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Stem cells residing in plant apical meristems play an important role during

postembryonic development. These stem cells are the wellspring from which

tissues and organs of the plant emerge. The shoot apical meristem (SAM) governs

the aboveground portions of a plant, while the root apical meristem (RAM)

orchestrates the subterranean root system. In their sessile existence, plants are

inextricably bound to their environment and must adapt to various abiotic

stresses, including osmotic stress, drought, temperature fluctuations, salinity,

ultraviolet radiation, and exposure to heavy metal ions. These environmental

challenges exert profound effects on stem cells, potentially causing severe DNA

damage and disrupting the equilibrium of reactive oxygen species (ROS) and

Ca2+ signaling in these vital cells, jeopardizing their integrity and survival. In

response to these challenges, plants have evolved mechanisms to ensure the

preservation, restoration, and adaptation of the meristematic stem cell niche.

This enduring response allows plants to thrive in their habitats over extended

periods. Here, we presented a comprehensive overview of the cellular and

molecular intricacies surrounding the initiation and maintenance of the

meristematic stem cell niche. We also delved into the mechanisms employed

by stem cells to withstand and respond to abiotic stressors.
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1 Introduction

Pluripotent stem cells, the versatile architects of multicellular organisms, orchestrate

the continual regeneration of organs and tissues, mending the wear and tear of daily life.

This remarkable regenerative potential, harnessed by some plants, enables them to persist

for centuries or even millennia (Sang et al., 2018; McKim, 2019; Hata and Kyozuka, 2021;

Umeda et al., 2021). Stem cells, nestled within their specialized microenvironments, are key

to orchestrating cellular differentiation. These cells, initially undifferentiated, retain the

remarkable ability for self-renewal and the generation of progeny. These progenies, in turn,

may either retain stem cell properties or embark on a journey towards specialized specific

functions (Aichinger et al., 2012; Wang et al., 2020; Nicolas and Laufs, 2022). However,
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continuous differentiation ultimately curtails the ability of cells to

sustain continuous proliferation, underscoring the critical

importance of precise stem cell regulation. Any deviation,

whether in the form of a reduction or excessive proliferation of

stem cells, can lead to pathological states, disrupting the cellular

composition and impairing tissue function. Recent scientific

endeavors in stem cell research have been predominantly devoted

to unraveling the intricacies of initiation, maintenance, and signal

transduction (Sablowski, 2011; Janocha and Lohmann, 2018;

Warghat et al., 2018; Motte et al., 2019; Fujinami et al., 2020; Xue

et al., 2020), often involving the participation of plant hormones

(Lee et al., 2013; Xu et al., 2020; Gomes and Scortecci, 2021;

Yamoune et al., 2021; Li et al., 2023).

For sessile organisms like plants, the challenge of survival hinges

on their ability to adapt to a repertoire of abiotic stresses, including

drought, salinity, temperature fluctuations, exposure to heavy metal

ions, ultraviolet radiation, and other various physical perturbations

(Sun et al., 2020; Markham and Greenham, 2021; Zhang et al., 2022;

Kopecka et al., 2023). These stressors not only affect the

geographical distribution of plants but also exert profound effects

on their growth, development, and, in agricultural contexts, crop

yields (Villalobos-Lopez et al., 2022). The molecular landscape of

plant responses to abiotic stresses is intricate, including signal

perception, signal transduction, transcriptional regulation, post-

transcriptional processing, translation, and post-translational

modifications. Given the pivotal role of stem cells in plant

development, contemporary research has increasingly focused on

elucidating the relationship between plant stem cells and their

responses to abiotic stresses (Gong et al., 2020; Lamers et al.,

2020; Li et al., 2021a; Ubogoeva et al., 2021; Shinozaki and

Yamaguchi-Shinozaki, 2022; Charng et al., 2023). In this review,

we summarized the knowledge surrounding the composition,

initiation, and maintenance of plant stem cells, as well as the

multifaceted mechanisms governing plant responses to abiotic

stresses. Particular emphasis was placed on the intricacies of

signal perception, with a primary focus on the relationship

between plant stem cells and abiotic stresses.
2 Stem cells of the shoot
apical meristem

In plants, the distribution of stem cells spans roots, stems, and

vascular tissues, serving as the self-sustaining units for organ

development. These stem cells, nestled within the apical

meristem, play a pivotal role in the postembryonic development

of plants, including the shoot apical meristem (SAM) responsible

for aboveground growth and the root apical meristem (RAM)

governing root system development. The meristems possess dual

functions, orchestrating both the production of new cells and the

initiation of organogenesis (Aichinger et al., 2012; Liu et al., 2018a).

The intricate mechanism of new cell generation within the

shoot meristem has been illuminated through elegant cell-tracking

experiments. Within the shoot meristem of Arabidopsis thaliana

seedlings, cells in the SAM are distinctly organized into clonally

separate layers. This arrangement, known as the tunica-corpus
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theory, classifies cells into the L1 and L2 layers forming the

tunica and multiple layers at L3 and below constituting the

corpus (Jurgens et al., 1994). This tri-layered structure

characterizes Dicotyledons, while Monocotyledons possess two

layers, and Gymnosperms feature just one. The vertical division

of primordial cells residing in the L1 and L2 layers continuously

expands the surface area of the plant shoot meristem (Wegner,

2000; Gross-Hardt and Laux, 2003). Further categorization of the

SAM, according to the zoning theory, reveals the central meristem

zone (CZ), rib meristem zone (RZ), and peripheral meristem zone

(PZ) (Gross-Hardt and Laux, 2003). Stem cells reside at the apex of

the CZ, with the cluster of cells beneath them, known as the

organizer center (OC), playing a vital role in stem cell population

maintenance (Kerstetter and Hake, 1997; Mayer et al., 1998; Lee and

Clark, 2013; Tanaka et al., 2015; Somssich et al., 2016; Meng et al.,

2017; Negin et al., 2017; Zhang et al., 2017; Su et al.,

2020) (Figure 1A).

