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This study aimed to investigate the impact of individual drought, heat, and

combined drought and heat stress on twelve cotton genotypes, including

eight tolerant and four susceptible genotypes. A field experiment was carried

out by employing a randomized complete block split-plot design, with

treatments (control, drought, heat, drought + heat), and cotton genotypes

assigned to the main plots and sub-plots respectively. The results showed that

the combined stress had a more severe impact on the yield and fiber quality of

cotton genotypes compared to individual stresses. Among the studied

genotypes, FB-Shaheen, FH-207, MNH-886, and White Gold exhibited

superior performance in regard to agronomic and fiber quality characters

under combined stress environments. Physiological parameters, including

transpiration rate, stomatal conductance, relative water contents, and

photosynthetic rate, were significantly reduced under combined stress.

However, specific genotypes, MNH-886, FH-207, White Gold, and FB-

Shaheen, demonstrated better maintenance of these parameters, indicating

their enhanced tolerance to the combined stress. Furthermore, the

accumulation of reactive oxygen species was more pronounced under

combined stress compared to individual stressors. Tolerant genotypes showed

lower levels of H2O2 and MDA accumulation, while susceptible genotypes

exhibited higher levels of oxidative damage. Antioxidant enzyme activities,
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such as superoxide dismutase, peroxidase, and catalase, increased under

combined stress, with tolerant genotypes displaying higher enzyme activities.

Conversely, susceptible genotypes (AA-703, KZ 191, IR-6, and S-15)

demonstrated lower increases in enzymatic activities under combined stress

conditions. Biochemical traits, including proline, total phenolic content,

flavonoids, and ascorbic acid, exhibited higher levels in resistant genotypes

under combined stress, while sensitive genotypes displayed decreased levels

of these traits. Additionally, chlorophyll a & b, and carotenoid levels were notably

decreased under combined stress, with tolerant genotypes experiencing a lesser

decrease compared to susceptible genotypes.
KEYWORDS

climate change, heat stress, drought stress, abiotic stress, physiology
1 Introduction

The continuous and persistent shift in environmental

conditions poses an ongoing threat to the productivity and

sustainability of major field crops, thereby impacting their

developmental behavior and ability to withstand adverse

environmental conditions (Noman and Azhar, 2023; Yuan et al.,

2023). Climate change is exacerbated by the degradation of

croplands caused by desertification, salinization, urbanization,

and unregulated population growth (Zhu et al., 2023). The

productivity of crop plants is influenced by various climatic

factors, including drought, heat, precipitation, humidity, and

sunshine hours (Zafar et al., 2022c). Cotton (Gossypium spp.) is a

valuable commodity that is grown in various regions of the world

for its fiber, fuel, and feed production. Nevertheless, crop cultivation

is susceptible to diverse biotic and abiotic stresses throughout every

stage of its development (Kashif et al., 2023; Nawaz et al., 2023).

Despite being recognized as a crop well-suited to hot, semi-arid

regions, it is observed that high temperatures (HT) have a

considerable influence on cotton lint quality and the yield of its

fiber (Bhardwaj et al., 2021). The influence of HT stress on cotton

yield and fiber quality is determined by the severity, time period, as

well as the growing stage of cotton at which the HT stress occurs

(Zafar et al., 2022a). According to a previous report, it has been

documented that with an increase of 1°C in the daily maximum
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temperature (beyond the optimal temperature range), there is a loss

of 110 kg ha-1 in cotton yield (Singh et al., 2007). The reduction in

yield is attributed to multiple factors, including a shortened boll

development period (Loka et al., 2020), elevated rates of bud and

boll abscission, and consequently, a decrease in the overall boll load

(Schaefer et al., 2018). When cotton plants experience combined

drought and HT stresses, the resulting yield loss is typically more

pronounced compared to the impact of either stress alone, where

the duration and intensity of the relevant stresses with regards to the

growth stage determine the degree of damage (Loka et al., 2020).

When the cotton crop is exposed to heat and drought stresses

during its flowering and boll-forming stages, there is a potential for

a significant decrease in both the quantity and quality of the fiber.

