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of Huanglongbing
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Instruction: Citrus is a globally important fruit tree whose microbiome plays a

vital role in its growth, adaptability, and resistance to stress.

Methods: With the high throughput sequencing of 16S rRNA genes, this study

focused on analyzing the bacterial community, especially in the leaf midribs, of

healthy and Huanglongbing (HLB)-infected plants.

Results: We firstly identified the shared bacterial taxa in the midribs of both

healthy and HLB-infected plants, and then analyzed their functions. Results

showed that the shared bacterial taxa in midribs belonged to 62 genera, with

approximately 1/3 of which modified in the infected samples. Furthermore, 366

metabolic pathways, 5851 proteins, and 1833 enzymes in the shared taxa were

predicted. Among these, three metabolic pathways and one protein showed

significant importance in HLB infection. With the random forest method, six

genera were identified to be significantly important for HLB infection. Notably,

four of these genera were also among the significantly different shared taxa.

Further functional characterization of these four genera revealed that

Pseudomonas and Erwinia likely contributed to plant defense against HLB,

while Streptomyces might have implications for plant defense against HLB or

the pathogenicity of Candidatus Liberibacter asiaticus (CLas).

Disccusion: Overall, our study highlights that the functions of the shared taxa in

leaf midribs are distinguished between healthy and HLB-infected plants, and

these microbiome-based findings can contribute to the management and

protection of citrus crops against CLas.

KEYWORDS

citrus, HLB -Huanglongbing, leaf midrib bacterial community, shared bacterial taxa,
random forest, function prediction
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1 Introduction

Citrus is a crucial economic crop that faces numerous

challenges, including diseases and pests such as Huanglongbing

(HLB), citrus canker disease, and fruit flies. These issues have

resulted in significant losses in citrus production worldwide (Rao

et al., 2018; Zhou et al., 2021; Xiao et al., 2022). “Danxia Gonggan”

(Citrus reticulata Blanco cv. Gonggan) is a geographical landmark

agricultural product in Shaoguan City, Guangdong Province,

China, that has also been affected by HLB in recent years (Munir

et al., 2020). HLB is a quarantine disease that has been causing huge

damage to citrus production in many regions. HLB is caused by the

gram-negative bacterium Candidatus Liberibacter spp., and often

referred to as citrus cancer due to the absence of known cure

presently (Yang et al., 2021). The bacteria, including Asian (CLas,

Candidatus Liberibacter asiaticus), African (CLaf), and American

(CLam) species, are confined to phloem sieve cells with CLas being

the most widespread (Yang and Ancona, 2022). Current prevention

and control measures are limited due to the difficulties in culturing

the pathogen in pure cultures, and infected plants have to be

removed to manage the disease (Pulici et al., 2022).

The plant microbiome, comprising microorganisms on

and within various plant tissues (roots, leaves, seeds, etc.),

plays a critical role in plant growth, nutrient absorption, tolerance

to biotic and abiotic stresses, etc. (Turner et al., 2013;

Vandenkoornhuyse et al., 2015; Li et al., 2022). For example,

endophytic bacteria can enhance host plant growth and alleviate

soil pollutants (Liu et al., 2022a), leaf microbiome shows

significance in leaf water absorption (Rosado and Almeida, 2020),

and soil microorganisms can enhance plant richness and

productivity in grassland restoration (Abrahão et al., 2022).

Further evidence has indicated that the rhizosphere microbiota

can have varied impacts on disease resistance and nutrient uptake

across different strawberry varieties, as reported by Lazcano et al.

(2021). Pathogen infections, such as those caused by Rhizoctonia

solani AG8 in barley, can alter the rhizosphere microbial

community, leading to the accumulation of potentially

antagonistic microorganisms (Yin et al., 2021). Additionally,

certain bacterial isolates such as Flavobacterium TRM1 have been

shown to inhibit bacterial wilt in susceptible tomato plants (Kwak

et al., 2018). Collectively, these study highlight the crucial role of

distinct microbiome in disease-resistant hosts.

The secondary metabolites produced by microorganisms in

interaction with pathogenic bacteria in the host can enhance host

resistance to these bacteria. For example, Pseudomonas chlororaphis

subsp. aurantiaca strain zm-1 was found to potentially control

peanut stem rot disease, because its phenazine secretion played a

key role in disease prevention and thus resulted in a disease

inhibition rate of up to 75.63% in pot experiments (Liu et al.,

2022b). Similarly, the yeast species Saccharomyces cerevisiae and

Issatchenkia occidentalis were observed to inhibit the virulence

characteristics of Candida albicans via the production of

phenethyl alcohol and tryptophol (Kunyeit et al., 2021). In

another study, spraying citrus with secondary metabolites of

Pseudomonas aeruginosa reduced bacterial titers in citrus leaves
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and upregulated host-related defense genes (Pistori et al., 2018).

This study suggests that the secondary metabolites produced by the

microbiome of resistant plants under stress conditions may be

crucial for host resistance.

