), with five groups of fibers, each consisting of six fibers, 1, 2,

3, 4 and 5 mm away from the light source, respectively. The 30 silica

fibers installed in this SRS acquisition device including both

horizontal and vertical spatial-spectral information of the sample

under test, which could increase the exploration of the spatially

resolved spectral information.

These fiber optic array-type devices are mainly arranged in the

form of linear arrays (Nichols et al., 1997; Doornbos et al., 1999;

Bogomolov et al., 2017) and circular arrays (Dam et al., 2001;

Nguyen Do Trong et al., 2011; Bridger et al., 2021). Their

arrangement can be designed according to the sample’s shape and

structure’s size. Since the designed fiber array structure is fixed to

detect the spectral information at once, it can save the measurement

time as well as avoid the spectral error caused by the inaccuracy of

the distance during the measurement. However, custom-designed

fibers are more costly and require testing and calibration of the fiber

arrays. The fiber optic array is only suitable for detecting samples

with a flat surface for most agricultural products due to the

irregularity of the sample detection fiber probe not well fitted to

the sample surface. In addition, this system requires contact with
FIGURE 5

Novel fiber optic array device (Nguyen Do Trong et al., 2011).
FIGURE 4

Fiber optic array type inspection device (Zhou et al., 2015).
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the sample surface during the inspection process and is not friendly

to liquids, easily polluted and vulnerable samples, so it needs to be

continuously improved and developed.
2.3 CCD line scan type system

The fiber optic array detection method is suitable for measuring

liquid samples because the integrated array probe can make good

contact with the liquid surface. In addition, it is also well suitable for

flat sample pieces, such as dried apples or tablets (Igne et al., 2015),

etc., but it is easy to contaminate the sample with this contact

detection method, so it needs to be cleaned frequently. In order to

achieve a non-contact measurement method while detecting the

spatially resolved information of the sample, researchers have
Frontiers in Plant Science 06
developed a spatially resolved detection system based on the CCD

line scan method.

The spatially resolved system of CCD line-scan type is also

called monochromatic imaging spatially resolved system, which is

available for detecting the OP of a sample at a single wavelength. As

shown in Figure 7, Kienle et al. (1996) used this approach for

inspection. The system mainly consists of a laser diode as a light

source, which is illuminated by a mirror at an angle of incidence of

5-10° on the object to be measured and detected by a CCD camera,

and then the detected data are read out and processed by

a computer.

Since laser diodes can only emit a single wavelength, this is not

very friendly for analyzing multiple wavelengths. Therefore,

researchers have pooled diodes at several different wavelengths

for detection, which was used by Lorente et al. to detect the early
A B

FIGURE 6

Vis-NIR SRS system (Ma et al., 2021b). (A) SRS detection systems. (B) Internal structure diagram of the fixator.
FIGURE 7

CCD line scan spatial resolution system (Kienle et al., 1996).
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ripeness of citrus fruits (Lorente et al., 2013). As shown in Figure 8,

the system consists of a CCD camera, five solid-state laser diodes

emitting at different wavelengths (532, 660, 785, 830, and 1060 nm),

and a computer. In the acquisition process, the laser diodes are not

integrated together for the acquisition, but the alternating form of

replacing the diode of the corresponding wavelength each time to be

used as a light source, so as to achieve the acquisition of spectral

information at different wavelengths.

Conventional CCD imaging systems do not contain

spectroscopic components inherently, and the acquired images

are ordinary RGB images. Due to the theory of optics, only lasers

or laser diodes can be used as light sources for CCD cameras. This

limits the system to detecting the optical properties of the sample at

a single wavelength. Although, at this stage, there is a way to detect

spectral information in multiple wavelengths using diode module

integration, it is still far from sufficient for analyzing continuous
Frontiers in Plant Science 07
wavelengths. Moreover, the saturation of pixels occurs close to the

light source point, so this area cannot be used for data analysis, and

to avoid saturation, it is usually necessary to limit the exposure time

(Kienle et al., 1996). This makes the CCD line-scan type system not

well suited to the needs of the application, so a more optimized

spatially resolved detection system is urgently needed.
2.4 Hyperspectral line-scan system

For SRS, the more continuous wavelength bands the collected

information contains, the more advantageous it is likely to be for

subsequent data analysis and processing. In pursuit of acquiring

spatially resolved spectral information in continuous bands in a

non-contact system, researchers have combined hyperspectral

imaging (HSI) techniques with SRS, and they have been widely

developed and applied. As shown in Figure 9, Peng and Lu (Peng

and Lu, 2008) used a spatially resolved line-scan system, which

mainly consists of a back-illuminated camera (C4880-21,

Hamamatsu Photonics, Hamamatsu Corp., Japan), a control unit,

an imaging spectrometer (ImSpector V9, Spectral Imaging Ltd.,

Oulu, Finland), a quartz tungsten halogen lamp (Oriel Instruments,

Stratford, CT, USA) and a circular open sample holder with a

diameter of 30 mm. The light source is a 1.5 mm circular beam, and

the hyperspectral imaging system line scan is 1.6 mm from the light

source to avoid oversaturation of the CCD detector pixels.

To make it easier to detect the OP of SRS, as shown in Figure 10.

Cen and Lu (Cen et al., 2011) developed the Optical Property

Analyzer (OPA), which consists of three main hardware

components that are imaging, illumination, and sample

positioning units. The imaging device mainly consists of an

electron-multiplying CCD (EMCCD) camera (LucaEM R604,

ANDORTM Technology, USA), an imaging spectrometer

(ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland), and a
FIGURE 9

Hyperspectral imaging system for acquiring spectral scattering images (Peng and Lu, 2008).
FIGURE 8

Laser diode-based optical properties device (Lorente et al., 2013).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1324881
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xia et al. 10.3389/fpls.2023.1324881
master lens (Xenoplan 1.9/35, Schneider Optics, Hauppauge, USA).

An optical fiber connected to the focusing lens can be used to emit a

point light source. The sample fixation device consists of a

motorized horizontal stage (Twintrac, TSZ8020, US23T22104-

8LS, US Automation, USA) with a maximum speed of 203 mm/s

and a positioning accuracy of 0.0006 mm/mm, a vertically

adjustable stage, and a holder for sample positioning. The

integrated software program for OPA is developed in Microsoft

Visual C#. It can control the light source, camera, and sample

mounting platform for spectral and image data acquisition and also

analyze and display the acquired information in real time to obtain

the final scattering profile, absorption spectrum, reduced scattering

coefficient, etc. Due to the powerful and convenient functions of

this software, the workload of spectral data acquisition and analysis

can be greatly reduced, and the efficiency of the sample acquisition

and analysis can be improved.

Mendoza et al. (2011) developed an online hyperspectral

imaging system (OHIS) based on a hyperspectral line-scan type

(Figure 11), which consists of a back-illuminated EMCCD camera,

an imaging spectrometer (ImSpector V10E, Spectral Imaging Ltd.,

Oulu, Finland) covering a spectral region of 400-1000 nm. A near-

infrared enhancement lens and a halogen light source (Oriel

Instruments, USA). The computer is equipped with an image

acquisition card and a camera acquisition program written in C+

+, through which the camera can be controlled for image

acquisition. In order to capture the samples in real time and to

increase the efficiency of the test, the device also uses a conveyor belt

that can hold the samples. The imaging system of this OHIS

operates at a rate of approximately one in two seconds. This

system is the first to combine spatially resolved line sweep with

online inspection. Although the system has good predictions, it is

costly and still has some errors for curved samples.