This reduction renders the cotton unsuitable for subsequent

processing (Hu et al., 2023). Drought and heat stress have led to

substantial losses in fiber yield within the cotton industry, reaching

up to 34%. Certain studies have suggested that, in accordance with

the combination and conditions of applied stress, a singular of this

set of stresses could potentially play a relatively predominant role

(Loka et al., 2020). However, the simultaneous incident of drought

and heat stress in cotton production makes it difficult to

differentiate their respective impacts (Zafar et al., 2022c). Stomata,

which govern the exchange of CO2 and water, along with the

photosynthetic activity in the mesophyll, serve as the main factor

influencing plant production through the regulation of

photosynthesis (Nadeem et al., 2023; Nie et al., 2023). Stomatal

conductance is directly affected by drought and HT stresses, leading

to alterations in photosynthetic metabolism (Li et al., 2022; Gong

et al., 2023). It is widely accepted fact that stomatal closure by these

stresses reduces the CO2 uptake, which ultimately decreases the

photosynthetic rate, growth and yield (Bhardwaj et al., 2021; Yin

et al., 2023a). Various cotton studies have indicated that the

occurrence of drought stress triggers a decrease in photosynthetic

rates due to limitations imposed by both stomatal and non-stomatal

factors (Cheng et al., 2022; Sultana et al., 2023; Yin et al., 2023b).

Heat and drought, like other abiotic stresses, trigger an upsurge

in reactive oxygen species (ROS) production like hydrogen peroxide
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(H2O2), singlet oxygen, hydroxyl radicals and superoxide radical

(Sekmen et al., 2014; Qin et al., 2023). Plants have developed

mechanisms to counteract the production and accumulation of

ROS by employing antioxidative processes (Farooq et al., 2021).

These mechanisms encompass both enzymatic components,

including peroxidase (POD), catalase (CAT), and superoxide

dismutase (SOD), as well as non-enzymatic antioxidants such as

reduced ascorbic acid, total soluble proteins, flavonoids,

carotenoids, and proline (Zafar et al., 2021b). The oxidative

damage incurred by cotton plants under drought and heat stress

conditions is influenced by the equilibrium between ROS

production and the activities of antioxidative enzymes (Manan

et al., 2022). Manan et al. (2022) found that cotton produced

ROS under heat stress, but the increased activities of CAT, SOD,

and POD, enabling the plants to maintain the ROS scavenging

process until they recovered from the stressful conditions.

As a consequence of climate change, it is anticipated that plants

will encounter a higher frequency of concurrent heat and drought

stress in the future (Pörtner et al., 2022; Xiong et al., 2023). The

response of plant to multiple stresses is more intricate compared to

a single stressor, like heat or drought. Therefore, comprehending

the biochemical mechanisms that contribute to the tolerance of

cotton plant to the combined stresses of heat and drought is crucial

for selecting appropriate genotypes that can yield better (Rivero

et al., 2022). Studies have investigated the antioxidant responses of

cotton in the context of drought, heat, and salinity stresses.

Nevertheless, there has been few investigations carried out on the

production and detoxification of ROS by cotton plants exposed to

the combined stresses of heat and drought.

This study intends to examine how the antioxidant defense

systems of 12 different cotton cultivars with varying levels of

drought and heat tolerance respond to the individual and

combined stresses of drought and heat, specifically focusing on

the formation and detoxification of ROS. The selection of these

genotypes was based on field screening experiments conducted over

two years at various research stations, specifically under individual

heat and drought stress conditions (Chattha et al., 2017; Zafar et al.,

2022a). We developed the hypothesis that the combined stress of

drought and heat may elicit a distinct response in tolerant and

sensitive genotypes compared to individual stresses. In contrast,

when one of the stresses has a dominant effect, the response to

combined stress may resemble that of a single stress. This research

will provide insights into the unique responses and connections

among different biochemical, physiological, agronomic and fiber

quality traits of cotton to drought, heat, and combined stress. These

findings can contribute to the development of strategies for

enhancing cotton plants’ resilience in unstable climatic conditions.
2 Materials and methods

2.1 Plant materials

In this experiment, 12 genotypes of upland cotton (Gossypium

hirsutum L.) were used. These genotypes were selected from

previously screening experiments of 105 cotton genotypes
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developed by various research stations of Pakistan. The screening

experiments were individually conducted for two years consecutively

for drought and heat tolerance under field conditions (Chattha et al.,

2017; Zafar et al., 2022a). Based on the individual screening

experiments, FB-Shaheen, Eagle-2, Ghauri-1, and White Gold were

identified as heat-tolerant genotypes. In contrast, FH-207, FH-329,

MNH-886, and VH-291 exhibited drought tolerance. The genotypes

AA-703, IR-6, KZ-191, and S-15 were found to be sensitive to the

tested conditions. The seeds of these genotypes were sourced from

their respective breeding stations located in Pakistan.
2.2 Experimental location and design