The functional groups present in plant microbiome have a

significant impact on plant growth, environmental adaptability, and

stress resistance (Podolich et al., 2015; Grady et al., 2019; White

et al., 2019; Fadiji and Babalola, 2020; Simonin et al., 2020;

Krabberød et al., 2022). On the other hand, a single plant has

several ecological niches (e.g. rhizosphere, phyllosphere,

endosphere) with varied physiological and biochemical features

and thus different microbial community (Xiong et al., 2021). In

many cases, microbes tend to show “home field advantage” effects in

their functioning (Osburn et al., 2022; Jiang et al., 2023). A native

synthetic bacterial community promoted plant growth of maize

more greatly than a commercial plant growth-promoting

rhizobacteria, because the native community colonized the soil

better than the commercial agent and was more compatible with

the resident community (Jiang et al., 2023). The citrus rhizosphere

and leaf microbiota have been implicated in the occurrence and

development of HLB (Wang et al., 2017; Ginnan et al., 2020), with

strains isolated from citrus leaves possessing HLB resistance

(Blacutt et al., 2020; Munir et al., 2022). These reports clearly

indicate that native microbes might be more efficient in particular

functionality than exotic microbes.

In this scenario, we hypothesized that endosphere bacterial

community in leaf midribs is closely associated with HLB,

considering that CLas occupies the unique ecological niche of

phloem. However, there is no information available on the

bacterial community in leaf midribs of healthy and infected citrus

plants yet. Therefore, this study aimed to specifically analyze the

bacterial community in the citrus leaf midribs of healthy and

infected plants using high-throughput sequencing method. The

shared taxa of healthy and infected leaf midribs were identified

and characterized, and the antagonistic or risky species of CLas

helper were recognized, which eventually contribute to the

biological control of HLB.
2 Materials and methods

2.1 Sample collection

The leaf samples used in the study were collected from 10 citrus

orchards located in 10 towns in Renhua County (24°56’ ~ 25°27’N,

113°30’ ~ 114°02’E) in Shaoguan City, Guangdong Province, China,

which is one of the main production area of ‘Gonggan’ but suffered

from HLB recently. From each orchard, 4~8 citrus plants with no

HLB symptoms or HLB symptoms to different degree were selected

randomly, and leaves distributing uniformly on the outside of canopy

were sampled from each plant. The collected leaves were carefully

placed in sterile bags. Finally, a total of 61 leaf samples were obtained

for this study. All the samples were placed in an insulated ice box

immediately after sampling and transported to the laboratory, where

they were stored at a temperature of 4 °C until further processing.
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2.2 Sample preparation

The leaf samples were sterilized using a rigorous protocol.

Firstly, they were washed with 75% alcohol for 30 seconds in an

ultra-clean workbench. Following this, the samples were washed

with sterile water 3~5 times to eliminate any residual alcohol. Then,

the samples underwent further sterilization with 2% sodium

hypochlorite for 1 min and were subsequently washed again with

sterile water 3~5 times. To ensure complete disinfection, the final

elution solution from the cleaning process was collected. A 100 µL

of this solution was plated on LB agar plates for microbial culturing.

The absence of microbial growth after incubation confirmed

successful complete disinfection. Next, the midrib (approximately

2 mm in width) was excised using a sterile surgical blade, and then

cut into small pieces (approximately 5 mm in length) and placed in

a sterile 2 mL centrifuge tube. The samples were ground into a fine

powder using a homogenizer, and DNA extraction was performed

using the Tiangen DP305-02 plant kit (Faddetta et al., 2021).
2.3 Molecular identification of
Honglongbing

The quality of extracted DNA was assessed using a Nanodrop

spectrophotometer and gel electrophoresis. For the PCR

amplification of the 16S rRNA gene specific to CLas, the OI1/OI2c

primers were used (Jagoueix et al., 1996). The PCR reaction was set

up as follows: a 25 µL system containing 9.5 µL ddH2O, 12.5 µL

2×Taq PCR Master Mix, 1 µL 10 mM forward primer, 1 µL 10 mM
reverse primer, and 1 µL DNA template. The PCR program consisted

of an initial denaturation step at 95 °C for 3 min, followed by 34

cycles of denaturation at 95 °C for 30 s, annealing at 64 °C for 35 s,

extension at 72 °C for 80 s, and a final extension step at 72 °C for 7

min. For the quantitative detection of CLas using qPCR, specific

primers CLas-4G and HLBr were used, along with the HLBp probe

(Bao et al., 2020). The qPCR reaction was set up in a 20 µL system,

including 10 µL SuperMix, 0.4 µL 10 mM forward primer, 0.4 µL 10

mM reverse primer, 0.4 µL 10 mM probe, 0.4 µL Passive Dye, 1 µL

DNA template, and 7.4 µL nuclease-free water. The qPCR program

included an initial incubation step at 50 °C for 2 min, followed

by denaturation at 95 °C for 10 min, and 40 cycles of denaturation at

95 °C for 15 s and annealing/extension at 60 °C for 1 min.