The initiation of the SAM involves key regulatory factors,

CLAVATA3 (CLV3) and WUSCHEL (WUS). The expression of

the stem cell marker CLV3 can be detected during embryonic

development in the SAM. WUS, a pivotal regulator of stem cell

homeostasis, is initially expressed in a 16-cell embryonic OC,

dynamically maintaining the stem cell niche size (Mayer et al.,

1998; Jha et al., 2020; Hirakawa, 2021). Plant hormones, especially

auxin and cytokinin, assume a crucial role in regulating stem apical

meristem initiation. WOX2, a WUS homologous gene, participates

in apical meristem initiation by regulating PIN1-dependent auxin

transport during embryogenesis (Lee et al., 2013; Zhang et al., 2017;

Xu et al., 2020; Gomes and Scortecci, 2021; Yamoune et al., 2021; Li

et al., 2023). In addition, various key regulatory factors contribute to

stem cell initiation, such as TOPLESS (TPL), ZWILLE (ZLL),

SHOOTMERISTEMLESS (STM), and WOX2. TOPLESS (TPL)

encodes a member of the Groucho/Tup1-type transcriptional

corepressors. TPL functions as a co-repressor for EAR-domain-

containing transcription factors (Long et al., 2006; Szemenyei et al.,

2008). PLT genes are direct targets of TPL. The phenotype of tpl-1

in the shoot apex of mutant embryos is caused by ectopic expression

of PLT genes (Smith and Long, 2010). Genetic interaction with tpl-1

also casts the homeodomain-leucine zipper III (HD-ZIP III)

transcription factors as key regulators of shoot fates (Smith and

Long, 2010). HD-ZIP III proteins function in promoting “adaxial”

fates in lateral organs and “central” fates in the meristem (Engstrom

et al., 2004). Domain-specific expression of HD-ZIP III and PLT

transcription factors establish shoot and root fates at the poles of the

globular embryo (Jeong et al., 2011). Intriguingly, the tpl-1 mutant

phenotype manifests as the conversion of stems into roots,

unveiling the pivotal role of the TPL protein. TPL engages in

interactions with the auxin repressor IAA12/BDL, thereby

mediating auxin-dependent transcriptional repression and

influencing the init iat ion of shoot stem cel ls during

embryogenesis (Long et al., 2006; Szemenyei et al., 2008).

Another critical protagonist is the ZLL protein, whose expression

is initially detected at the 2-cell and 8-cell embryonic stages. ZLL is

one of the critical SAM regulators, which represses microRNA165/

166 (miR165/166) for SAM maintenance. Levels of miR165/166 in

the zll mutants are abnormally elevated, leading to a reduction in
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the quantity of HD-ZIP III gene transcripts, which is the target of

miR165/166 (Liu et al., 2009). In zll mutants, elevated ARF2

transcription levels and intensified auxin responses result in the

absence of the shoot meristem. Therefore, ZLL initiates stem cell

formation by negatively regulating the auxin signaling pathway

(Moussian et al., 1998; Lynn et al., 1999; Tucker et al., 2008;

Roodbarkelari et al., 2015). The formation of shoot stem cells also

hinges on the STM protein. STM is involved in a negative feedback

regulatory pathway with CUP-SHAPED COTYLEDON (CUC) and

plays a pivotal role in initiating shoot stem cells (Takada et al., 2001;

Hibara et al., 2006). This intricate relationship involves CUC1 and

CUC2 inducing STM expression (Aida et al., 1999). Concurrently,

as STM protein levels rise, they indirectly repress CUC1 and CUC2

gene expressions by activating miR-164a (Spinelli et al., 2011).

Furthermore, STM induces stem cell initiation in a cytokinin-

dependent manner (Jasinski et al., 2005; Yanai et al., 2005). The

WOX2 gene, in contrast, stimulates the up-regulation of the HD-

ZIP III transcription factor, thereby regulating the expression of the

cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE1

(IPT1), which is pivotal in the initiation of shoot stem cells

(Zhang et al., 2017). It’s worth noting that ongoing research

endeavors continue to unveil new key regulatory genes involved

in shoot stem cell initiation, indicating the complexity of these

processes. Plant hormones, particularly auxin and cytokinin, also

exert significant influence during this stage.
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The maintenance of shoot stem cells is governed by the WUS/

CLV negative feedback pathway. Research has shown that the WUS

protein relocates from the OC to the stem cell niche, thereby

activating the expression of CLV3 (Fletcher, 2018; Lopes et al.,

2021), which in turn promotes stem cell production (Yadav et al.,

2010; Yadav et al., 2011). Importantly, a dose-dependent

relationship exists between the WUS protein levels and CLV3

activation (Perales et al., 2016). In Arabidopsis thaliana, CLV3

belongs to the CLV family, with CLV1 and CLV2 representing

transmembrane protein kinases. A feedback regulatory pathway

betweenWUS and CLV3 ensues, where an increase in WUS protein

expression promotes CLV3 expression, consequently enhancing

stem cell division. Conversely, escalating CLV3 protein secretion

inhibits WUS expression, ensuring the maintenance of normal

meristem development (Schoof et al., 2000; Song et al., 2010; Liu

et al., 2013; Daum et al., 2014; Perales et al., 2016; Rodriguez et al.,

2016; Su et al., 2020).

This negative feedback pathway also engages in interactions

with factors in the cytokinin signaling pathway, particularly class B

and class A Arabidopsis Response Regulator (ARR) transcription

factors, collaboratively regulating the size of the SAM (Gordon

et al., 2009; Hwang et al., 2012; Dai et al., 2017). Among these ARR

proteins, class A ARRs are negative regulators of cytokinin, while

class B ARRs are positive cytokinin regulators (Xie et al., 2018). The

WUS protein, for instance, directly inhibits the expressions of
B

C D

A

FIGURE 1

Structure and signaling pathways of meristem stem cells: (A) Structure of shoot meristem stem cells. CZ, central meristem zone; PZ, peripheral
meristem zone; RZ, rib meristem zone; OC, organizer center. (B) Signaling pathways of shoot meristem stem cells. (C) Structure of root meristem
stem cells. QC, quiescent center; CI, columella initial; ELRCI, epidermis or lateral root cap initial; CEI, cortex or endodermis initial; SI, stele initial.
(D) Signaling pathways of root meristem stem cell.
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several class A ARRs, such as ARR5, ARR6, ARR7, and ARR15

(Leibfried et al., 2005), consequently intensifying the cytokinin

response in the SAM. In contrast, class B ARRs, including ARR1,

ARR10, and ARR12, directly activate the WUS expression,

contributing substantially to meristem homeostasis. Moreover,

these ARRs directly repress the expression of YUCs, and

indirectly promote WUS induction (Meng et al., 2017). This

feedback regulation is critical for maintaining the SAM’s size and

promoting overall stability (Chickarmane et al., 2012).