The experimental work was carried out on the research premises

of FB Genetics, Four Brothers Group, Pakistan during cropping year

2021. Experimental site is located at 74˚ east longitude, and 31˚ north

latitude. These genotypes were planted in 15 April 2021, under

normal and stressed conditions and harvested in October 2021. A

randomized complete block split-plot design with three replicates was

used to conduct the experiment. Treatments were considered as main

plots, and 12 cotton genotypes were assigned to the split plots. These

genotypes were studied under four treatments. Plants were subjected

to four treatments: a control group, drought stress (D), heat stress

(H), and a combination of drought and heat stress (DH). In control

conditions the total irrigation water applied to the control plot was

19.61-acre inches and additional moisture of 13.9-acre inches was in

the form of precipitation. The applied irrigation water to well water

condition was a total of 33.6-acre inches. Under drought stress

conditions, the total irrigation water applied was 7.61-acre inches

and additional moisture of 13.99-acre inches was received in the form

of precipitation. The irrigation water applied in total to water-deficit

condition was 21.6-acre inches. Under heat stress conditions, at

flowering stage in end of July, high temperature stress was inflicted

for 12 days by raising the 4-5°C temperature inside a tunnel

constructed using bamboo sticks and plastic sheets. The plants

within the tunnel were covered during the daytime and left

uncovered during the night. To monitor the temperature inside the

tunnel, a mercury thermometer was used. In the same way, under

combined heat and drought stress; the total water received by well

water and water deficit conditions were 33.6-acre inches and 21.6-

acre inches respectively including raining water and irrigation water

and an increase of 4-5°C by tunnel as described under heat stress

conditions. Figure S1 provides the recorded maximum andminimum

temperature ranges observed throughout the crop growing season

and Figure S2 provides the maximum and minimum temperature

inside the tunnel during heat stress conditions.
2.3 Data collection

2.3.1 Estimation of agronomic traits
The measurement of plant height was conducted by using a

measuring tape, from the first cotyledon node to the apical bud, at

which point the growth ceased. The count of effective mature bolls

was recorded from all the harvests, with separate records
frontiersin.org
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maintained for each plant. Seed cotton was collected from five

guarded plants and the weight for each genotype was measured

using an electronic weighing scale. The weight of each individual

boll was determined by dividing the total weight of seed cotton

harvested by the number of bolls collected.

2.3.2 Fiber quality traits
A Testex TB510C single roller ginning machine from the USA

was utilized to gin the seed cotton sample. Before ginning, the

weight of the sample was recorded. The lint was then separated

from the seeds, and the ginning out turn (GOT) was determined by

dividing the weight of the lint by the weight of the seed cotton,

expressed as a percentage. The fiber fineness, strength, and length

parameters were analyzed using a high-volume instrument (HVI-

900, USTER, USA).

2.3.3 Quantification of biochemical and
physiological traits

To collect samples for analysis, the top four fully expanded leaves

were selected, and the method described by Song et al. (2014) was

employed. For enzyme extraction, about 0.5 g of cotton samples were

collected, and the leaves were cut using a leaf pincher. The cut leaves

were then crushed and ground to obtain 1-2 ml of cold potassium

phosphate buffer (pH 7.8). The resulting mixture was prepared for 5

minutes at 1,400 rpm. Afterward, the residues were removed, and the

supernatant was collected for measurement of biochemical attributes

using UV spectrophotometers (Evolution One Plus, Thermo Fisher

Scientific) at various wavelengths, as described by (Zafar et al., 2022a).

The determination of H2O2 was carried out using the Velikova

protocol, as described by Velkova et al. (2000). To measure CAT,

SOD, and POD activities, the protocol of (Liu et al., 2009) was

adopted. To measure the protein content, the Bradford reagent

method was utilized (Bradford, 1976). The Arnon method (Arnon,

1949) was used to determine carotenoids and chlorophyll a and b. To

determine the ascorbic acid content, the DCIP method was employed,

following the procedure described by (Davies and Masten, 1991). The

quantification of total phenolic content was followed the (Ainsworth

and Gillespie, 2007) method, while the measurement of flavonoid

content was carried out using the (Zhishen, Mengcheng and Jianming,

1999) method. For leaf relative water contents, the method described

by Silveira et al. (2009) was used to collect leaf samples for determining

relative water content (RWC), with a minor modification of

(Weatherley, 1950) method. The method of (Cakmak and Horst,

1991) was used to determine the MDA content in cotton leaves.