The detection methods commonly used for HLB include PCR

and qPCR, which are well-established for their accuracy and

widespread use in HLB detection (Ángel et al., 2014). However,

there is currently no consensus on the threshold for distinguishing

between HLB-positive and -negative samples. Various studies have

reported different threshold values, such as CT values of 32 (Mira

et al., 2019), 33 (Paula et al., 2018), 36 (Turechek et al., 2012), or 40

(Bai et al., 2013). In this experiment, based on the PCR and qPCR

results, a threshold for defining a healthy strain was set at a CT value

greater than 34, while a CT value less than 34 was considered

indicative of an HLB-positive strain. With this criteria, all the 61

midrib samples were divided into infected group (36 samples) and

healthy group (25 samples) (Supplementary Table 1).
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2.4 Amplicon sequencing and
bioinformatics analysis

The 61 DNA samples were sent to Novogene for amplicon

sequencing of the 16S rRNA gene. The sequencing was performed

using the Illumina NovaSeq platform with a Paired_End approach.

The V3~V4 region (341F: CCTAYGGGRBGCASCAG; 806R:

GGACTACNNGGGTATCTAA T) was targeted for sequencing

(SRR25558690-SRR25558750, https://submit.ncbi.nlm.nih.gov/

subs/). After obtaining the raw data, a series of data processing

steps were carried out. The barcode and primers were removed,

followed by merging, filtering, and decontamination of the paired-

end sequences using QIIME2. Taxonomic classification was

performed using the SILVA database with a similarity threshold

of 97% (Almeida et al., 2018). The resulting high-quality data was

then analyzed using R version 4.0.2, utilizing packages such as

‘barplot’ and ‘vegan’ for creating stacked histograms. TBtools was

used for constructing Venn diagrams (Chen et al., 2020), and

ImageGP was used for producing PCoA diagrams. Function

prediction was done using the ‘PICRUSt2’ package in R (Douglas

et al., 2020), and importance ranking was determined using random

forest analysis with the ‘RandomForest’ package in R (Shibahara

et al., 2017), which mainly contains a random forest classification

and selection of important variables contributing to the difference

between groups. After removing low-quality and chimeric

sequences, a total of 4,138,080 sequences were obtained for the

midrib bacterial community. These sequences were further

decontaminated to eliminate any host contamination. The data

saturation was evaluated using a dilution curve, as shown in

Supplementary Figure 1. Based on the curve, it can be concluded

that the decontaminated data was suitable for subsequent analysis.
3 Results

3.1 Composition and diversity of bacterial
communities in leaf midribs of healthy and
infected plants

After removing contamination and other undesired sequences,

sequencing data was obtained from midrib samples, which revealed

a total of 281 genera at the genus level. The top 30 genera accounted

for 98.52% of the total abundance (Figure 1A; Supplementary

Table 2). To analyze the community composition, we focused on

these top 30 genera. Significant differences (P < 0.001) were

observed in the bacterial community between healthy and

infected plants (Figure 1B). Among the healthy plants, the most

abundant genera were Pseudomonas (53.27%), Erwinia (37.36%),

Escherichia-Shigella (4.90%), Pantoea (4.05%), and Bacillus (0.23%).

In contrast, infected plants had the highest abundance of Pantoea

(66.01%), followed by Pseudomonas (13.38%), Erwinia (7.06%),

Corynebacterium (0.90%), Streptomyces (0.86%), Romboutsia

(0.72%), and Bacillus (0.70%) (Figure 1A; Supplementary

Table 3). Among the 281 genera, 23 genera showed significant

differences in abundance between the two groups (Figure 1C).
frontiersin.o
rg

https://submit.ncbi.nlm.nih.gov/subs/
https://submit.ncbi.nlm.nih.gov/subs/
https://doi.org/10.3389/fpls.2023.1270929
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xia et al. 10.3389/fpls.2023.1270929
Additionally, the abundance of Pseudomonas and Erwinia

significantly decreased in infected citrus compared to healthy

ones. Conversely, the abundance of Pantoea , Bacillus ,

Vulcaniibacterium, Meiothermus, Streptomyces, pathogen CLas

and etc. significantly increased in infected samples (Figure 1C).

Furthermore, compared to healthy samples, the a diversity index

showed a significant increase (Chao1), but a significant decrease

(Good’s coverage) in infected samples. The overall diversity

(Shannon and Simpson indices) also tended to decrease in

infected samples (Table 1). These results suggest that the bacterial

communities in the leaf midribs of citrus plants underwent

significant changes due to HLB infection.
3.2 The composition and differences of
shared taxa in leaf midribs of healthy and
infected plants

In total, 62 genera were found to be present in both healthy and

infected citrus midribs (Figure 1D; Supplementary Table 4), which
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were considered hereafter as shared taxa between healthy and

infected leaf midribs. These shared taxa mainly included

Pseudomonas , Erwinia , Pantoea , Bacil lus , and others.

Additionally, the infected group exhibited 216 unique genera,

which was much higher in number than the healthy group (3

unique genera). This suggests an increased bacterial richness in

infected midribs compared to healthy ones (Figure 1D; Table 1).