In addition to these feedback pathways, numerous other factors,

frequently involving auxin or cytokinin signaling pathways,

participate in the maintenance of the apical meristem. The

classical auxin response model showed that intracellular auxin is

transported by PIN family proteins in SAM and the auxin signal is

sensed by auxin receptor TRANSPORT INHIBITOR RESPONSE1

(TIR1) (Vernoux et al., 2000; Kepinski and Leyser, 2005). Studies

have illuminated that auxin can indirectly influence theWUS-CLV3

feedback loop by inhibiting the expression of ARR7/15 through MP/

ARF5 (Zhao et al., 2010). The repressor ARF/ARF3, expressed in

the peripheral SAM region, can directly impede the expression of

the cytokinin synthesis gene ISOPENTENYLTRANSFERASE5

(AtIPT5), thereby modulating auxin and cytokinin distribution in

specific SAM regions. This distribution pattern, featuring auxin

predominantly in the peripheral region and cytokinin chiefly in the

central region, fosters stem cell activity and ensures the stable

growth of the SAM (Cheng et al., 2013). Notably, the pivotal

auxin response factor, MP/ARF5, an activator in the ARF, has

been identified as a negative regulator of CLV3 expression. This

regulatory action operates through direct transcriptional inhibition

of DORNROSCHEN/ENHANCER OF SHOOT REGENERATION 1

(DRN/ESR1) (Luo et al., 2018). In addition, the collaborative

synergy between the HAIRY MERISTEM (HAM1/2), proteins

with GRAS domain which function in dictating shoot stem cell

initiation and proliferation, and WUS proteins assumes a crucial

role in shaping the spatial expression profile of CLV3 in the stem

cell region of the outer SAM layer (Zhou et al., 2018; Han et al.,

2020a). In a specific context, the WUS protein initiates the

activation of CLV3 exclusively within the CZ, where HAM1/2

proteins are absent. Conversely, HAM1/2 functions as

gatekeepers, maintaining CLV3 expression at subdued levels

within the RZ. This dual action effectively prevents the WUS-

dependent activation of CLV3 and/or repressing CLV3

transcription (Zhou et al., 2018; Han et al., 2020b; Geng and

Zhou, 2021). Moreover, the SPLAYED (SYD) protein, serving as

an SNF2 chromatin remodeling ATPase, robustly stimulates WUS

transcription. In the sydmutant, this vital transcriptional activation

ofWUS diminishes, resulting in reduced meristem size (Kwon et al.,

2005). Collectively, these factors assume pivotal roles in the

maintenance of shoot stem cell homeostasis, with many of their

functions intricately entwined with the auxin signaling pathway.

STIMPY protein expression is induced by cytokinin in the

Arabidopsis thaliana shoot meristem (Wu et al., 2005; Skylar

et al., 2010). The deficiency of STIMPY, as evident in the stimpy

mutant, leads to decreased expression of ARR5, culminating in a

smaller SAM and pronounced cellular differentiation. Remarkably,

this phenotypic manifestation bears a striking resemblance to that
Frontiers in Plant Science 04
of the wus mutant phenotype, underscoring the collaborative

influence of STIMPY within the cytokinin signaling pathway to

maintain the activity of shoot stem cells. Additionally, pivotal genes

such as KNOTTED1 in maize (Vollbrecht et al., 2000; Zinkgraf et al.,

2017) and STM in Arabidopsis thaliana (Long et al., 1996) are

indispensable for the steadfast development of the meristem, with

their functions profoundly intertwined with the cytokinin signaling

pathway (Vollbrecht et al., 2000). Furthermore, the mutant of the

cytokinin synthesis gene LONELY GUY (LOG) exhibits phenotypic

parallels to the wus mutant, further accentuating the profound

impact of cytokinin on shoot stem cell activity (Chickarmane et al.,

2012). Furthermore, recent research has unveiled the involvement

of epigenetic modification in preserving stem cell fate in the SAM

(Ma et al., 2019b). WUSCHEL acts via regulation of histone

acetylation to control auxin signaling output in stem cells which

allows cells to translate a potent and highly dynamic developmental

signal into stable cell behavior (Ma et al., 2019b). Figure 1B provides

a succinct visual representation of the signaling pathways governing

plant shoot meristem stem cells.
3 Stem cells of the root
apical meristem

Roots are indispensable for plants, as they facilitate water and

nutrient absorption and promote plant development. In

Arabidopsis thaliana , roots can be divided into three

morphological parts: the meristematic zone (MZ), the transition

zone (TZ), and the elongation zone (EZ). The meristematic zone

can be subdivided into the distal meristem (DM) and the proximal

meristem (PM). Within the MZ, we find the stem cell niche,

comprising the quiescent center (QC) at its core, surrounded by

various stem cell populations. A longitudinal section of the

Arabidopsis thaliana root reveals that these surrounding stem cell

populations consist of cortex or endodermis initials (CEIs),

epidermis or lateral root cap initials (ELRCIs), columella initials

(CIs), and stele initials (SI). These regions host complex regulatory

networks to maintain QC stability and ensure normal apical

meristem development (Lee et al., 2013). The formation of the

apical QC and its surrounding stem cell population is essential for

establishing the apical meristem (van den Berg et al., 1995; Sarkar

et al., 2007) (Figure 1C).

As in the case of SAM, root apical meristem formation occurs

during embryogenesis with the plant hormone auxin playing a

crucial role in initiating the apical meristem (Lau et al., 2008; De

Smet, 2010; Brumos et al., 2018; Gomes and Scortecci, 2021). The

initiation of embryonic root stem cells is regulated by ARF5, which

interacts with its auxin-labile inhibitor IAA12/BODENLOS (BDL)

(Rademacher et al., 2012). Additionally, ARF5 promotes auxin

transport from the embryo to the hypophysis precursor by

positively regulating the expression of the auxin transporter PIN1,

thus providing signals for initiating root apical stem cells (Benkova

et al., 2003; Friml et al., 2004; Weijers et al., 2005; Weijers

et al., 2006).

Furthermore, TMO5 and TMO7, the members of the bHLH

transcription factor family, are regulated by ARF5 and function
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downstream of the ARF5-BDL auxin signaling pathway, controlling

the initiation of root apical stem cells (Schlereth et al., 2010). The

ARF5-BDL-mediated auxin signaling pathway also regulates the

initiation of root stem cells through its downstream genes, such as

OBERON1 (OBE1), OBE2, TITANIA1 (TTA1), TTA2, and NO

transmit TRACT (NTT). Mutations in OBE1/2 and TAA1/2 lead

to delayed root tip development or even root-less phenomenon,

akin to the mp mutant phenotype (Saiga et al., 2008; Thomas et al.,

2009; Saiga et al., 2012). Significantly, ARF5/MP can directly bind to

NTT regulatory sequences, promoting its expression during root

apical meristem initiation. NTT encodes a putative zinc-finger

transcription factor, and its presence is essential for apical

meristem formation (Crawford et al., 2015).

To maintain stem cells in the root apical meristem, ensuring the

stable distribution of QC cells is essential. This stability and the

normal development of roots hinge on the consistent arrangement

of QC cells and surrounding stem cells in the root apical meristem.

While other plant species often exhibit more complex root

structures than Arabidopsis thaliana, the straightforward

organization of Arabidopsis roots has made it an ideal model for

plant stem cell research (Timilsina et al., 2019; Wein et al., 2020).