Stomatal conductance (m mol m-2sec-1) was assessed at three different

reproductive stages of the cotton crop using a portable infrared gas

analyzer (LCi Analyzer with Broad Head, Part Number LCi-002/B and

Serial Number 32455). It was measured on the fully expanded

youngest leaves from 10:00 to 12:00 h.
2.4 Statistical analysis

Data were subject to ANOVA following split-plot

arrangements. Then bar plot were drawn through “ggplot2”
Frontiers in Plant Science 04
package in R software. Furthermore, heatmap analyses were also

done through R using the package “heatmap”.
3 Results

Significant variations in mean square values for all the

studied traits were observed among genotypes and genotype ×

treatment interactions, as indicated by the analysis of variance

(ANOVA) results (p-values at p ≤ 0.01 and p ≤ 0.05) (Table 1).

The biochemical, physiological, agronomic, and fiber quality traits

of all cotton genotypes were significantly affected by both

drought stress, heat stress, and the combined drought and

heat stress. The pairwise comparisons among genotypes for all

25 traits were conducted for all four treatments (control, drought,

heat and combined stress. The whole analyses are provided as

Supplementary Material (S-1).
3.1 Agronomic traits

The growth and agronomic characteristics of studied genotypes

were adversely influenced by heat stress (H) and drought (D)

conditions, whether experienced separately or in combination

(H × D). When evaluating each stressor independently, it was

observed that the combined heat and drought stress had a more

pronounced effect on plant height, boll number, boll weight,

ginning out turn percentage (GOT %), and seed cotton yield

across all genotypes (Figure 1). During each individual drought

and heat stress, FB-Shaheen, Eagle-2, FH-207, FH-329, Ghauri-1,

MNH-886, VH-291, andWhite Gold exhibited superior growth and

yield performance in comparison to AA-703, IR-6, KZ-191, and S-

15. Whereas under combined stress conditions only FB-Shaheen,

FH-207, MNH-886, and White Gold were superior for PH, TNB,

BW, SCY, and GOT% compared to all other genotypes (Figure 1).

Interestingly, other tolerant genotypes could not perform well

under combined stress environment for yield related traits. Under

combined and single stress conditions, genotypes AA-703, IR-6,

KZ-191, and S-15 exhibited significant reductions in yield

parameters. These findings indicate their vulnerability and

susceptibility to stress (Figure 1).
3.2 Fiber quality traits

The study demonstrated that both normal conditions and

stressors such as drought, heat, and combined stress had

significant impacts on fiber quality traits, including fiber fineness

(FF), fiber strength (FS), and fiber length (FL) (Figure 2). However,

the specific effects varied among different cotton genotypes. The

study findings showed that MNH-886, FB-Shaheen, FH-207 and

White Gold exhibited the best performance under both combined,

and individual heat and drought stress, with the highest fiber length,

strength, and fineness. In contrast, AA-703, IR-6, KZ191, and S-15

demonstrated poor performance for these fiber quality traits under

all stress conditions. Additionally, Eagle-2, FH-329, Ghauri-1, and
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VH-291 exhibited relatively lower susceptibility to individual heat

and drought stress compared to combined stress (Figure 2). These

genotypes displayed moderate performance in terms of fiber length,

strength, and fineness under combined stress conditions.
3.3 Physiological traits

Under combined stress conditions, all genotypes experienced a

notable decrease in their transpiration rate (TR), photosynthetic

rate (Pn), relative water content (RWC) and stomatal conductance

(Figure 3). However, the response of different genotypes varied for

transpiration rate and stomatal conductance under different
Frontiers in Plant Science 05
individual stress treatments, with drought and heat stress were

being less severe compared to combined stress. Most of the

genotypes revealed higher transpiration and stomatal conductance

under individual heat stress conditions. During heat stress

conditions, genotypes AA-703, Eagle-2, FB-Shaheen, FH-329,

Ghauri-1, FH-207, KZ191, IR-6, S-15, VH-291, and White Gold

demonstrated elevated transpiration rate and stomatal conductance

compared to the control conditions (Figure 3). MNH-886, FH-207,

White Gold, and FB-Shaheen maintained their stomatal

conductance and transpiration rate under individual stress

treatments and showed the least decrease under combine stress

environment. Conversely, genotypes such as AA-703, KZ191, IR-6,

and S-15 experienced the highest reduction in stomatal
TABLE 1 ANOVA split plot design for different agronomic, physiological, biochemical and fiber quality traits under control, individual (heat and
drought) and combined stress conditions.