To analyze the differences in shared taxa between healthy and

infected midribs and identify which taxa contribute to these

differences, a random forest importance ranking was conducted

using the shared bacterial community. The results showed that the

model had the lowest error ratio when considering the top 18

genera (Figure 2A). The importance values, known as Mean

Decrease Accuracy, were then used to rank the genera. The

analysis revealed that 6 genera were of significant importance:

Escherichia-Shigella, Streptomyces, Erwinia, Pseudomonas,

Xanthomonas, and Dokdonella (Figure 2B). Among these, 4

genera (Escherichia-Shigella, Streptomyces , Erwinia, and

Pseudomonas) showed significant differences between healthy and

infected midribs. Streptomyces was found to be significantly
TABLE 1 Diversity index of bacterial communities in the leaf midribs of healthy and HLB-infected citrus plants.

Groups Shannon Simpson Chao1 Goods_coverage

A 0.9912 0.4580 39.1115 1.4057

H 1.1762 0.6157 35.9199 2.1006

P values 0.24386 0.08443 0.0069** 0.00003***
A: infected group; H: healthy group. P values were calculated using t-test. ** and *** indicate significant difference between A and H groups at P = 0.01 and P = 0.001 level.
B

C D

A

FIGURE 1

The composition of the bacterial community in the leaf midribs of healthy and HLB-infected citrus plants. (A) The bacterial community composition
at the genus level with the top 30 genera shown. (B) PCoA analysis demonstrating the significant difference in the bacterial community structure at
the genus level between two groups. (C) Bacterial taxa with significant differences in abundance between two groups. (D) Venn diagram showing the
overlap and unique bacterial genera present in the midribs of two groups. A: infected group; H: healthy group.
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enriched in infected midribs, while the other three genera were

significantly enriched in the healthy samples (Figure 2C). This

result suggests that these 4 genera were closely associated with the

onset of HLB in citrus plants.

Additionally, among the 62 genera, 21 genera exhibited significant

differences in abundance between healthy group and infected group

(Figure 2C), indicating that approximately one-third of the shared taxa

underwent changes in abundance in association with HLB. In detail,

Pseudomonas and Erwinia were significantly enriched in healthy

midribs, while Pantoea, Bacillus, and the pathogenic bacteria

Candidatus liberibacter were significantly enriched in infected

samples. These findings suggest that Pantoea and Bacillus might be

considered as risky species or pathogen helper while Pseudomonas and

Erwiniamight play important roles in the growth and development of

citrus plants, or even possess antagonistic properties against CLas.

However, the healthy group and the infected group could not be well

distinguished according to the shared taxa (Figure 2D).
3.3 Function prediction of shared taxa in
leaf midribs of healthy and infected plants

3.3.1 Metabolic pathways
To analyze the functional profiles of shared taxa in leaf midribs

and identify intergroup differences, PICRUSt2 functional prediction

was performed. Finally, 366 metabolic pathways (Supplementary

Table 5), 5851 proteins (Supplementary Table 6), and 1833 enzymes

(Supplementary Table 7) were predicted. To determine which

pathways contributed to the shared taxa, a random forest

importance ranking was conducted on the 366 metabolic

pathways. The model had the lowest error ratio when
Frontiers in Plant Science 05
approximately 30 metabolic pathways were in the fitting curve

(Figure 3A), therefore we identified the top 30 pathways based on

their importance value (Mean Decrease Accuracy). Among these,

15 pathways were significantly important (Figure 3B), including

airborne biosynthesis, hyperpathway of L-tryptophan biosynthesis,

chlorosalicylate degradation, and others.

Meanwhile, we identified 64 metabolic pathways significantly

different in abundance between the bacterial communities in the

healthy and infected midribs, including L-isoleucine biosynthesis II,

catechol degradation III (ortho clearance path), and 4-

aminobutanoate degradation V, and others. Among these, 44

pathways were significantly enriched in healthy samples, while 20

pathways were significantly enriched in infected samples

(Figure 3C). Interestingly, 1,4-dihydroxy-6-naphthoate

biosynthesis I, catechol degradation III ortho cleavage pathway,

and L-isoleucine biosynthesis II were also found to be significantly

important metabolic pathways (Figure 3B). More importantly, with

these metabolic pathways with significant intergroup differences, we

were able to distinguish between the healthy and infected midribs

(Figure 3D), which suggests that the differences in metabolic

pathways might contribute to the onset of HLB.

3.3.2 Proteins
To further ascertain the specific proteins responsible for the

intergroup differences, a random forest importance ranking on

5,851 proteins was conducted. The data indicated that the error

ratio reached the lowest point when approximately 300 proteins

were included in the model (Figure 4A). Thus, we selected the top

300 proteins with the highest importance values (Mean Decrease

Accuracy) for the importance ranking (Figure 4B). Finally, we

identified 84 proteins that significantly or exceptionally
B

C D

A

FIGURE 2

Importance ranking of and intergroup differences in shared bacterial taxa in the leaf midribs of healthy and HLB-infected citrus plants. (A) Cross
validation (with random forest) results of shared taxa. (B) Random forest importance ranking of shared taxa in terms of their contribution to the
intergroup difference. (C) The shared taxa with significant differences in abundance between two groups. (D) Heatmap showing the shared taxa with
significant differences between two groups and their abundances. A: infected group, H: healthy group. * and ** indicate significant contribution of
shared taxa to the intergroup difference at P = 0.05 and 0.01 level, respectively.
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contributed to shared taxa, including sn-glycerol 3-phosphate

transport system ATP-binding protein, 3-methyl-crotonyl-CoA

carboxylase alpha subunit, putative glycosyltransferase, and

others, which likely played a crucial role in distinguishing

between the healthy and infected groups (Figure 4B).