Laser ablation techniques provided insight into the pivotal role

of QC in controlling stem cell activity (van den Berg et al., 1997).

Following the ablation of QC cells, adjacent columella stem cells

(CSCs) cease proliferation and differentiate into starch-containing

columella cells. Simultaneously, cortex and endodermis initials

(CEIs) neighboring the ablation differentiate into CEI daughter

cells. Importantly, stem cell activity is maintained only when cells

are in direct contact with QC. RNAi-mediated downregulation of

RETINOBLASTOMARELATED (RBR) activity impedes the

differentiation of stem cell progeny, resulting in several layers of

undifferentiated cells adjacent to the QC. This experimental

evidence highlights the pivotal role of QC-delivered stem cell-

promoting signals, which are effective within a certain range of

cell diameters and typically diminish in cells not in direct contact

with the QC. Therefore, the QC-delivered stem cell-promoting

signal represents the essential pathway for stem cell maintenance

in Arabidopsis thaliana root tips (Dubrovsky and Ivanov, 2021;

Matosevich and Efroni, 2021; Strotmann and Stahl, 2021; Zhai

et al., 2023).

To ensure the normal growth of plants, it is imperative to

uphold the unique characteristics of stem cells in the root apical

meristem and SAM during the postembryonic growth phase (Yang

et al., 2019; Yu et al., 2019). The WUSCHEL-RELATED

HOMEOBOX5 (WOX5) gene, serving as a specific marker of the

QC within the root apical meristem, plays a crucial role in

regulating the equilibrium between cell division within the apical

meristem and stem cell differentiation. WOX5 ensures the

persistence of terminal stem cells (Sarkar et al., 2007), as

evidenced by the abnormal phenotype observed in wox5 mutants,

characterized by premature differentiation of columella cells.

Conversely, the restoration of WOX5 expression results in

delayed columella cell differentiation (Zhang et al., 2015; Zhai

et al., 2020).

The maintenance of the QC necessitates the functioning of the

PLT and SHR/SCR pathways. A dearth of gene expression within
Frontiers in Plant Science 05
these two pathways can engender disruptions in QC cell

distribution and the untimely cessation of root growth. The PLT

gene encodes a transcription factor featuring the AP2 domain,

fervently promoting cell division within the root meristem. The

loss of PLT gene expression can lead to the loss of the radicle, the

embryonic root. In concert, SHR and SCR, members of the GRAS

transcription factor family, maintain a regulatory relationship, with

SHR being the catalyst for SCR transcription. Subsequently, SCR

perpetuates QC stability, independent of cell-cell interactions

(Sablowski, 2007; Petricka et al., 2012). Additionally, regulating

the nuclear localization of SHORTROOT (SHR) emerges as a pivotal

contributor to the maintenance of the root meristem (Sabatini

et al., 2003).

An intriguing observation pertains to the existence of a negative

feedback regulatory pathway involving WOX5/ACR4/CLE40 in the

root apical meristem. CLE40, a polypeptide akin to CLV3, inhibits

the expression of WOX5 when excessively secreted by columella

cells. This inhibition, in turn, mitigates stem cell proliferation and

fosters cell differentiation within the root meristem, providing a

critical regulatory mechanism (Stahl et al., 2009). Another

significant contributor is Repressor of WUSCHEL1 (ROW1)

protein. Its absence precipitates the ectopic expression of WOX5,

ensuing disruption within the QC region and perturbing cell

differentiation (Zhang et al., 2015). Moreover, WOX5 serves as a

guardian of the root stem cell niche identity, accomplished through

the repression of the differentiation factor CDF4 or the inhibition of

CYCD1;1 and CYCD3;3 activity (Forzani et al., 2014; Pi et al., 2015).

Plant hormones, especially auxin and cytokinin, are intricately

entwined in the preservation of stem cells in the root apical

meristem (Artner and Benkova, 2019; Roychoudhry and

Kepinski, 2022). Auxin regulates QC stability and meristem

activity through three gene classes: PLT, ARF, and PID (Aida

et al., 2004; Friml et al., 2004; Galinha et al., 2007). Among these,

PLT1, PLT2, PLT3, and BBM genes are promoted by auxin

concentration gradients mediated by the PIN protein. They are

also positively regulated by auxin response factors, such as ARF5

and ARF7, contributing significantly to early radicle development

and stem cell maintenance (Aida et al., 2004; Galinha et al., 2007).

PLT gradient formation is associated with de novo organ

development. The auxin–PLT network can act as a core module

to regulate growth. Meanwhile, auxin-PLTs-ARRs molecular

network controls the self-organized patterning of the root

(Mahonen et al., 2014; Santuari et al., 2016; Salvi et al., 2020).

Recent findings have revealed that auxin stimulates the expressions

of tyrosylprotein sulfotransferase (TPST) and several ROOT

GROWTH FACTOR (RGF) genes, thus maintaining the

characteristics of root stem cells by inducing a gradient of PLT

expression (Matsuzaki et al., 2010; Zhou et al., 2010). In contrast,

cytokinin fosters cell differentiation, stifling root apical meristem

division and expansion (Lee et al., 2013). Moreover, cytokinin has

been found to mediate cell differentiation in the root meristem

through the regulation of PIN5-mediated auxin intracellular

transporter or via IAA-amino synthase GRETCHEN HAGEN 3.17

(GH3.17)-mediated auxin homeostasis (Di Mambro et al., 2019). At

the same time, cytokinin can downregulate the expressions of PIN1

and PIN4 while positively upregulating the expression of PIN3 and
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PIN7, thereby orchestrating the size and activity of the root

meristem (Ruzicka et al., 2009; Scacchi et al., 2010). Cytokinin

activates the expressions of ARR1 and ARR2 proteins and

subsequently induces the upregulation of IAA3, which, in turn,

promotes cell differentiation in the root tip transition region (Dello

Ioio et al., 2008; Moubayidin et al., 2010). Furthermore, cytokinin

and auxin cooperate to maintain the size of the root meristem and

ensure root growth through the intermediary action of the SHY2

protein, a repressor of auxin signaling which negatively regulates

the PIN, that is activated by either ARR1 or ARR12 (Dello Ioio et al.,

2008; Moubayidin et al., 2010). A comprehensive model elucidating

the signaling pathways of plant root meristem stem cells is displayed

in Figure 1D.
4 Plant abiotic stresses

The preceding section provided an exhaustive examination of

the architecture, initiation processes, and maintenance mechanisms

of plant meristem stem cells. In this section, we delved into the

kingdom of plant responses to abiotic stresses, with a particular

emphasis on elucidating the intricate mechanisms governing how

plants perceive and respond to these environmental challenges.