While hyperspectral imaging inspection methods can realize the

advantages of contactless, efficient, and high-resolution acquisition,

they also have significant drawbacks. However, it is only suitable for

detecting samples with flat surfaces or objects of considerable size,
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and if the surface curvature of the sample is large, the detected

information will have a large error, so the detection device of SRS

needs to be improved continuously.
2.5 Multi-channel hyperspectral imaging
detection system

The current device is only suitable for detecting samples with

relatively flat surfaces, and the detection probes cannot fit closely for

most agricultural products. When the detection sample is too large,

the existing fiber array system makes it difficult to meet the

requirements of the number of detection fibers and detection

distance due to the limitations of the instrument. Although

hyperspectral detection has excellent advantages, it has a narrow

detection wavelength range and lacks flexibility for curved samples,

which can cause significant errors. Therefore, Huang et al. (2017)

designed a multichannel hyperspectral imaging detection device, as

shown in Figure 12, which was based on a multichannel

hyperspectral imager (Headwall Photonics, Inc., USA). The

multichannel probe consists of a point source and 30 fibers of

three sizes (i.e., 50 μm, 105 μm, and 200 μm). The light source fiber

is connected to a 250 W halogen lamp, and the 30 fibers are

permanently mounted on two sizes of aluminum cubes, giving the

probe the flexibility to measure samples of different sizes and flat or

curved surfaces at distances of 1.5-36 mm.

In general, the proposed SRS detection devices have their own

advantages and disadvantages as well as applicable detection

samples. The characteristics of these detectors are described in

Table 1. Although the single fiber detection system is simple in

structure, lowest cost, and flexible in collection, there will be a large

measurement error and time-consuming, so it is not suitable for a

large number of sample collections. Fiber array type system can
FIGURE 11

Online hyperspectral imaging system (OHIS) (Mendoza et al., 2011).
FIGURE 10

The Optical Property Analyzer (OPA) (Cen et al., 2011).
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A B

FIGURE 12

Multichannel hyperspectral imaging detection device (Huang et al., 2017). (A) Schematic of spatially resolved spectral acquisition. (B) Schematic of
fiber arrangement.
TABLE 1 Summary of studies on the types of detection devices for agricultural products.

Detection
systems

Objects Wavelength(nm)
Detection
distance
(mm)

Characteristics References

SF Beef 490-950 Incident fiber
Left: 9.0-6.5
Right: 4.0-7.0

Detection flexibility allows the selection of the
optimal distance

(Xia et al., 2007)

Apple 190-1070 2, 4, 6, 8, 10,
12, 14, 16

Easy operation, reduce error (Ye et al., 2021)

Pear 500-1000 -0.15, -0.1,
-0.05, 0,

0.05, 0.1, 0.15

– (Hu et al., 2017)

Onion 710-950 – The laser system has a slightly better optimal
single point ratio than the NIRS system

(Sun J. et al., 2020)

Rabbit 350-1000 5, 10, 15 Detecting distance slidable (Yuan et al., 2022)

FA Milk 550-1690 1-2.5 Optimal combination of minimum fiber counts (Watte et al., 2016)

Milk 400-995 0.28-1.96 Full-spectrum analysis replaced by two
wavelength-specific sensor measurements

(Bogomolov et al., 2017)

Pork 600-1100 6, 9, 12, 15 Improve detection efficiency (Wen et al., 2010; Zhang et al., 2010)

Pork 600-1100 6, 9, 12, 15 Efficient, low cost (Wang J. et al., 2017)

Apple 500-1000 0.3-1.2 Efficient (Nguyen Do Trong et al., 2014a;
Nguyen Do Trong et al., 2014b)

Apple 600-1100 1, 2, 3, 4, 5 Portable, high efficiency (Ma et al., 2021b)

Kiwifruit 660-1000 1, 2, 3, 4, 5 Portable, high efficiency (Ma et al., 2022)

Wood 600-1100 2, 3, 4, 5 Portable, high efficiency (Ma et al., 2021c)

Cattle 500-900 0.5, 1.0, 1.5,
2.0, 2.5

Fiber integration, high efficiency (Palendeng et al., 2020)

(Continued)
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achieve once-time acquisition at different distances to improve

detection efficiency and accuracy, but the cost is higher than

single-fiber detection systems with the need to detect samples as

smoothly as possible, and contact measurements are prone to

sample contamination, so the scope of use is also very limited.

CCD line scan type system can realize non-contact measurements

but cannot collect SRS in the continuous wavelength band. The

hyperspectral line-scan system can acquire spectral information in

continuous wavelength bands and are well suited for the detection
Frontiers in Plant Science 10
of a large number of samples, while they are less friendly to the

detection of samples with curvature, such as apples, peaches,

oranges, etc. Multi-channel hyperspectral imaging detection

system can detect the spectra of some curvature samples, but the

cost is the highest, and there is still a large error for some samples

with large curvature. In general, although these systems have

detected the spatially resolved information of samples to a great

extent, they are still not friendly enough for the detection of

irregular objects because of their detection limitations, so there is
TABLE 1 Continued

Detection
systems

Objects Wavelength(nm)
Detection
distance
(mm)

Characteristics References

CL Milk 800-1065 – Fast, portable and inexpensive (Kalinin et al., 2013)

Apple 650-980 – Detecting distance slidable (Mollazade and Arefi, 2017)

Banana 532, 660, 785, 830, 1060 – Specific wavelength, non-contact (Adebayo et al., 2016)

Citrus 532, 660, 785, 830, 1060 – Specific wavelength, non-contact (Lorente et al., 2013)

Wood 808 Dry: Parallel:
20

Perpendicular:
10

Wet: Parallel:
25

Perpendicular:
15

Non-contact (Kienle et al., 2008)

HL Milk 530-900 1.6-20 Non-contact, easy operation (Qin and Lu, 2007)

Apple 500-1000 1.6-9 Easy to operate (Qin et al., 2007; Qin et al., 2009; Lu
et al., 2010)

Apple 450-1000 – Easy to operate (Peng and Lu, 2008)

Apple 600-1000 – Easy to operate (Huang and Lu, 2010)

Apple 500-1000 0-9 Easy to operate, with analysis software (Cen et al., 2012b; Cen et al., 2013)

Apple 450-1050 (Scatter) 460-
1100 (Vis/SWNIR)

– Realized hyperspectral online detection (Mendoza et al., 2014)

Apple 500-1000 20 Easy to operate, with analysis software (Zhu et al., 2016)

Peach 550-1650 1-9 Easy to operate, with analysis software (Cen et al., 2011; Cen et al., 2012a)

Peach 550-1000 1-9 Easy to operate, with analysis software (Sun Y. et al., 2020; Sun Y.
et al., 2021)

Cucumber 700-1000 37-55 Easy to operate, with analysis software (Lu et al., 2011)

Tomato 500-950 0-10 Easy to operate, with analysis software (Zhu et al., 2015)

Wood 1000-1600 1, 3, 5
(Thicknesses)

Non-contact methods, push-broom manner (Ma et al., 2018; Ma et al., 2019b)

Wood 1002-2130 – Non-contact methods, push-broom manner (Ma et al., 2019a)

Tea 967.11-1700 – Non-contact methods, push-broom manner (Mishra et al., 2019)

MHI Apple 550-1650 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2020b)

Peach 550-1650 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2022)

Tomato 550-1300 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2018b)
(Huang and Chen, 2018)

Tomato 550-1650 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2018c; Huang
et al., 2020a)
SF, Single fiber system; FA, Fiber array type system; CL, CCD line-scan type system; HL, Hyperspectral line-scan system; MHI, Multi-channel hyperspectral imaging detection system.
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still a huge space that could be developed and innovated for the

detection systems of SRS.
3 Development of spatially resolved
spectral analysis methods

SRS collects spectral information at different distances and then

needs to be processed. In most cases, the optical properties are

obtained based on SRS techniques, and then the association

between sample properties and optical properties is analyzed on

the basis of absorption coefficients and reduced scattering

coefficients. Direct analysis is also used to detect the properties by

processing the spectral information at different distances. At this

stage, researchers have done a lot of work on the basis of optical

properties and direct analysis, which provides powerful and

effective support for the development of SRS in the future.
3.1 Optical properties methods

Among the methods of measuring OP in biological tissues,

there are currently two ways: direct and indirect measurement,

respectively. In the direct measurement method, Beer-Lambert’s

Law is used to calculate the OP within the tissue. In this method, the

optical properties of the tissue are calculated by measuring

parameters, such as complete attenuation transmission and

collimated transmission of a slice sample. Although the direct

analysis calculation method is simpler, its detection process is

more complex, requiring slicing and strict requirements for the

thickness of the slice (Cheong et al., 1990). The indirect

measurement method is mainly used to solve the OP by

inversion. Generally, researchers classify indirect measurements

into non-iterative and iterative approaches according to whether

the inversion process includes a parameter iteration step. The non-

iterative approach can be used to solve the optical properties of the

optical transmission model directly from the measured values. One

of the more commonly used methods is the Kubelka-Munk method

(Kubelka, 1948), but the accuracy of its measurements is not high,

requiring assumptions on various conditions. The iterative

approach is to evaluate the OP by inverting the parametric

equations for several iterations so that the measured values are

within the specified error range. Although this method is more

complicated, the measured optical properties are more accurate

than other methods. Spatially resolved techniques are also usually

applied by using indirect iterations to find the OP within the

sample tissue.