In addition, 109 proteins had significant intergroup differences

in abundance, including 6,7-dimethyl-8-ribityllumazine synthase,

fructose-1,6-bisphosphatase II, starch bisphosphate alpha, class II,

and others (Figure 4D). Notably, all these significantly different

proteins were enriched in the infected midribs, among which one

particularly important protein was the spermidine/putrescine

transport system ATP-binding protein. Furthermore, the heatmap

of the significantly different proteins displayed distinct patterns,

allowing for the differentiation of the two groups (Figure 4C). This

indicates that the differences observed in the proteins of shared taxa

were crucial in determining whether the plant is infected by CLas.

3.3.3 Enzymes
To determine the enzymes that contribute to the intergroup

differences, we conducted random forest importance ranking on

1,833 enzymes. The results indicated that the lowest error ratio was

achieved when the fitting curve included approximately 50 enzymes

(Figure 5A). Based on the importance value (Mean Decrease

Accuracy), we identified 41 enzymes with significant importance,

including selenate reductase, 2-methylacyl CoA dehydrogenase,
Frontiers in Plant Science 06
N2-citryl-N6-acetyl-N6-hydroxylysine synthase, and etc.

(Figure 5B). These enzymes are likely important in distinguishing

between healthy and infected groups.

Among 1833 enzymes, we further identified 70 enzymes with

significant differences in abundance between the healthy and

infected midribs. Notably, all these differential enzymes were

enriched in the infected samples, including XTP/dITP

diphosphatase, UTP-glucose-1-phosphate uridyltransferase, and

Undecaprenyl diphosphate, and etc. (Figure 5C). Interestingly,

none of these differential enzymes were identified to be important

with the random forest analysis. In spite of this, with these

differential enzymes, healthy and infected groups could be

distinguished well (Figure 5D). Therefore, this analysis highlights

the association of these differential enzymes with the onset of HLB.
3.4 Functional characterization of
specific taxa

In order to better understand the functional implications of the

differences in shared taxa between the healthy and infected groups,

we focused on four genera (Erwinia, Pseudomonas, Streptomyces,

Scherichia-Shigella) with significant contribution to the observed

differences, and identified their proteins in association with

disease resistance.
B

C D

A

FIGURE 3

Importance ranking of and intergroup differences in the metabolic pathways (revealed by PICRUSt2) of shared bacterial taxa in the leaf midribs of
healthy and HLB-infected citrus plants. (A) Cross validation (with random forest) results of the metabolic pathways of shared bacterial taxa. (B)
Random forest importance ranking of the metabolic pathways of shared taxa in terms of their contribution to the intergroup difference. (C) The
metabolic pathways with significant differences in abundance between two groups. (D) Heatmap showing the metabolic pathways with significant
differences between two groups. A: infected group; H: healthy group. * and ** indicate significant contribution of shared taxa to the intergroup
difference at P = 0.05 and 0.01 level, respectively.
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The results indicate that the enzyme glutathione S-transferase

(K00799) was present in genera Erwinia (OTU3) and Pseudomonas

(OTU4). This enzyme is known to be involved in detoxification

processes and also plays a role in gibberellic acid (GA) biosynthesis.

In the genus Streptomyces (OTU26), several proteins of interest

were identified, including endo-1,4-b-xylanase (K01181), a-L-
rhamnosidase (K05989), and 3-oxoacyl-[acyl carrier protein]

reductase (K00059). Similar to the other genera, these proteins

were enriched in the infected samples (Table 2; Supplementary

Tables 9–12), suggesting that they might play a role in disease

progression or the biochemical response of leaf midribs to infection

by CLas.

Similarly, the gluconic acid 2-dehydrogenase (EC:1.1.99.3) were

observed in Erwinia, while 3-oxoacyl-[acyl-carrier-protein]

reductase (EC:1.1.1.100) was observed in Pseudomonas, in

addition to glutathione S-transferase (EC:2.5.1.18). Furthermore,

several enzymes, such as cellulases (EC:3.2.1.4), a-L-rhamnosidase

(EC:3.2.1.40), endo-1,4-b-xylanase (EC:3.2.1.8), and 3-oxoacyl-
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[acyl carrier protein] reductase (EC:1.1.1.100) were observed in