Additionally, we explored the intriguing interconnections between

the development of plant stem cells and their responses to various

abiotic stressors (Zhu, 2016; Gong et al., 2020; Zhang et al., 2020a;

Ubogoeva et al., 2021).

We emphasized the plant’s ability to perceive these stressors

through specialized molecular pathways, including osmolarity,

salinity, temperature, and drought. It is noteworthy that each

form of abiotic stress engages unique molecular signaling

pathways tailored to its specific attributes. To commence our

exploration, we scrutinize the intricate process of how plants

sense alterations in osmolarity. Both drought and salinity can

induce high osmotic stress in plant cells. In Arabidopsis thaliana,

the Reduced Hyperosmolality-Induced [Ca2+]i Increase1 (OSCA1)

gene encoding the hyperosmolarity-gated calcium channel takes on

the role of an osmotic pressure sensor. In osca1 mutants,

intracellular Ca2+ influx is reduced, leaf transpiration is deficient,

and plant root growth is inhibited under high osmotic pressure

(Jojoa-Cruz et al., 2018; Liu et al., 2018b; Maity et al., 2019).

Similarly, in Arabidopsis thaliana, the MSCS-LIKE 8 (MSL8) gene,

encoding the membrane tension-gated ion channel, functions as a

sensor of pollen membrane tension induced by low osmotic stress.

Under low osmotic pressure, MSL8 expression is upregulated,

facilitating ion outflow and safeguarding cells against

hypoosmotic stress (Hamilton et al., 2015). These two genes

assume pivotal roles in sensing osmotic pressure signals in plants.

Transitioning to the realm of salinity perception, when plants

confront high-salt environments, they grapple not only with

elevated osmotic stress but also with ion stress induced by Na+

ions. Typically, changes in Na+ signaling pathways coincide with

Ca2+ signaling pathways. In Arabidopsis thaliana, the Monocation-

Induced [Ca2+]i Increases1 (MOCA1) gene encodes a glucuronodyl

transferase responsible for appending a negatively charged

glucuronic acid (GlcA) group to inositol phosphorylated ceramide
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(IPC), resulting in the formation of glycosyl inositol phosphorylated

ceramide (GIPC) sphingolipids that bind Na+ cations (Jiang et al.,

2019). Research has revealed that MOCA1-dependent GIPC serves

as a sensor for fluctuations in environmental Na+ levels, with this

process entailing Ca2+ transporters. In Arabidopsis thaliana, two

highly bona fide Ca2+ permeable transporters, ANNEXIN1

(AtANN1) and AtANN4, come into play (Laohavisit et al., 2013;

Ma et al., 2019a). AtANN1 is indispensable for facilitating salt-

activated Ca2+ inflow into the plasma membrane of root epidermal

cells, while AtANN4, in conjunction with its interacting proteins

Salt Overly Sensitive2 (SOS2) and SOS3-Like Calcium Binding

Protein8 (SCaBP8) (also known as CBL10), regulates Ca2+

signaling changes induced by salt stress, facilitated through a

phosphorylation-dependent negative feedback loop (Ma et al.,

2019a). Salt stress not only perturbs the plasma membrane but

also disrupts cell wall integrity through various mechanisms. In

Arabidopsis thaliana, the LRX-RALF-FER module, including the

Cell Wall Leucine-Rich Repeat Extensins3/4/5 (LRX3/4/5), Rapid

Alkalinization Factor22/23 (RALF22/23), and Receptor-Like Kinase

FERONIA (FER) proteins, emerges as a pivotal component in

sensing salt stress and regulating salt tolerance (Feng et al., 2018;

Zhao et al., 2018a).

Temperature variations, encompassing both heat and cold

stress, can modulate the fluidity of the plasma membrane. Cold

stress perception predominantly centers on Ca2+ channels in the

plasma membrane. In rice, mutations in Cyclic Nucleotide-Gated

Channel (CNGC) ion channel proteins, specifically OsCNGC9,

OsCNGC14, and OsCNGC16, alter temperature stress-induced

Ca2+ signaling and reduce tolerance to temperature stress (Ma

et al., 2015; Cui et al., 2020; Liu et al., 2021; Wang et al., 2021).

Notably, recent research has unveiled the Chilling tolerance

divergence 1 (COLD1) gene as a potential low-temperature sensor.

COLD1, in concert with Rice G-protein-a subunit 1 (RGA1), triggers

a cold stress-induced increase in cytoplasmic Ca2+ levels (Ma et al.,

2015). These findings underscore the critical role of Ca2+ signaling

in temperature perception. Intriguingly, in Arabidopsis thaliana,

diminished Ca2+ influx induced by cold stress is observed in atann1

mutants, resulting in reduced cold tolerance. Remarkably, AtANN1,

involved in temperature perception, is also implicated in salinity

perception in Arabidopsis thaliana, hinting at potential shared

signaling pathways for temperature and salinity perception

(Laohavisit et al., 2013). In addition, nuclear and cytoplasmic

proteins, such as the histone variant H2A.Z and the

photoreceptor phytochrome B (phyB), may contribute to

temperature sensing (Kumar and Wigge, 2010; Jung et al., 2016;

Legris et al., 2016). H2A.Z has been demonstrated to regulate gene

transcription in a temperature-dependent manner (Kumar and

Wigge, 2010), while phyB responds to changes in ambient

temperature by altering its active state (Jung et al., 2016; Legris

et al., 2016; Fujii et al., 2017). These findings suggest that

photoreceptors like phyB may assume crucial roles in sensing

extreme temperature fluctuations. In Arabidopsis thaliana, heat

stress perception is mediated by the transcriptional suppressor

Early Flowering 3 (ELF3). ELF3 is involved in regulating the

expressions of numerous genes associated with growth and

development. As temperatures rise, ELF3 gradually loses its
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inhibitory effect on downstream target genes, resulting in their

activation (Jung et al., 2020). Notably, both heat and cold stress can

affect various physiological and biochemical properties of plants.

Among these, protein denaturation, a phenomenon unique to heat

stress, triggers a specific response mediated by heat shock proteins

(HSPs). These HSPs, typically inhibiting heat stress transcription

factors (HSF) at normal temperatures, relinquish their hold on HSF

as temperature rises, owing to the accumulation of denatured

proteins. This event initiates the heat stress response (Scharf

et al., 2012).