For the transmission of light in biological tissues, a series of

complex optical phenomena occurred, such as absorption, scattering,

reflection, refraction, interference, and diffraction of light. Although

Maxwell’s set of equations based on electromagnetic theory can

describe the light propagation process in tissues mathematically

(Yang et al., 2021; Katsumata, 2022), the equations cannot be

solved directly due to the complexity of biological tissues. In order

to study only the particle properties, such as absorption and

scattering of light, the fluctuating properties of light, such as
Frontiers in Plant Science 11
interference, diffraction, and polarization, can be ignored.

Researchers have proposed the Radiative Transfer Equation (RTE),

which is more accurate in describing the transport properties of light

in tissues (Martelli et al., 2021; Hank et al., 2023), but the model is still

complex and has many parameters. Therefore, researchers usually

have used simplified transport model methods as well as numerical

methods to solve the optical properties (Lu et al., 2020). The

commonly used transport models are the diffusion approximation

and the P3 approximation, which is the theoretical model to describe

the spatially resolved diffuse reflection near the light source. The P3

approximation model is a third-order form of the radiative transfer

model. Since the P3 approximation is more accurate, it can be used in

place of the diffusion approximation (Wang, 2020; Wang, 2022). In

addition, numerical methods include Monte Carlo (MC) simulation

(Chong and Pramanik, 2023; Colas et al., 2023; Lan et al., 2023),

Adding-Doubling model (Xie and Guo, 2020; Sun et al., 2022) and

finite element methods (Morimoto et al., 2020).

The diffuse approximation equation is a simplified form of the

radiative transfer equation, which has the ability to be simplified by

satisfying two assumptions. 1) The medium is a strongly scattering

medium, i.e. ms
0 ≫ ma. 2) The SDD is greater than the mfp’ (mean

free path), i.e. r>mfp’. In addition, the incident light scattering step

in the tissue is considered to be isotropic radiation. The diffuse

approximation equation can be expressed as:

∂F ~r, tð Þ
c ∂ t

+ maF ~r, tð Þ − ∇ · D∇F ~r, tð Þ½ � = S ~r, tð Þ

where c is the spreading speed of light through the medium, is the

radiation fluence rate, ~r = x, y, zð Þ is a point within the medium,

D = 3 ma + m
0
s

� �h i−1
is the diffusion coefficient, S ~r, tð Þ is each

homogeneous light source. This equation can be used to describe

the transmission of light through some objects with geometric

shapes, such as semi-infinite, flat, cylindrical, spherical, etc.

(Farrell et al., 1992; Kienle et al., 1998), which provides a good

application for detection of OP of most samples. Depending on

different illumination methods such as steady-state point

illumination, pulsed point illumination, frequency-modulated

point illumination, and spatially modulated area illumination, OP

techniques have also evolved into spatially resolved techniques,

time-resolved techniques, frequency domain resolved techniques,

and spatial frequency domain techniques (Lu et al., 2020).

Based on the theory of diffuse approximation equations, Farrell

et al. proposed a diffusion-theoretic model for SR steady-state

diffuse reflection in the study of nondestructive determination of

OP in humans (Farrell et al., 1992). The model can be used to

describe the directional dependence of light diffuse reflection in

biological tissues when irradiated by an infinitesimal amount of

light. By comparing the predictions of the model with MC

simulations and with tissue simulation models, it was found that

the model can accurately describe the reflectance at radial distances

as small as 0.5 mm. Thus, the model can provide an effective

method and basis for later researchers to calculate and separate the

OP. In this model, the diffuse reflection of the medium is computed

as a boundary flow from a single isotropic point source located at

the mfp’ depth of the medium transport. The model is applied to

surfaces with matched or unmatched refractive indices. The
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equations of this diffusion model are as follows:

R(r) =
a0

4p
1
mt

mef f +
1
r1

� �
exp −mef f r1
� �
r21

+

1
mt

+
4A

3m 0
t

� �
mef f +

1
r2

� �
exp −mef f r2
� �
r22

2
666666664

3
777777775

where r is the source-detector distance, r1 = z20 + r
� �1=2 is the real

dis tance from the detector to the l ight source , r2 =

z0 + 2zbð Þ2+r2� �1=2
is the length from the mirror light source to

the detector. m
0
eff = 3ma ua + m

0
s

� �h i1=2
is the effective reduction

factor, a0 = m
0
s= ma + m

0
s

� �
is an albedo of transmission, m

0
t = ma +

m}
s , is the overall decays value, z0 = ma + m

0
s

� �−1
is the mfp’, zb =

2AD, A is the object’s internal reflection coefficient, A=1 when the

tissue and surrounding media boundaries match, and A=0.2190

when the relative refractive indices of the tissues n=1.35. While

refractive index is known to be wavelength dependent, most reports

assume that the n is constant, an assumption that is subject to

potential uncertainty, such as for many fruits and foods n=1.35.

Later, Kienle and Patterson (1997) introduced radiant energy

flow rate following Haskell et al. (1994). The diffuse reflectance is

expressed through the brilliant energy flow rate and luminous flux,

which better minimizes errors and thus more precisely characterizes

the transmission of light in biological tissues. This equation can be

expressed as:

F(r, z = 0) =
1

4pD
exp −mef f r1
� �
r1

−
exp −mef f r2
� �
r2

� 	

The diffusive approximation equation can be organized as

follows:

R(r) = C1
4pD

exp −mef f r1ð Þ
r1

−
exp −mef f r2ð Þ

r2

� 	
+

C2
4p

1
m0
t

mef f +
1
r1

� �
exp −mef f r1ð Þ

r21
+ 1

m0
t

+ 2zb

� �
mef f +

1
r2

� �
exp −mef f r2ð Þ

r22

� 	

w h e r e C1 =
1
4p

Z
2p

1 − Rfres  qð Þcosqdw½ � a n d C2 =
3
4p

Z
2p
1 − Rfres  qð Þcos2qdw
 �
are coefficients generated by the refractive

index of the medium and Rfres  qð Þ is the Fresnel coefficient. When

rate of refraction n=1.35, C1 and C2 are 0.1277 and 0.3269, respectively

(Cen and Lu, 2010). This solution is considered to be more accurate in

describing the light propagation process, therefore it is widely used

(Cen et al., 2010).

At present, these two are the most commonly used mathematical

fitting models for spatially resolved spectra, and their analytical

solutions are obtained under extrapolation boundary conditions

(EBC). The source is assumed to be each homogeneous radiation

source at one mfp’ below the sample surface. Therefore, the precision

of OP parameter inversion is not only related to the precision of

instrumental measurements but also depends on the precision of

parameter inversion algorithms. Cen and Lu further optimized the

curve fitting algorithm by using the nonlinear least squares method as
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the Trust-region-reflective least squares method, and the raw data

were logarithmically and integrally transformed and relatively

weighted before fitting to improve the OP predictions (Cen et al.,

2010). The prediction of the OP was enhanced by using logarithmic

and integral transformations of the original data and relative

weighting before fitting.