Streptomyces. Notably, all of these enzymes were found to be

enriched in the diseased samples (Table 3; Supplementary Tables

S13–16), suggesting their potential involvement in disease

development or the response of infected midribs to pathogens.
4 Discussion

4.1 Diversity of bacteria in leaf midribs of
citrus plants

Our study demonstrates that HLB infection decreased the

diversity but increased the richness of bacterial community in

the leaf midribs of citrus plants. Previous studies revealed that the

diversity and richness of bacteria in infected midribs increased,

while specific key groups in leaves and roots decreased in the early

stages of HLB infection, followed by an enrichment of beneficial
B

C D

A

FIGURE 4

Importance ranking of and intergroup differences in the proteins (revealed by PICRUSt2) of shared bacterial taxa in the leaf midribs of healthy and
HLB-infected citrus plants. (A) Cross validation (with random forest) results of the proteins of shared bacterial taxa. (B) Random forest importance
ranking of the proteins of shared taxa in terms of their contribution to the intergroup difference. (C) The proteins with significant differences in
abundance between two groups. (D) Heatmap showing the proteins with significant differences between two groups. A: infected group; H:
healthy group.
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taxa (Blaustein et al., 2017; Ginnan et al., 2020). Additionally, it has

been found that when Citrus reticulata cv. Shatangju was invaded

by CLas, the alpha diversity of its bacterial community initially

decreased and then increased, but not reaching a significant level
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(Yan et al., 2021). Overall, the invasion of pathogenic bacteria is a

dynamic process (Tang et al., 2020), so the diversity of plant

microbiome may fluctuate depending on the period of invasion

and sampling used.
TABLE 2 The proteins associated with potential disease resistance of shared taxa with significant importance and difference between healthy and
HLB-infected groups.

Genus Top OTU KO proteins associated with disease resistance Abundance

A H

Erwinia OTU3 K00799: Glutathione S-transferase 23717.185 17958.214

Pseudomonas OTU4 K00799: Glutathione S-transferase 23717.185 17958.214

K00059: 3-oxoacyl-[acyl-carrier protein] reductase 15880.822 11753.342

Streptomyces OTU26 K01181: Endo-1,4-b-xylanase 198.975 79.192

K05989: a-L-rhamnosidase 90.806 19.904

K00059: 3-oxoacyl-[acyl carrier protein] reductase 15880.822 11753.342

Escherichia-Shigella OTU450 None
Top OTU indicates the most abundant OTU in the respective genus. A: infected group; H: healthy group.
B

C D

A

FIGURE 5

Importance ranking of and intergroup differences in the enzymes (revealed by PICRUSt2) of shared bacterial taxa in the leaf midribs of healthy and
HLB-infected citrus plants. (A) Cross validation (with random forest) results of the enzymes of shared bacterial taxa. (B) Random forest importance
ranking of the enzymes of shared taxa in terms of their contribution to the intergroup difference. (C) The enzymes with significant differences in
abundance between two groups. (D) Heatmap showing the enzymes with significant differences between two groups. A: infected group; H: healthy
group. * and ** indicate significant contribution of shared taxa to the intergroup difference at P = 0.05 and 0.01 level, respectively.
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4.2 Composition of shared taxa in healthy
and infected midribs of citrus plants

In this study, the shared taxa in leaf midribs consisted of 62

genera, including Pseudomonas, Erwinia, Pantoea, and Bacillus, etc.

These shared taxa have been commonly found in various crops such

as barley, rice, sugarcane, grapes, soybeans, Arabidopsis, and in citrus

plants as well. For instance, Streptomyces, Sphingomonas, Kaitobacter,

and Bacillus have been identified as shared taxa in citrus rhizosphere

by Penyalver et al. (2022). Similarly, Pseudomonas, Sphingomonas,
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and Streptomyces were identified as shared taxa in the rhizosphere,

root endosphere, flower and flush of citrus in California by Xi et al.

(2023). Additionally, according to a large number of literature,

Pseudomonas, Sphingobium, Chittinopaga, and Agrobacterium were

identified as shared taxa in citrus (see the review by Srivastava et al.,

2022). These reports suggest that there was some variation in the

composition of shared taxa among different citrus varieties, and this

variation may be attributed to the variations in the surrounding

environments (Trivedi et al., 2020) or the genetic makeup of the host.

Although these reported shared taxa are derived frommultiple niches
TABLE 3 The enzymes associated with potential disease resistance of shared taxa with significant importance and difference between healthy and
HLB-infected groups.

Genus Top OTU EC enzymes associated with disease resistance Abundance

A H

Erwinia OTU3 EC 1.1.99.3: Gluconic acid 2-dehydrogenase 24553.033 19378.537

EC 2.5.1.18: Glutathione S-transferase 23717.185 17958.214

Pseudomonas OTU4 EC 1.1.1.100: 3-oxoacyl-[acyl-carrier-protein] reductase 15885.475 11753.822

EC 2.5.1.18: Glutathione S-transferase 23717.185 17958.214

Streptomyces OTU26 EC 3.2.1.4: Cellulases 4321.116 3303.067

EC 3.2.1.40: a-L-rhamnosidase 90.806 19.904

EC 3.2.1.8: Endo-1,4- b- Xylanase 198.975 79.1924

EC 1.1.1.100: 3-oxoacyl-[acyl-carrier-protein] reductase 15885.475 11753.822

Escherichia-Shigella OTU450 None
Top OTU indicates the most abundant OTU in the respective genus. A: infected group; H: healthy group.
FIGURE 6

Diagram illustrating the involvement of shared bacterial taxa in the leaf midribs in the onset of citrus HLB.
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other than leaf midribs, the bacteria can move between different

niches (Xiong et al., 2021). Therefore, the shared taxa of a specific

niche might be the shared taxa of another niche as well.