In summation, plants have exhibited a remarkable capacity to

perceive abiotic stresses, such as osmotic stress, salinity stress, and

temperature stress, through different signaling pathways. These

perceptive processes span from ion channels at the plasma

membrane, including Na+ and Ca2+ channels, to components at

the cell surface, such as cell walls, and extend to intracellular

compartments, encompassing the cytoplasm and nucleus. The

profound hydrophilic nature of plants, manifested through their

preference for habitats with high water potential, underscores their

ability to sense soil moisture levels effectively. The timely activation

of stress response mechanisms is essential for plant survival under

drought conditions. Recent studies have indicated that Ca2+

signaling is also involved in the root hydrophilic response

(Shkolnik et al., 2018). miz1 mutants, characterized by diminished

hydrophilicity, exhibit weakened phloem Ca2+ signals. In contrast,

mutations affecting the ER-localized type 2A Ca2+-ATPase (ECA1),

which interacts with Mizu-Kussey 1 (MIZ1) and is inhibited by

MIZ1, result in elevated Ca2+ levels and heightened hydrophilicity

(Shkolnik et al., 2018). Therefore, MIZ1 and ECA1 emerge as key

determinants influencing root hydrophilicity. However, the precise

mechanisms underlying the perception of water potential and

drought conditions warrant further experimental validation. As

the root system senses water deficit in the soil, it can transmit

this signal to aerial parts of the plant. While the exact mechanism

governing this perception remains the subjects of ongoing

investigation, a wealth of evidence implicates abscisic acid (ABA),

H+ (pH), Ca2+, ROS, NO, lipids, small peptides, RNA molecules,
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and physical signals participating in this process. Of particular note,

the small peptide CLAVATA3/endosperm surrounding region-

related 25 (CLE25) has been observed to intensify in response to

plant dehydration. Upon interaction with receptors Barely Any

Meristem 1 (BAM1) and BAM3, CLE25 stimulates the expression of

the Nine-Cis-Epoxycarotenoid Dioxygenase 3 (NCED3) gene,

thereby promoting ABA biosynthesis and enhancing drought

tolerance (Takahashi et al., 2018). While substantial progress has

been made in comprehending some perception mechanisms,

numerous facets of these processes merit further dedicated

investigation. Figure 2 provides a concise visual representation of

plant responses to abiotic stresses.
5 Mechanisms governing plant stem
cell responses to abiotic stresses

In the context of their sessile nature, plants confront

environmental challenges by deploying intricate survival

mechanisms. Central to these adaptive strategies are meristem

cells, the linchpin of plant development governing roots, shoots,

leaves, and flowers (Wang et al., 2020). However, meristem cells are

acutely sensitive to abiotic stresses, including temperature

fluctuations (both cold and heat), salinity, drought, ultraviolet

radiation, and irradiation. These factors can inflict DNA damage

and disrupt the normal division of stem cells, precipitating either

stem cell mortality or aberrant plant development. Nevertheless, the

plant kingdom has honed an assortment of mechanisms to ensure

the persistence of stem cell activity, equipping them to survive

amidst ever-changing environments. Presented below is a

comprehensive elucidation of these mechanisms.

In the face of prolonged or severe stress conditions, apical stem

cells manifest distinctive. Initially, the activity of root apical stem

cells may dwindle or, in extreme cases, succumb to apoptosis.

Concurrently, this milieu incites the division of QC cells.

Etiological agents such as ultraviolet radiation, diverse forms of

irradiation, and specific pharmaceutical agents, including
FIGURE 2

Plant abiotic stress models.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1302046
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1302046
bleomycin and zeocin, serve as instigators of DNA damage and

consequent apoptotic responses in apical stem cells (Fulcher and

Sablowski, 2009; Furukawa et al., 2010; Heyman et al., 2013; Canher

et al., 2020). Perturbations in temperature, especially cold stress,

may similarly usher in the demise of root stem cells. Nevertheless, in

most cases, plants sacrifice selects columella stem cell progeny to

ensure the survival of pivotal stem cells (Hong et al., 2017).

Prolonged exposure to high-intensity radiation elicits QC cell

division, with QC cells exhibiting greater resilience to DNA

damage when juxtaposed with stem cells. QC cell demise typically

materializes only under severe stress circumstances (Fulcher and

Sablowski, 2009; Furukawa et al., 2010). Simultaneously, in

instances of severe damage, such as the removal of the root cap

(Ivanov et al., 2011; Bystrova et al., 2015), exposure to chilling stress

(Hong et al., 2017), significant alterations in water osmotic potential

(Mira et al., 2020), exposure to heavy metal ions (Kozhevnikova

et al., 2007), and heat stress (Heyman et al., 2013; Heyman et al.,

2016), the activation of QC cell division is observed, facilitating the

restoration of root growth.

Importantly, the NAC family transcription factor SUPPRESSOR

OF GAMMA RESPONSE1 (SOG1) assumes a central role in

orchestrating plant stem cell responses to high-intensity UVB

radiation, X-rays, and radiological agents (Fulcher and Sablowski,

2009; Furukawa et al., 2010; Ogita et al., 2018; Ryu et al., 2019). Root

tip responses to radiation and aluminum stress also entail the

cooperative engagement of two cell cycle checkpoint kinases,

ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM

AND RAD3-RELATED (ATR) and aluminum stress (Rounds and

Larsen, 2008; Sjogren et al., 2015).

Simultaneously, the transcription factor ETHYLENE

RESPONSE FACTOR 115 (ERF115) assumes prominence, as it

emerges as a lynchpin in facilitating plant recovery and

regeneration amidst stressful conditions. Under standard

conditions, ERF115 remains confined to QC cells, serving as a

rate-determining regulator of QC division (Heyman et al., 2013).

Upon exposure to stressors such as elevated temperatures or

physical injury, ERF115 can express not only in QC cells, but also

in adjoining areas of cell demise, and the inner cortex. This

activation instigates a cascade effect, prompting stem cells to

engage in restorative cell division (Heyman et al., 2013; Heyman

et al., 2016; Zhou et al., 2019b; Canher et al., 2020). ERF109, a

homologous gene of ERF115, also features prominently, as it

experiences rapid induction following programmed cell death,

thereby stimulating the expression of ERF115 in the proximity of

dead cells and fostering the meristem regeneration (Heyman et al.,

2016; Zhou et al., 2019b). Additionally, ERF115 forms heterodimers

with PHYTOCHROME A SIGNAL TRANSDUCTION1 (PAT1),

hereby expediting restorative cell division subsequent to root tip

excision (Heyman et al., 2016).

The pivotal distribution of reactive oxygen species (ROS)

profoundly influences the adaptative responses of stem cell niches

to stressful conditions. ROS, metabolic by-products of aerobic

metabolism, accumulate under stressful conditions, culminating in

DNA damage, protein oxidation, and lipid peroxidation (Gill and

Tuteja, 2010; Huang et al., 2019). Stressors, such as heat, cold,

drought, heavy metals, and pathogens, rapidly perturb the redox
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homeostasis, resulting in pronounced ROS accumulation in plant

tissues. This perturbation, in severe cases, may culminate in the

senescence of plant organs (Lee et al., 2012; Kawarazaki et al., 2013;

Kim and Hwang, 2014; Zhao et al., 2018b). A typical example is the

flood-induced hypoxic response of apical stem cells. Under hypoxic

conditions, maintaining low levels of ROS is essential for

safeguarding apical meristem persistence (Sasidharan et al., 2018).