However, many factors affect the accuracy and error in the

acquisition and processing of the spectra and the inversion of the

parameter equations. Usually, normalization is required before

curve fitting. However, the standard normalization method

directly divides the first value of the spatially resolved diffuse

reflectance spectrum, which contains considerable noise and

acquisition errors. It has a great impact on the inversion of the

later parametric equations. The diffuse approximation equation is

invalid when it is close to the light source, i.e. (r<1 mfp’), and the

reflection signal is weaker, and the signal-to-noise ratio (SNR) is

lower when the acquisition is farther away, which is not conducive

to the inversion of the optical parameters. Therefore, an effective

interval selection for the acquired spatially resolved spectra is also

needed before curve fitting. Farrell et al. suggested that the SDD

should be greater than one mfp’ (Farrell et al., 1992), and Nichols

et al. recommended minimum and maximum distances of SDD are

0.75-1 mfp’ and 10-20 mfp’, respectively (Nichols et al., 1997).

Nevertheless, for most of the unknown samples with unknown OP,

it is impossible to calculate the mfp’ directly. So Wang and Lu et al.

proposed a mean normalization method to optimize the

normalization along with a method to optimize the diffuse

reflectance spectral interval for the inversion of OP based on the

relative error contour (Wang A. et al., 2017).

The inversion of the parametric equations is performed by

fitting the diffuse reflectance spectral data to an analytical solution

of the diffuse reflectance approximation equations to calculate the

absorption coefficients and the reduced scattering coefficients. Cen

and Lu used the spectral SNR to optimize the endpoint of the

spectrum (Cen and Lu, 2010), but the starting point of the spectrum

is fixed at 1.5 mm for systematic reasons, which still leads to large

measurement errors for samples with mfp’ greater than 1.5 mm

measurement error. Therefore, to further solve the problems of

fitting, Wang and Lu proposed the step-by-step parameter

inversion method (Wang A. et al., 2017), which is based on the

OP and the mfp’ obtained by the one-step fitting method, and then

re-determine the better spectral interval based on the optimized

starting point and end point before the second fitting to obtain the

better OP. The method is effective in improving the optical

parameters. This method can significantly improve the inversion

accuracy of optical parameters.

However, in the process of inversion, the traditional inversion

algorithm does not meet the requirements due to the single-layer

and double-layer tissues of the sample under test. The traditional

inversion algorithm is to equate the outer tissue of the sample with

the inner tissue as a layer. For samples with a thin outer skin, the

effect of having a thickness less than the mfp’ will not be significant,

but for pieces with a thicker outer skin, the effect will be more

meaningful if they are equated to a monolayer of tissue. There are

already diffuse reflection equations for light transmission in single-
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and double-layer tissue that can be used as an approximate solution

(Kienle et al., 1998; Cen and Lu, 2009), but the light transmission in

double-layer tissue is a more complex transmission model involves

more parameters, the accuracy of the fitted parameters will be

increasingly poor. Accordingly, the inversion of parametric

equations for multilayer tissues still needs to be continuously

explored and studied by researchers.

The most commonly used method in numerical calculation

methods is MC, which is a statistical method with random

sampling and has been widely used to simulate the propagation

of light (Tarasov et al., 2021; Sassaroli et al., 2022). This method

can simulate the light transmission process by tracking the

trajectory of a massive photon through the tissue and finally

calculate the optical parameters we need. The advantages of MC

are low cost, high accuracy, and high flexibility. However, it also

has obvious drawbacks, which are computationally intensive,

time-consuming, and not conducive to rapid detection, so the

method is often used to test the accuracy of other calculation

methods. When the MC method simulates the light transmission

law in tissues, it mainly simulates the particle properties of light,

i.e., the absorption and scattering of light and other properties. Its

typical simulation specifically includes the processes of photon

generation, initialization, migration, absorption, scattering,

boundary condition processing, and extinction judgment (Wang

et al., 1995). Currently, the program developed by Wang and

Jacques (1992) based on C language can be used for multilayer

organization, which consists of two subroutines, Monte Carlo

Multi-Layered (MCML) and Convolution (CONV), where MCML

is used to simulate the transmission of light beams in the

organization. CONV is used to convolve the simulated data of

MCML and output the results. Based on the disadvantages of MC

time consumption, Hu et al. (2020b) optimized it and accelerated

its simulation. Sun et al. used the Monte Carlo multilayer

(MCML) technique to simulate the propagation of light through

the fruit by comparing it with the diffuse reflection curve, thus

confirming the accuracy of the MC simulation of the OP (Sun C.

et al., 2021).

Although MC is usually used as a reference method and is more

accurate, it needs a huge number of photons to be simulated at a

time, which is computationally intensive and cannot meet the rapid

detection of OP of biological tissues despite the fact that its speed

has been improved. The finite element method (FEM) is also one of

the commonly used numerical methods, which is more flexible and

fast based on accuracy (Vasudevan and Narayanan Unni, 2021). Lee

et al. (2004) used the FEM method to study the propagation of light

in a double-layer medium and found that the accuracy of the

method and MC were almost the same by comparison. Wang

et al. (2016) investigated the optimal computational results of

finite elements under three boundary conditions and

demonstrated that the finite element approach can be used to

improve the measurement of OP for spatially resolved techniques.

Whereas, at this stage, there are few analytical methods using finite

elements in the study of calculating the OP of spatially resolved

spectra, which is a promising method for the numerical calculation

of OP.
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3.2 Direct analysis methods

While analysis methods based on OP can find absorption

coefficients and approximate scattering coefficients more

accurately, they are labor-intensive, algorithmically complex, and

have large accuracy errors. In order to directly and accurately

analyze spatially resolved (SR) spectra as well as to simplify the

analysis steps, the researchers proposed a direct analysis method.

Huang and Chen (2018) proposed an analytical method of

spectral combination when employing a multichannel SRS system

to detect tomatoes by creating a Partial Least Squares Discriminant

Analysis (PLSDA) model of each of the 15 single SR spectra

combinations to determine the best single SR combination for

classification. Next, the best SR combination was combined with

the remaining 14 SR combinations to select the best two-spectrum

combination, then the best spectrum was combined with the

remaining 13 single SR combinations to create the best tri-

spectral combination, and so on until the accuracy of the

combined SRS for classification is not further improved.

As for quality detection of peach, Huang et al. (2022) proposed

a spectral difference technique to deal with spatially resolved

spectral information. The method initially collects 30 relative

spatial spectra for each sample at different SDD scales, which are

calculated as follows:

R(i) =
Is ið Þ − Ds ið Þ
Ir ið Þ − Dr ið Þ

where R is the relative spectrum, I is the spectral information of the

sample, D is the blackboard, i is for single fiber, i = 1, 2, 3,…, 30, and

the subscripts r and s represent the white Teflon and the sample,

respectively. Since the device has detection fibers arranged

symmetrically, each symmetrical pair of SR spectra is averaged

over the same SDD, resulting in 15 SR spectra whose distances

range from 1.5-36 mm. The difference spectrum is obtained by

differencing the spatially resolved spectrum of the first position

(SR1) with the spatially resolved spectra of the other SDDs with the

following calculation equation:

D ið Þ = R ið Þ − R 1ð Þ,   i = 2, 3, 4, 5,⋯, 15

where R(1) is the SR spectrum at the first SDD of 1.5 mm, and D is

the subtraction spectrum, after that, it is referred to as the

differential reflectance (DR) spectrum, and the final 14 DR

spectra contain different spatial resolution information compared

to the SRS.

Ma et al. (2021b) proposed a method for reference-free

reflectance calculation in assessing apple quality by averaging the

light centers at distances of d mm and d+D mm for the diffuse

reflected light intensity (i) collected by the optical fibers and named

id and id+D, respectively. When the intensity of the spatially resolved

spectrum is iref, the spectral difference between fibers at different

distances can be expressed as:

Adif f = −log10
id+D
iref

 !
− −log10

id
iref

 ! !
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where Adiff is the difference in absorption spectra. The equation can

be simplified as:

Adif f = −log10
id+D
id

� �

In this way, the calculation formula of the spectrum can be

simplified, and the black-and-white correction of the spectrum can

be canceled, which makes the spectral inspection more efficient and

convenient. The ratio of diffuse light intensity (RRatio) is calculated

as follows:

RRatio  =
id+D
id

Finally, smoothing of the spectral data using Savitzky-Golay

filters enables the spectra to achieve better results in

modeling analysis.