It is worth mentioning that, in this study, these shared taxa were

found in both the healthy and the infected midribs. Therefore, it is

likely that these taxa in the healthy midribs are involved in the plant

growth and development while these taxa in the infected midribs

are involved in disease resistance. For example, the shared taxa in

maize plants are active nitrogen fixers or contribute to biological

nitrogen fixation (Zhang et al., 2022), which demonstrates that the

core taxa shared in all xylem sap samples were involved in plant

growth and development. The shared core microbiota of soil

microbiomes plays a crucial role in maintaining the functional

stability of soil microbiota in afforestation ecosystems (Jiao et al.,

2022). Additionally, the rotation between chili/eggplant and banana

crops generates nine unique antagonistic shared core species,

predominantly including Bacillus and Pseudomonas, which have

significant impacts on the reduction in the incidence rate of banana

wilt (Hong et al., 2023). These antagonistic shared core species

persisted in high abundance in the rhizosphere soils of both chili/

eggplant and banana in the rotation system compared to the banana

monoculture system. Therefore, the shared taxa may play important

roles in plant health, nitrogen fixation, ecosystem stability, and

disease management. On the other hand, microbial functions highly

depend on environments and a given microbial taxa can function

differently in different environments (Djemiel et al., 2022). In this

study, we identified the shared taxa in leaf midribs of citrus, but did

not isolate them. It is necessary to perform the isolation and to test

their potential functions in alleviating HLB in the future.

Our study identified 62 genera as shared taxa, accounting for

99.36% of all taxa in terms of abundance (infected group 98.27%,

healthy group 99.94%). This suggests that the shared taxa were

abundant in citrus midribs, with the unique taxa only accounting for

0.64% of all taxa (infected group 1.73%, healthy group 0.06%).

Although the abundance of unique taxa was very low, they might

play a crucial role in the health of citrus and thus deserve further

investigation, especially considering that some of them were recruited

by the infection by CLas. Interestingly, rare or key taxa can play a

pivotal role in determining the structure and function of microbiomes

(Banerjee et al., 2018). Rare taxa exhibit a wide range of environmental

adaptation and have less functional redundancy compared to

abundant taxa (He et al., 2022b), contribute significantly to the

health and functioning of ecosystems (Lyons et al., 2005). Thus, it is

crucial to consider the role of rare taxa in maintaining the overall

health and functioning of the citrus microbiome. Further investigation

on the specific functions and interactions of rare taxa with CLas might

provide valuable insights into the mechanisms underlying HLB and

the solutions to mitigate its impact.
4.3 Functional prediction of shared taxa
in healthy and infected midribs of
citrus plants

Our study identified three metabolic pathways with significant

importance to the shared taxa, i.e., 1,4-dihydroxy 6-naphthoate
Frontiers in Plant Science 10
biosynthesis I, categol degradation III ortho cleavage pathway, and

L-isoleucine biosynthesis II. These pathways were were also

enriched in healthy midribs. Interestingly, 1,4-dihydroxy 6-

naphthoate, as the precursor of menaquinone, is related to the

biosynthesis of menadione (MK), which is a potential target for

evaluating antibiotics in Gram-positive bacteria (Hiratsuka et al.,

2008; Choi et al., 2017). This suggests that the enrichment of 1,4-

dihydroxy 6-naphthoate and other related metabolites in the

healthy midribs could be attributed to antagonistic taxa

contributing to antibacterial processes and maintaining plant

health. Additionally, the categol degradation III ortho clearance

pathway is involved in the degradation of aromatic hydrocarbon

pollutants and environmental remediation (Heinaru et al., 2000;

Basu et al., 2003; Murakami et al., 2003; Ontanon et al., 2015). L-

methionine, another significantly important metabolic pathway, has

antioxidant and free radical scavenging functions (He et al., 2022a).

Meanwhile the effector protein encoded by CLas prophage has been

reported to target ROS clearance-related proteins in citrus,

inhibiting the accumulation of reactive oxygen species in plants

and promoting the infection of pathogenic bacteria (Du et al., 2023).

These information likely suggest that L-methionine may promote

the invasion of CLas by clearing ROS.

Our comprehensive analysis of proteins revealed that the

Spermidine/Putrescine transport system ATP-binding protein was

not only a significantly important proteins, but also showed

significant intergroup differences. Spermidine and putrescine are

well recognized for their importance as polyamines in various

cellular processes, including gene expression, cell growth, survival,

stress response, and proliferation (Shah and Swiatlo, 2008;

Gevrekci, 2017). Moreover, spermidine can promote the activity

of the gene colibactin, and its intracellular pool in bacteria is tightly

regulated through de novo synthesis and transport (Nanduri and

Swiatlo, 2021). Therefore, maintaining polyamine homeostasis is

crucial for proper bacterial physiology and has a significant impact

on bacterial pathogenesis. Therefore, Yatin (2002) concludes that

inhibitors of polyamine production shows promise in disease

prevention and treatment. In these scenarios, it can be deduced

that the Spermidine/Putrescine transport system ATP-binding

protein identified in this study may play a vital role in the

proliferation of CLas and the production of virulence factors.