In the apical meristem, both hypoxia-induced ROS and nitric oxide

(NO) accumulation elicit QC cell division and meristem cell death

(Mira et al., 2016). Prohibitin3 (PHB3), in this context, can restrict

the spatial expression of ethylene response factor (ERF) transcription

factors, ERF115, ERF114, and ERF109. These ERF factors, in turn,

mediate ROS signaling in a PLT-independent manner to regulate the

maintenance of stem cell niches and root growth through

phytosulfokine (PSK) peptide hormones (Kong et al., 2018).

Recent investigations have underscored the pivotal role of the

Arabidopsis SYNTAXIN OF PLANTS81(AtSYP81) gene in root

development, where it regulates peroxisome-mediated ROS

production in the root tip. In atsyp81 mutants, a noticeable

reduction in ROS levels is observed in the root tips, resulting in a

significant decrease in apical meristem activity and the disruption of

the apical stem cell niche’s identity. The supplementation of ROS

donors in atsyp81mutants effectively rectifies the impaired stem cell

viability in the apical meristem. These experimental findings indicate

the role of AtSYP81 in regulating root meristem activity and

preserving the identity of the apical stem cell niche through the

control of peroxisomes and peroxidase-mediated ROS homeostasis

(Wang et al., 2023). In Arabidopsis thaliana, ROS signaling is critical

for meristem development and the maintenance of stem cell identity

(Ubogoeva et al., 2021). A variety of stressors can disrupt the balance

of ROS in plants, leading to damage or even the senescence of plant

organs. Consequently, the maintenance of a balanced ROS level

assumes paramount importance for the survival of plant stem cells.

Soil salinity affects plant development, invariably diminishing

crop yield. Recent scientific inquiries have shed light on the

response to NaCl concentrations surpassing a specified threshold

in the root tip of Arabidopsis thaliana. This incites the activation of

local and systemic Ca2+ signaling pathways, which culminate in the

engagement of the Salt Overly Sensitive (SOS) pathway. The SOS

pathway is a conserved and important regulatory mechanism for

Na+ exclusion and for alleviating long-distance transport of toxic

Na+ (Shi et al., 2002; El Mahi et al., 2019). The latter comprises an

ensemble of Ca2+ sensors, kinases, and Na+/H+ exchange modules

that are ubiquitously distributed throughout the root. In concert

with this, salt stress occasions a significant upregulation of GSO1

expression, especially in the endodermis and meristem (Chen et al.,

2023). The upregulated GSO1 expression in the apical meristem, in

particular, serves as a specialized conduit for intracellular Na+

detoxification via the GSO1-SOS2-SOS1 module. Activation of

the SOS2-SOS1 module allows root growth by protecting the

meristem to be maintained in adverse environments (Chen et al.,

2023). This multifaceted receptor-like kinase GSO1-mediated

mechanism is pivotal in preserving intracellular ion homeostasis

and, by extension, normal root development, thereby enabling roots

to sustain growth in adverse environments (Chen et al., 2023).

Concurrently, it is imperative to recognize that the resilience and
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adaptability of plant apical meristem cells to salt stress are

inextricably linked with microRNAs, the redox state, ROS, NO,

and plant hormones such as auxin and cytokinin (Yang and Lee,

2023). Recent research has found that a prion-like domain (PrD) in

the key shoot meristem regulator STM can stimulate it to form

nuclear condensates which are required for maintaining the shoot

meristem. The formation of STM condensates is enhanced upon

salt stress, which allows enhanced salt tolerance and increased shoot

branching (Cao et al., 2023). Salt-dependent reduction of miR165

and 166 causes a rapid increase in PHABULOSA (PHB) expression

and production of the root meristem prodifferentiation hormone

cytokinin (Scintu et al., 2023). A comprehensive metabolome and

transcriptome analysis of three CK signal-deficient Arabidopsis

ahp2,3,5 and arr1,10,12 mutants treated with salt stress showed

that CK signaling induced reprogramming of gene-metabolic

networks associated with Arabidopsis response to salinity

(Abdelrahman et al., 2021). This intricate nexus highlights the

correlation between salt stress response and signaling cascades

that govern stem cell homeostasis in the plant meristem (Yang

and Lee, 2023).

Temperature fluctuations exert profound control over plant

development by modulating the behavior and attributes of stem

cells. The programmed cell death of columella stem cell daughters

(CSCDs) reestablishes the auxin maximum in the QC and preserves

the functionality of the stem cell niche during chilling stress. This

regulatory mechanism substantially enhances the survival prospects

of plant roots when confronted with chilling stress. Furthermore,

upon the restoration of normal ambient temperatures, the plant’s

root system can recommence its growth phase (Hong et al., 2017).

In higher plants, the SAM perpetuates a division-centric agenda

that culminates in the development of aerial plant organs. However,

water assumes paramount importance in maintaining normal plant

development, and drought stress can impede the proliferation of

plant stem cells. In Arabidopsis thaliana, the STM gene emerges as a

critical regulator in the SAM, enhancing plant tolerance to drought.

In the shoot tips of Arabidopsis thaliana, the R2R3-type MYB96

transcription factor, inducible by ABA, plays a pivotal role in

adapting to drought stress by regulating the transcriptional

accumulation of STM. The overexpression of MYB96 substantially

upregulates the expression of STM, thereby engendering enhanced

drought tolerance. Conversely, myb96 mutants exhibit a marked

reduction in STM expression, concomitant with diminished

drought tolerance. These observations underscore the pivotal role

played by the MYB96-STM axis in bolstering plant tolerance to

drought stress (Lee et al., 2016).

The SAM in plants navigates a complex regulatory network that

balances proliferation and differentiation processes. Cell

differentiation in the developing shoot is intrinsically tied to the

intracellular environment and the role of plastids. Arabidopsis

thaliana mutants exhibiting chronic osmotic stress (msl2 msl3)

manifest significantly enlarged and morphologically aberrant

plastids in the SAM, concomitant with the formation of callus in

large quantities at the shoot tips. This induction of callus formation

is underpinned by a nexus of interconnected mechanisms involving

cytokinin receptor AHK2, cytokinin signaling inhibitors ARR7 and

ARR15, and the stem cell identity gene WUSCHEL. Furthermore,
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the process of callus induction precipitated by plastids under

osmotic stress necessitates heightened levels of ROS and ABA

biosynthesis in plastids. This intriguing interplay indicates the

role of osmotic stress in activating plastid-mediated mechanisms

that promote SAM development, implicating the cytokinin

signaling pathway in this process (Wilson et al., 2016).