The direct analysis method of SRS simplifies the analysis steps,

and although it is not more accurate than the OP method, it has the

same good prediction effect for the quality detection of agricultural

products. There are few direct analysis methods used so far. If a

better direct analysis method can be proposed to predict the quality

of products, not only the analysis method is simple and fast, but also

the quality prediction accuracy is more accurate, then the detection

efficiency of SRS will be significantly improved.
4 Application of spatially resolved
spectroscopy in agricultural products

Although SRS has been widely adopted in the biomedical field,

its application in the agricultural field is still relatively limited. At

present, the application of spatially resolved technology is mainly

concentrated in the field of edible agricultural products, such as

meat, dairy, fruits, and vegetables, and less application in other

areas, such as forestry, animal husbandry, etc. The technology of

detecting the quality or classification of agricultural products by SRS

is more mature. In the subsequent sections, the latest research and

specific applications of SRS in agriculture were presented and

summarized in detail.
4.1 Applications of dairy field

In the field of dairy products, SRS is more widely used in the

detection of milk. Because milk is rich in nutrients such as protein,

fat, vitamins, and minerals, it is very easy to be absorbed by the

human body, so it is very popular among human beings. To ensure

the quality of raw milk or to prevent adulteration during the sale

process, it is necessary to test the quality of raw milk. Watte et al.

developed a global optimizer that can calculate the optimal

configuration of fibers, by which the number of detected fibers

can be minimized while maintaining the validity of the OP

evaluation, making the detection optimal with cost savings. The

design achieved good results for the evaluation of the OP of milk,

with a root mean square error of the prediction (RMSEP) of 0.382

cm-1 and R2 = 0.996 for the reduced scattering coefficient values
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(Watte et al., 2016). Kalinin et al. used a dual-channel short-wave

near-infrared spectrometer as a detection device. The results

showed that the RMSEP of proteins using a combination of

scattering and transmission spectroscopy could reach 0.25% wt.

(Kalinin et al., 2013). Bogomolov et al. developed and utilized a

fiber-optic array-based detection device with eight channels of

probes to analyze the quality of milk and improve the accuracy of

fat and protein detection, The root mean square errors (RMSE) for

the different validation methods were less than 0.10% for fat content

and less than 0.08% for total protein content, respectively.

(Bogomolov et al., 2017). The optimal sensor configuration was

proposed to replace the full spectrum analysis with LED in specific

wavelength bands, which provided a faster and more mature

application for milk detection. Qin and Lu used a hyperspectral

line-scan detection device to analyze the fat content in milk. They

found that the absorption coefficient and the reduced scattering

coefficient at 600 nm were closely correlated with the fat content of

milk, while the R2 were 0.995 and 0.998, respectively, which verified

the feasibility of HSI in detecting the milk content (Qin and

Lu, 2007).

As shown in Tables 1 and 2 in dairy product testing, researchers

have used different spatially resolved detection systems to detect

milk’s fat and protein content to achieve good prediction results.

However, more milk is currently detected, and the approach will

definitely be developed toward a broader range of dairy products in

future applications.
4.2 Applications of meat products field

In the detection of meat products, Xia et al. applied the SRS

technique to the detection of meat products for the first time. They

measured the SRS of beef samples with a single-fiber detection,

obtained the absorption coefficient and scattering coefficient of beef

through the diffuse reflectance equation, and established a

correlation analysis between beef shear force and scattering

coefficient, with a coefficient of determination (R2) of 0.59, which

verified the feasibility of SRS in detecting beef tenderness (Xia et al.,

2007; Xia et al., 2008). Zhang et al. studied the tenderness of pork

using multi-channel SRS and predicted the tenderness of pork by

decreasing the scattering coefficient, which was R2 = 0.8349 for fresh

meat shear, through which the tenderness of pork can be directly

predicted to realize fast and non-destructive detection (Zhang et al.,

2010). Wen et al. investigated myoglobin content in pork and found

that SRS in the short wave range was a feasible method for detecting

myoglobin content with a significant correlation R2 = 0.955 (Wen

et al., 2010). Wang et al. determined the moisture content of the

complete pork using SRS and found that the steady-state SRS was

capable of significantly forecasting the moisture content of the pork

compared to the conventional Y-fiber, with an R2 of 0.8078 for their

model. (Wang J. et al., 2017).

In summary, SRS is currently applied to detect tenderness,

myoglobin and moisture content of meat products. Moreover, this

technique can improve the accuracy of meat quality prediction to a

great extent. Table 2 summarizes in detail the results of research on

meat product quality testing. While relatively few meat products
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TABLE 2 Summary of studies about the quality detection of agricultural products.

Products Species Applications Methods Accuracy References

Dairy Milk Fat and protein contents PLS
RMSEPf ≤ 0.08%
RMSEPp=0.21%

(Kalinin et al., 2013)

Milk Fat and protein contents GA
μa:R

2 = 0.965
μs’:R

2 = 0.996
(Watte et al., 2016)

Milk Fat and protein contents PLSR, JVSPO
RMSEPf<0.10%
RMSEPp<0.08%

(Bogomolov
et al., 2017)

Milk Fat content PLS
μa: R

2 = 0.995
μs’: R

2 = 0.998
(Qin and Lu, 2007)

Meat Beef Tenderness – p<0.0001, R2 = 0.59 (Xia et al., 2007)

Pork Tenderness – μs’: R
2 = 0.8349 (Zhang et al., 2010)

Pork myoglobin – R2 = 0.955 (Wen et al., 2010)

Pork moisture content SPA, PLSR R2 = 0.8078 (Wang J. et al., 2017)

Fruit Apple Firmness and SSC MLR, LCV
F: r=0.88, SEP=5.66N
SSC: r=0.82, SEP=0.75%

(Qin et al., 2007)

Apple Firmness and SSC MLR, MLD

Firmness: R=0.894,
SEP=6.14 N;
SSC: R=0.883,
SEP=0.73%

(Peng and Lu, 2008)

Apple Firmness and SSC MLR, LCV
Firmness: R=0.844
SSC: R=0.864

(Qin et al., 2009)

Apple Bruise detection – – (Lu et al., 2010)

Apple Mealiness PLS-DA Accuracy>93%
(Huang and
Lu, 2010)

Apple Firmness and SSC PLSR
F: rGD=0.892, rRD=0.863
SSC: rGD=0.892, rRD=0.863

(Cen et al., 2012b)

Apple
Mechanical and
structural properties

ANOVA, LSD

Acoustic/impact firmness
GD: r=0.870–0.948
GS: r=0.334–0.993 Young’s modulus
GD:r=0.585–0.947
GS: r=0.292–0.694

(Cen et al., 2013)

Apple
Quality grades: firmness,
SSC

LDA
Scattering technique Firmness: 77.9%-98.2%
SSC: 62.0%-91.7% Vis/SWNIR technique
Firmness: 87.3-97.6% SSC: 77.10-92.3%

(Mendoza
et al., 2014)

Apple
Microstructure,
textural quality

– –
(Nguyen Do Trong
et al., 2014b)

Apple Firmness and SSC PLS
Firmness: R2 = 0.71, RMSEP=9.68N
SSC: R2 = 0.81, RMSEP=0.69%

(Nguyen Do Trong
et al., 2014a)

Apple Bruise detection PLS
Rp=0.848-0.919,
RMSEP=32.4-50.7

(Zhu et al., 2016)

Apple Mealiness classification
PCR, PLSR,
ANN

Non-mealy: 76%
Mealt: 82%
Fresh: 88%
Semi-mealy: 59%

(Mollazade and
Arefi, 2017)

Apple Varieties PLSDA
Classification
accuracies=0.994,

(Huang et al., 2020b)