Fur ther s tudy is needed to unders tand the spec ific

mechanisms involved.

In this study, it is clear that the metabolic pathways, proteins,

and enzymes associated with significantly different shared taxa

could distinguish between the healthy and infected groups, while

the significantly different shared taxa could not. Therefore, it is

reasonable to conclude that the functions (i.e. metabolic processes)

but not the species of the shared taxa in midribs contributed to the

onset of HLB. Microbes are normally metabolically versatile for

better adaptation to changing environments, thus express only

partial functional genes in a particular environment (Zhou et al.,

2014; Koskella, 2020). Furthermore, the functionality of microbial

community is more determined by environments than by its

composition (Zhou et al., 2019). In summary, the functional

differences in the significantly different shared taxa were

instrumental in the symptoms of host HLB. Understanding these
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functional differences can provide insights into potential

therapeutic targets and strategies for managing HLB.
4.4 Functional characterization of
specific taxa

In this study, the functional characterization of the shared taxa

revealed the presence of several proteins and enzymes significantly

associated with the disease. One such protein was glutathione S-

transferase, which acted as an antioxidant enzyme in oxidative

stress and counteracted external stressors (Jin et al., 2022; Tang

et al., 2023). The downregulation of SymE protein expression in

infected citrus suggested its crucial role in restraining potential

pathogens in healthy plants. Enzymes such as endo-1,4-b-xylanase
and cellulases are well known for their ability to degrade cellulose

and hemicellulose (Ariaeenejad et al., 2019; Thornbury et al., 2019;

Thapa, 2020; Li et al., 2021), both of which are crucial components

of plant cell walls. Therefore, the secretion of these enzymes by

microorganisms is critical for their colonization inside the plant

tissues and the interactions in host-pathogen-microbe relationships.

The enzyme a-L-rhamnosidase efficiently hydrolyzed natural active

substances like rutin (Bang et al., 2015; Yadav et al., 2017; Kalinova

et al., 2018). Rutin, a flavonoid, functions in the growth and

resistance of plants against both biotic and abiotic stress. Hence,

a-L-rhamnosidase likely plays a crucial role in the citrus defense

mechanisms against stress. Another enzyme, 3-oxoacyl-[acyl carrier

protein] reductase, participates in the biosynthesis of fatty acids (Hu

et al., 2018; Guo et al., 2019; Cross et al., 2021). Its overexpression

can lead to an increase in the accumulation of fatty acids, thereby

enhancing anti-oxidative activity and non-biotic stress resistance

(Ye et al., 2022). Therefore, 3-oxoacyl-[acyl carrier protein]

reductase may contribute to the defense against pathogenic

bacteria in the citrus leaf midrib bacterial community. Gluconic

acid 2-dehydrogenase is involved in the synthesis of gluconic acid,

which can dissolve mineralized elements and promote their

absorption in the host (de Werra et al., 2009; Yu et al., 2019;

Jiménez-Gómez et al., 2020; Uroz et al., 2022). This may lead to an

improvement of plant growth condition.

Thus, some bacterial taxa in the leaf midribs of citrus plants,

such as Erwinia, Pseudomonas, and etc., may engage in host

defense against CLas, while Streptomyces may be involved in

either the defense against CLas or the pathogenicity of CLas.

Overall, the presence and activity of these specific proteins and

enzymes in the midribs provide insights into the complexity of

defense mechanisms and interactions between the host and its

bacterial community in the context of disease. However,

conflicting results have also been reported in other studies

(Girard et al., 2020; Saldierna Guzmán et al., 2021; Yuan et al.,

2021; Shen et al., 2022), which suggests that Erwinia and

Pseudomonas may be opportunistic pathogens or isolates from

Erwinia and Pseudomonas may be highly divergent in

pathogenesis or beneficial nature (Girard et al., 2020). There are

some isolates from these two genera being reported as plant

growth promoting rhizobacteria (e.g., Erwinia gerundensis,
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Pseudomonas fluorescens) or pathogen (e.g., Erwinia amylovora,

Pseudomonas syringae) so far.

5 Conclusion

CLas, the casual agent of HLB, inhabits phloem of citrus plants.

To investigate the potential involvement of microbime in leaf

midribs in the onset of HLB, we characterized the bacterial

communities in midribs, and analyzed the relationship between

their function and HLB (Figure 6). In summary, significant

differences in bacterial communities the leaf midribs were

observed between healthy and CLas infected citrus plants. Among

the 62 genera shared between the two groups, 21 genera exhibited

notable changes in abundance. Random forest analysis revealed that

6 genera significantly contributed to the differences between the

groups, with 4 genera displaying significant differences in shared

taxa. Further correlation analysis of functional data with these four

genera indicated that Erwinia and Pseudomonas might participate

in the defense against CLas, while Streptomycesmight be involved in

the defense against CLas or the pathogenic process of the CLas.

Importantly, the result emphasized that the shared taxa with

significant differences in pathways, proteins, and enzymes were

able to distinguish between healthy and infected plants. Therefore,

we conclude that the functional differences within the shared taxa in

the leaf midribs of citrus plants determine the onset of HLB or not.
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