Plant hormones, especially auxin and cytokinin, wield

substantial influence over the development of plant meristem

cells. These phytohormones, in turn, assume varying roles in the

context of stem cell responses to abiotic stresses. Auxin is essential

for plants to respond to stress (Jing et al., 2023). Notably, with its

maximum concentration dictating QC identity and preserving stem

cell niche integrity, emerges as a critical factor in stress adaptation

(Jiang and Feldman, 2005). For instance, TRYPTOPHAN

AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) in

Arabidopsis thaliana can promote auxin accumulation in the root

tips under aluminum stress (Yang et al., 2014). TAA/TAR-mediated

auxin biosynthesis emerges as indispensable in the root meristem’s

response to ethylene stress (Brumos et al., 2018). Following root

damage or removal in Arabidopsis thaliana, auxin biosynthesis in

the root tips accelerates significantly, expediting the recovery of root

growth (Matosevich et al., 2020). The molecular marker DR5,

reflective of auxin activity in the root, exhibits decreased activity

in the QC under low potassium (K+) conditions (Zhang et al.,

2020b). Auxin plays an important role in a “sacrifice-for-survival”

mechanism in which cold-damaged CSCs are sacrificed in order for

the root growth. Low-temperature stress leads to decreased DR5

activity in the QC, which in turn precipitates CSC cleavage (Hong

et al., 2017). In addition, auxin has demonstrated a protective role,

safeguarding stem cells from Zeocin-induced cell death (Hong et al.,

2017). The homeodomain TF gene, HB33 was identified as a

positive regulator of ABA response which was repressed by auxin

response factor 2 (ARF2). The arf2 mutant showed enhanced ABA

sensitivity (Wang et al., 2011). ARF2-HB33 module may link the

ABA and auxin signaling pathways to response the drought stress

(Wang et al., 2011). Overexpression of auxin biosynthesis genes

leads to increased salt tolerance (Dunlap and Binzel, 1996; Kim

et al., 2013; Ke et al., 2015). The expression of auxin biosynthesis

gene YUC4 is significantly increased in response to NaCl treatment

in Arabidopsis (Cackett et al., 2022). The tir1/afb2/afb3 mutants,

which was defective in multiple TIR/Auxin-Signaling F-box (AFB)

receptors, display hypersensitivity to NaCl treatment in the RAM.

The slowing of root growth caused by salt stress might be an

adaptive mechanism for plants surviving (Iglesias et al., 2010; Yu

et al., 2020).

In addition to auxin, the plant stem cell niche is profoundly

influenced by other phytohormones, such as cytokinin, ethylene,

jasmonic acid (JA), and brassinosteroid (BR). Recent investigations

have revealed cytokinin’s integral role in fortifying plant responses

to temperature stress, drought stress, and salt stress (Li et al.,

2021b). This phytohormone’s signaling pathway encompasses

CYTOKININ RESPONSE FACTOR (CRF), ARABIDOPSIS

HISTIDINE CONTAINING PHOSPHOTRANSMITTER (AHP),

cytokinin receptor (AHK), and ARABIDOPSIS RESPONSE

REGULATOR (ARR) proteins, collectively steering plants

towards tolerance and adaptability of plants under these adverse
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conditions (Jeon et al., 2010; Mason et al., 2010; Kang et al., 2012;

Chen and Yang, 2013; Jeon and Kim, 2013; Nishiyama et al., 2013;

Jeon et al., 2016; Joshi et al., 2016; Nguyen et al., 2016; Cortleven

et al., 2019; Song et al., 2019; Zhou et al., 2019a; Hyoung et al., 2020;

Li et al., 2021a; Li et al., 2021b). Similarly, ethylene accumulation in

the root tips in response to soil compaction or flooding underscores

ethylene’s pivotal role in aiding meristem adaptation to stress

(Hartman et al., 2019; Pandey et al., 2021). Ethylene signaling, in

this context, is integral to the scavenging of the plant globin1

(PGB1), a process essential for meristem adaptation to flood-

induced hypoxia (Hartman et al., 2019). Recent studies have

shown that JA plays a key role in stem cell niche regeneration

(Zhou et al., 2019b). In instances where the root tip is cut off or

infected by pathogens, JA and auxin synergistically activate the

SCR-SHR-RBR pathway, facilitating restorative cell division and the

resumption of root tip growth.

Furthermore, BR recruitment of the BRI1-EMS-SUPPRESSOR

1 (BES1) -BRASSINOSTEROIDS AT VASCULAR AND

ORGANIZING CENTER (BRAVO) -ERF115 signaling module

assumes a critical role in governing QC cell division and

sustaining the characteristics of the apical meristem (Vilarrasa-

Blasi et al., 2014). The dynamic involvement of BR signaling in

plant responses to temperature, salt, and drought stresses further

underscores its multifaceted influence on plant development

(Planas-Riverola et al., 2019). The intricate web of responses

orchestrated by plant stem cells in the face of abiotic stresses is

displayed in Figure 3.
6 Conclusions and perspectives

The initiation and maintenance of plant meristem cells

represent vital processes governing plant growth and

development. Advancements in technologies such as single-cell

sequencing have yielded an expanding body of experimental

evidence supporting the crucial role of plant stem cells, extending

their implications to plant regeneration and crop yield

improvement (Liu et al., 2023). These developments have

contributed to a more comprehensive grasp of the initiation,

maintenance, signal transduction, and other processes of plant
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stem cells. In the backdrop of ongoing global environmental

shifts, characterized by phenomena such as drought stress,

temperature fluctuations, salt stress, and exposure to heavy metal

ions, plants have undergone intricate adaptations in regulatory

mechanisms to safeguard their reproductive integrity. As the core

components of plant development, plant stem cells play a pivotal

role in enabling plants to bolster their resilience against

environmental stresses . This review has furnished a

comprehensive exploration of the regulatory mechanisms

governing the initiation and maintenance of plant stem cells,

including the root apical meristem and the shoot apical meristem.

Additionally, we have summarized the response mechanisms that

plants employ to counter abiotic stresses, with a particular emphasis

on the processes of perception in these stresses. Furthermore, we

have outlined recent insights into the mechanisms by which plant

stem cells fortify tolerance and adaptability under challenging

conditions. However, it is imperative to acknowledge that the

study of plant responses to abiotic stresses remains an ongoing

pursuit, rife with numerous outstanding questions. These inquiries

span areas such as the identification of receptors that sense stress

signals, the unraveling of the mechanism governing apical meristem

of plant responses to stress, and the exploration of unresolved

aspects of abiotic stresses that have surfaced in recent literature

(Verslues et al., 2023). Solutions to these important scientific

questions will undoubtedly proceed in tandem with the relentless

advancement of scientific knowledge.
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