Apple Firmness and SSC CARS, PLSR
Firmness: R2 = 0.96, RMSEcal=0.37N,
SSC: R2 = 0.87,
RMSEcal=0.71N

(Ma et al., 2021b)

Apple Anthocyanins PLS
Skin: R2>0.95,
Whole flesh R2 = 0.74

(Ye et al., 2021)

(Continued)
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TABLE 2 Continued

Products Species Applications Methods Accuracy References

Peach Maturity/quality assessment
PLS, PCA,
LS-SVM

Firmness: 0.794,
SSC: 0.504,
Skin lightness: 0.898,
Flesh lightness: 0.741

(Cen et al., 2011;
Cen et al., 2012a)

Peach
Tissue structural and
biochemical properties

SPA, PCA Membrane permeability μs’=-0.962-0.743 (Sun Y. et al., 2020)

Peach Bruise detection

ANOVA, LSD
SVM,
PLSDA,
C-SVC

μa=76.25%,
ms’=76.25%,
μa×ms’=84.75%,
μeff=84.5%

(Sun Y. et al., 2021)

Peach Firmness and SSC PLS
Firmness: 0.853,
SSC: 0.839

(Huang et al., 2022)

Peach pear porosity ANOVA
760nm: R2 = 0.66
835nm: R2 = 0.57

(Joseph et al., 2023)

Kiwifruit Firmness, SSC, pH PLSR
Firmness: R2 = 0.37,
SSC: R2 = 0.81,
pH: R2 = 0.59

(Ma et al., 2022)

Pear
Optical property analysis
(μa, ms′)

–
μa=0.10-0.61cm

-1

μs’=12.5-9.5cm
-1 (Hu et al., 2017)

Banana
Chlorophyll, elasticity,
SSC, ripeness

ANN

CH: R=0.9768-0.9807,
EL: R=0.9553-0.9759,
SSC: R=0.9640-0.9801,
RI: classification,
accuracy=97.53%

(Adebayo
et al., 2016)

Citrus Early decay detection GL, LDA Classification accuracy=96.1% (Lorente et al., 2013)

Vegetables Cucumber Defect detection – – (Lu et al., 2011)

Onion Detecting internal rots PLSDA – (Sun J. et al., 2020)

Tomato Maturity classification PLSDA, SVMDA
Classification
accuracy=81.3–96.3%

(Huang and
Chen, 2018)

Tomato SSC, pH PLS
SSC: rp=0.800,
pH: rp=0.819

(Huang et al., 2018a)

Tomato Firmness, SSC, pH PLS
Firmness: R=0.835,
SSC: R=0.623,
pH: R=0.769

(Huang et al., 2018b)

Tomato
Firmness, puncture
maximum force, slope

PLS
F: 0.859,
PMF: 0.917,
SL: 0.948

(Huang et al., 2018c)

Tomato Maturity stages SVMDA Total classification accuracy=98.3% (Huang et al., 2020a)

Tomato Ripeness PLS-DA
Classification
accuracy=88.4%

(Zhu et al., 2015)

Wood
Softwood
silver fir

Dry, wet MC

Dry: μa=0.0048mm-1,
0.0042mm-1,
μs’=1.8mm-1, 13 mm-1,
Wet: μa=0.0045mm-1,
0.0038mm-1,
μs’=0.6mm-1, 2.0mm-1

(Kienle et al., 2008)

Douglas fir
Various densities, grain
directions, thicknesses

PCR, PLS
3mm: R=0.953,
5mm: R=0.987

(Ma et al., 2018)

Five
softwood
(SW)
ten

Classification PCA, QDA QDA=94.0% (Ma et al., 2019a)

(Continued)
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can be tested by this method, SRS has excellent potential for future

applications in meat quality testing.
4.3 Applications of fruit and vegetable field

SRS is widely applied in fruit inspection, mainly for apples,

pears, peaches, kiwifruit, bananas, and citrus. In the detection

process of apples, spatially resolved hyperspectral imaging was to

measure apple OP and relate them to fruit firmness and SSC,

showing that the µa and µs’ data gave the best predictions for the

fruit firmness and SSC, with correlation coefficients (r) of 0.82 and

0.80 for firmness, and 0.7 and 0.59 for SSC respectively. This

provides a fresh approach to detecting the internal quality of

fruits (Qin et al., 2007). Peng and Lu refined the hyperspectral

scattering technique for fruit quantity testing by fitting spectral

scattering curves at each wavelength with ten different forms of

modified Lorentzian distribution functions and comparing the

predictions of fruit firmness and SSC by ten modified Lorentzian

distribution functions using multiple linear regression and cross-

validation methods. The predicted correlation coefficients were

0.894 and 0.883, respectively, which verified the advantages of the

technique in fruit quality testing (Peng and Lu, 2008). Lu et al. used

the absorption scattering properties of apple tissue to predict

bruising of the fruit. The measurement of enhanced scattering

properties was found to be feasible for bruise detection in apples

(Lu et al., 2010). Huang et al. detected the mealiness of apples,

modeled the classification of apple mealiness classes by the partial

least squares (PLS) method, and found that the accuracy of
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establishing a two-level classification was ≥93%. Thus, it validated

the advantages of hyperspectral scattering technology in the

nondestructive detection of the mealiness of apples (Huang and

Lu, 2010). Cen et al. analyzed the physical and structural properties

of apple pulp using a newly developed OPA (Cen et al., 2012b) and

the correlation coefficients of firmness, r=0.870-0.948, and Young’s

modulus, r=0.585-0.947, were obtained for Golden Delicious (GD)

apples, which demonstrated that spatially resolved techniques can

be used to predict internal fruit quality by combining OP (Cen et al.,

2013). Mendoza et al. used short-wave NIR spectroscopy and

scattering to classify apple quality with accuracies ranging from

87.3-97.6% for firmness and 77.1-92.3% for SSC, which validated

the capability of organizing and grading apples by firmness and SSC

(Mendoza et al., 2014). Nguyen Do Trong obtained the scattering

and absorption coefficients of apple slices air-dried under various

conditions pretreated by spatially resolved diffuse reflectance

spectroscopy. Finally, it was found that SRS could detect the

microstructure and quality relationship of air-dried apple slices

without loss (Nguyen Do Trong et al., 2014b). The spatially resolved

diffuse reflectance device (Nguyen Do Trong et al., 2013) was used

to detect the OP of apples (Nguyen Do Trong et al., 2014a). The ma
spectrum was found to be superior to ms’ by comparison, and the

coefficients of determination R2 for firmness and SSC were 0.71 and

0.81, respectively. The results showed that the detection of diffuse

reflectance spectra of optical fibers cannot significantly improve the

prediction performance of SSC. Still, it can be used to better predict

the firmness and SSC of apples by separating the absorption

coefficients and reducing the scattering coefficients. Zhu et al.

utilized hyperspectral scattering to expected damage to apples
TABLE 2 Continued

Products Species Applications Methods Accuracy References

hardwood
(HW)

Hinoki
cypress

Three-dimensional
grain angle

GPR, LRA

GPR: R2 = 0.98,
RMSE=2.2°
LRA: R2>0.90,
RMSE<3.8°

(Ma et al., 2019b)

Wood Tensile strain measurement PCA, PLSR
R2 = 0.86,
RMSE=279.86

(Ma et al., 2021c)

Wood Classification PCA, SVM
Five-fold cross-validation=98.6%,
Test set validation=91.2%

(Ma et al., 2021a)

Animal
Husbandry

Cattle Age PLS, GA, RLT ARMSEP=2.0 years, R2 = 0.63
(Palendeng
et al., 2020)

Rabbit Early pregnancy diagnosis
PLS-DA, CARS, SPA, SPA,
SVM, KNN, Naïve
Bayes

Validation set
Sensitivity=93.18%,
Specificity=94.44%,
Accuracy=93.88%,
Prediction set
Sensitivity=86.96%,
Specificity=90.00%,
Accuracy=90.69%

(Yuan et al., 2022)
JVSPO, Joint variable selection and preprocessing optimization method; MLD, Modified Lorentzian distribution; GD, ‘Golden Delicious’; RD, ‘Delicious’ (RD) apples; ANOVA, Analysis of
variance; LSD, Least significant difference; LDA, Linear discriminant analysis; C-SVC, C-Support Vector Classification algorithm; GL, Gaussian-Lorentzian cross product; rp, Correlation
coefficient of prediction; PCR, Principal component regression; PLS, Partial least squares regression analysis; GPR, Gaussian process regression; RMSE, Root mean square error; LRA, Linear
regression analysis; PCA, Principal component analysis; QDA, Quadratic discriminant analysis; PLS, Partial least squares regression; GA, Genetic algorithm; RLT, Repeated learning-training
method; ARMSEP, Average root mean square error of prediction; MC, Monte Carlo simulations; PLS-DA, Partial least squares-discriminant analysis; CARS, Competitive adaptive reweighted
sampling; SPA, Successive projection algorithm; SVM, Support vector machine; KNN, K-Nearest Neighbor.
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with predictive correlation coefficients Rp=0.848-0.919. The

research revealed that hyperspectral scattering can be used to

assess the bruise susceptibility of apples, which is beneficial for

post-harvest inspection of fruits (Zhu et al., 2016). Mollazade et al.

found a way to classify apple fruits using spatial resolving technique,

which was verified by 76% and 82% accuracy for non-mealy and

mealy apples, respectively (Mollazade and Arefi, 2017). Huang et al.

used a multichannel HSI to classify apple varieties with 99.4%

accuracy using the best spectral classification. They verified the

potential of multichannel hyperspectral imaging systems for apple

variety detection (Huang et al., 2020b). Ma and Xia et al. used a

multi-fiber, spatially resolved measurement system that assessed the

SSC and firmness of apples with an optimal R2 of 0.97 and 0.96,

respectively, validating the technique’s ability to detect apple quality

in a low-cost and portable method accurately (Ma et al., 2021b). Ye

et al. obtained spatially resolved interaction spectra at eight different

source-detector distances (SDDs) on the fruit surface and verified

that the optimal SD could be selected to detect the extent of red

color in the flesh at a specific depth by a model developed for

anthocyanin content estimation (Ye et al., 2021).

In the inspection of peaches, Cen et al. (2011; 2012a) measured

the absorption and reduced scattering coefficients based on the SR

method of HSI to assess peach ripeness and quality, with r of 0.749

and 0.504 for firmness and SSC, respectively. The results suggested

that spatially resolved techniques had good potential for

application. Research by Sun et al. measured the OP of peaches

during quality damage, determined the relationship between optical

parameters and specific structural and biochemical factors, and

found a good correlation at 675 nm (Sun Y. et al., 2020). This study

facilitated the early detection of peach diseases. Sun et al. also

measured the OP of peaches at different ripeness levels using the SR

technique (Sun Y. et al., 2021), with classification accuracies of 85%

and 76.25%, respectively, and these results found that this optical

property was effective in detecting damage in peaches. Huang et al.

evaluated the firmness and SSC of peaches using SRS (Huang et al.,

2022) and improved the prediction of peach quality by

incorporating spectral disparity techniques, with the best r of

peach firmness and SSC being 0.853 and 0.839, respectively.

Joseph et al. used the SRS technique to study the relationship

between peach porosity and light scattering characteristics, and the

results showed that the reduced scattering coefficients at 760 nm

and 835 nm were linearly correlated with the spatially averaged

porosity by R2 of 0.66 and 0.57, respectively, which verified that the

method could realize non-destructive pear porosity assessment

(Joseph et al., 2023).

In addition, Ma et al. verified the feasibility of SRS for the

detection of kiwifruit quality with coefficients of determination R2

of 0.81 and 0.59 for SSC and pH, respectively (Ma et al., 2022). The

OP of the pear was analyzed by Hu et al. (2017). They measured ma
between 0.1-0.61 cm-1, while ms’ decreased with wavelength between
12.5-9.5 cm-1. In this study, it was demonstrated that the OP of

pears is associated with the wavelength and that establishing

standardized slices of the samples helps to enhance the precision

of the measurement of the OP. Adebayo et al. combined OP with

chlorophyll, modulus of elasticity, SSC, and banana ripeness to

develop predictive models. The correlation coefficients of
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chlorophyll, elastic modulus, and SSC were 0.9768-0.9807,

0.9553-0.9759, and 0.9640-0.9801, respectively, and the

classification accuracy of banana ripeness reached 97.53%. This

indicates that bananas with different ripeness levels can be predicted

and categorized by OP, which provides a good and effective method

for nondestructive testing of banana quality (Adebayo et al., 2016).

Lorente et al. predicted early decay in citrus fruits with a

classification accuracy of 96.1%, validating that this technique has

great potential for grading citrus fruits (Lorente et al., 2013).

In the detection of vegetables, Lu et al. used the spatially

resolved technique of hyperspectral imaging to test for defective

pickling cucumbers (Lu et al., 2011). They found that effective

defect detection could be achieved by enhanced scattering

characteristic measurements through analysis of the OP of

cucumbers. Sun et al. developed the SR transmission spectroscopy

system for detecting internal rot onions, and the presence of high

area under curve (AUC) values (0.96 ± 0.02) and Kappa values (0.77

± 0.05) at the stem end of the onion validated the advantages of the

system in detecting onion decay (Sun J. et al., 2020). Huang et al.

designed a multichannel SRS detection device and used it to detect

firmness, SSC, pH with correlation coefficients of 0.835, 0.623, and

0.769, respectively (Huang et al., 2018a; Huang et al., 2018b), The

classification accuracy in tomato maturity assessment was able to

reach 98.3% (Huang et al., 2020a; Huang et al., 2020b), which

verified that OP based on SRS can reasonably predict the quality

of tomato.

Table 2 shows the details of the studies on the detection of

product quality of fruits and vegetables. It shows that SRS has been

widely used in the field of fruits and vegetables, mainly for the

detection of quality characteristics such as firmness, pH, SSC,

maturity, mealiness and bruise, as well as the biochemical

properties of the internal tissues. In the future, the application of

SRS in fruit and vegetable detection will be more mature, the types

of detection will be more abundant, and the accuracy will be higher.
4.4 Applications of forestry field

In the field of forestry industry, SRS is mainly used in the

detection of wood in recent years. Kienle et al. used a spatially and

time resolved approach to study the mechanism of light

propagation in dry and moist softwoods and put forward a

theoretical model for the description of light propagation in

wood, which is supported by the microstructure of softwood

(Kienle et al., 2008). Ma et al. used spatially resolved

hyperspectral detection to examine the OP, grain direction, and

thickness of Douglas-fir at different densities. Correlation

coefficients for 3 mm and 5 mm samples were 0.953 and 0.987,

respectively (Ma et al., 2018). Meanwhile, the device classified

softwoods and hardwoods with an accuracy of 94.1%, which

shows that SRS is highly predictive in wood inspection (Ma et al.,

2019a). In addition, the SRS device was optimized to achieve 91.2%

accuracy in the test set of 15 wood classifications (Ma et al., 2021a).

Moreover, the R2 of the tensile strain of the wood was measured to

be 0.86 using the optimized equipment, which verified the

suitability of SRS for the detection of wood (Ma et al., 2021c).
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Table 2 summarizes in detail the current status of product

quality testing in forestry. It can be found that SRS detection

technology is emerging in the application of forestry quality

testing, and with the progress of technology, this method will be

more widely used in forestry-related testing.
4.5 Applications of animal husbandry field

In the field of animal husbandry, Palendeng et al. used a

spatially resolved method to detect the age of cattle (Palendeng

et al., 2020). The feasibility of the SR technique for estimating the

age of cattle was validated by using the SR diffuse reflectance

spectrometer based on a fiber optic probe to collect skin samples

from the neck of the cattle and assessing the age of the cattle by the

developed PLS model with the lowest average root mean square

error of prediction (ARMSEP) of 2.0 years and R2 = 0.63. Yuan et al.

used SRS to diagnose the possibility of pregnancy in female rabbits

by collecting spectral information at different distances with a

movable distance-type detection fiber (Yuan et al., 2022). The

results showed that the SRS detection method can distinguish

whether a female rabbit is pregnant or not, and the accuracy of

the validation set can reach 90.69%.

From Table 2, it can be found that the application of SRS

technology in animal husbandry-related fields is still rare, and it is

currently only applied to a few animal husbandry tests, mainly for

age and pregnancy detection of animals. However, this technique

shows a strong predictive ability in livestock detection. Therefore,

the method is expected to be widely applied to the detection of other

characteristics of animal husbandry and more livestock animals in

future development.

Generally, SRS technology has been widely used in the field of

agriculture. In the field of dairy this technique is mainly applied to

the detection of protein, fat and other nutrients in milk with better

predicted results. But at present the technique is less used for the

detection of other types of dairy products such as goat milk, camel

milk, etc., and some dairy products such as milk powder, cream,

cheese, etc. Hence there is a good prospect for development in this

field. In the detection of meat products, researchers mainly focus on

the detection of fresh beef and pork, and the qualities detected are

meat tenderness, myoglobin and moisture content. Nevertheless,

the quality of some meat products such as jerky, dried meat, bacon,

sausage, etc. was less tested. In the future, other types of meat can

also be detected, such as lamb, fish, shrimp, etc., through the

detection of its nutrient content to predict the quality of meat

products, which is conducive to providing human beings with more

healthy and nutritious food. SRS has been most used and developed

for fruits and vegetables. Currently, the fruits and vegetables

inspected include apples, pears, kiwifruits, bananas, citrus,

cucumbers, onions, and tomatoes. The main detection of their

SSC, hardness, pH, damage, ripeness, chlorophyll content, etc.

Thus, SRS is expected to achieve more efficient and accurate

quality detection in this field. In the field of forestry, researchers

mainly apply SRS to the classification, moisture, texture, and

thickness detection of wood. In future development, it is expected

to realize the detection of hardness, oiliness, density and damage of
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wood, which has a lot of space for development. In the field of

animal husbandry, the current research is mainly focused on the age

of cows and the pregnancy of rabbits, but in the future, it is expected

to detect more animals and their health level. Overall, SRS has been

more widely used in the field of agriculture at present but still has a

lot of advantages for development. Since this technique can not only

directly analyze the correlation through spatial spectral

information, but also extract specific optical properties to further

explore the relationship between the quality of agricultural products

and OP. Therefore, it is expected that this technology will have

much more effective application potential in future quality

detection in the field of agriculture.
5 Challenges and future trends

SRS has been widely used in agriculture so far due to its stable

performance, low cost, ease of use, and continuous algorithmic

improvement. Importantly, this is mainly because that detection

method can well reflect the characteristics of agricultural products.

Although five different types of SRS, including single fiber, fiber

array type, CCD line scan type, hyperspectral line-scan, and multi-

channel hyperspectral imaging detection system, are relatively

widely used in agricultural products for quality inspection

currently, this technology still faces many challenges and difficulties.

The challenges are mainly in the SRS devices and calculation

methods. In terms of devices, for example, there is no specific

standard for the selection of light sources, and the selection of high-

power light sources can easily damage the external and internal

tissue structure of organisms. In contrast, the selection of low-

power light sources has limited detection distance and cannot

collect satisfactory distant spectral information. To meet the

requirement of detection, the light source should satisfy the

appropriate intensity meanwhile its diameter is often small

enough, especially for small samples such as corn kernels, wheat

seeds, cherries, grapes, and other agricultural products, so that it can

be equivalent to a point light source and reduce the error of solving

the OP of the calculation. The practical arrangement and selection

of optical fiber is also a problematic issue in the device. For single

fiber and fiber array detection devices, the selection of optical fiber is

significant, which not only requires the fiber to be as small as

possible but also the arrangement of the detection distance as

accurately as possible. Besides, for irregular detection objects, the

detection fibers often cannot fit closely due to the curvature of the

sample surface. Although Huang et al. designed a multi-channel

detection device, the approach is only suitable for larger objects with

micro-curvature. Some irregular-shaped and curvature-changed

objects or smaller objects still cannot be detected satisfactorily.

Therefore, how to design a detection fiber that can meet irregular

objects is still an essential and inevitable challenge.

In addition, the stability and precision of the mechanical device

enable more accurate acquisition of spatially resolved spectral

information. Therefore, the design of the mechanics of the SRS is

of great significance. During the spectra acquisition process, the

detection device needs to hold the fiber and the sample firmly in

place. Manual detection often lacks accuracy, which is prone to
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jitter, and has many instabilities. These can undoubtedly have a

negative impact on the spectral quality. As a result, more stable

mechanical devices are needed to replace manual fixation to

improve the stability of the detection system. However, the

mechanical device has different requirements for the detection

fiber, light source, and sample. As for optical fiber detection, it is

not only required that the fiber closely fits the sample but also that

the fiber is moved in a more precise position. However, because of

the irregularity of the measured object and the curvature of the

surface, it is easy for the optical fibers to move without close contact,

and can also damage the surface of the agricultural product if it is

moved too aggressively. In the case of the light source, it is necessary

that the light source is also close-fitting the measured object surface

to avoid too much diffuse light on the spectral information. As for

the sample, the mechanical device should be fixed steadily so that

the collected sample cannot move easily, and it should not be fixed

too tightly to avoid damage or deformation to the sample. So, there

are many difficulties in the design of the mechanical device.

Moreover, the detection accuracy has a great impact on the

subsequent analysis of the spectra. Trying to minimize the impact of

some controllable factors on the accuracy is beneficial to improving the

spectral detection quality. The detection accuracy is affected by various

factors, which are reflected in all aspects of the detection device. For

example, the resolution of the detection instrument, the stability of the

light source, the loss of the detection fiber, and the stability of the

mechanical device might have a negative impact on the accuracy.

Therefore, the designed SRS equipment requires calibration to

guarantee the stability and accuracy of the equipment. Last but not

least, the design cost of SRS is also a problem because the

manufacturing and maintenance costs of SRS detection devices are

very high and usually require the use of expensive optical and

mechanical components. How to improve the detection accuracy of

SRS while reducing the cost is also a demanding challenge to be solved.

At the present stage, direct analysis and OP are mainly used to

deal with spatially resolved spectra in terms of computational

methods. The direct analysis method is simple and efficient, but

this method is less used. Therefore, it is a promising trend and a good

development direction to study the simple and efficient direct analysis

method. In addition, the OP method is complex, but the prediction

accuracy is relatively high. The current OP methods are based on the

diffuse equation theory to separate out the optical characteristics. In

the process of extracting the OP, because of the complexity of the

diffuse equation, the solved values are often not accurate enough and

the computation is huge. The future development of simpler and

more accurate optical equations to extract OP based on the current

research is also an emerging research prevailing trend.
6 Conclusion

Agricultural products, including dairy, meat, fruit and

vegetable, forestry products, and animal husbandry products, are

of great importance to people’s daily lives, depending on their

external and internal quality. Compared with traditional detection

methods, SRS not only provides more spatial information but also

separates out optical properties, so it can be widely used in the field
Frontiers in Plant Science 20
of agriculture. SRS detection systems, including single fiber, fiber

array type, CCD line scan type, hyperspectral line-scan, and multi-

channel hyperspectral imaging detection system, have been

increasingly used for inspecting quality in replacement of manual

grading as they can provide a simple structure, easy to operate, low

cost and non-destructive assessment. With the continuous

development of this technology, many successful applications

have proved that SRS detection systems are powerful and

scientific tools for stable and accurate quality inspection of

agricultural products. This paper reviews the principles,

development, and applications of five various SRS detection

systems for agricultural product quality inspections. Despite the

problems and challenges of this technique, it promises to achieve

online detection with a more simple, portable, and easy to operate

configuration for further widespread application in quality

inspection of agricultural fields.
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