SOV Replications Treatments Error A Genotypes Treatments × Genotypes Error B

ASA 478.21 5199.92** 201.1 482.04** 323.04** 4684.7

BW 0.036 11.225** 0.931 1.523** 0.97** 11.039

CAR 0.004 2.076** 0.007 0.25** 0.065** 0.566

CAT 70.21 1370.07** 52.9 329.82** 59.78** 828.8

Chla 0.131 1.221** 0.02 0.665** 0.049* 2.595

Chlb 0.059 0.054** 0.006 0.068** 0.003* 0.187

FF 0.564 17.417** 0.526 5.039** 1.601** 23.113

FL 19.298 241.726** 8.830 29.178** 10.726** 167.45

FLV 5500.36 1584.46* 1102 7332.37** 215.5* 56865

FS 8.88 201.199** 6.93 45.913** 11.1** 284.88

GOT 28.099 196.298** 19.95 59.884** 13.47** 513.81

H2O2 0.027 0.137** 0.004 0.039** 0.009** 0.297

MDA 0.556 0.762** 0.152 0.341** 0.127* 6.088

NBP 8.507 100.04** 17.931 19.217** 5.98** 164.389

PH 87.7 13670.3** 158.7 238.7** 68.1** 1755.3

POD 3.076 35.479** 2.26 40.464** 7.914** 123.863

Pn 0.393 109.325** 1.24 298.95** 7.44** 12.88

Proline 0.01 2.396** 0.049 0.157** 0.083** 0.22

RWC 279.09 2130.51** 17.8 339.58** 61.58** 1946.7

SCY 4.934 484.832** 81.71 90.431** 2.685* 464.05

SOD 0.693 179.45** 0.4 6.685** 14.54** 92.77

SC 0.003 0.239** 0.003 0.16** 0.014** 0.061

TPC 1.539 47.38** 1.13 9.27** 1.87** 18.836

TR 0.424 54.44** 0.47 39.229** 1.684** 24.641

TSP 732.1 37980.2** 245 95194.1** 3503.4** 3732
fro
* Significant at the 0.05 level.
** Significant at the 0.01 level.
Ascorbic Acid, (ASA); Boll Weight, (BW); Carotenoid Contents, (CAR); Catalase, (CAT); Chlorophyll a, (Chla); Chlorophyll b, (Chlb); Fiber Fineness, (FF); Fiber Length, (FL); Flavonoid (FLV);
Fiber Strength, (FS); Ginning Out Turn percentage, (GOT%); Hydrogen Peroxide, (H2O2); Malondialdehyde, (MDA); Number of Bolls per Plant, (NBP); Plant Height, (PH); Peroxidase, (POD);
Photosynthetic rate, (Pn); Superoxide Dismutase, (SOD); Relative Water Content, (RWC); Seed Cotton Yield, (SCY); Transpiration Rate, (TR); Stomatal Conductance, (SC); Total Phenolic
Contents, (TPC); Total Soluble Protein, (TSP).
ntiersin.org

https://doi.org/10.3389/fpls.2023.1265700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zafar et al. 10.3389/fpls.2023.1265700
FIGURE 2

Effects of normal conditions (C), heat stress (H), drought stress (D) and combined stress (DH) conditions on fiber quality traits; (A) Fiber fineness, (B) Fiber
strength, and (C) Fiber length of studied cotton genotypes.
FIGURE 1

Effects of normal conditions (C), heat stress (H), drought stress (D) and combined stress (DH) conditions on agronomic traits; (A) Plant height, (B) Number of
bolls per plants, (C) Boll weight, (D) Seed cotton yield, (E) ginning out turn% of studied cotton genotypes.
Frontiers in Plant Science frontiersin.org06

https://doi.org/10.3389/fpls.2023.1265700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zafar et al. 10.3389/fpls.2023.1265700
conductance and transpiration rate under combined stress. Stress-

sensitive genotypes, such as IR-6, AA-703, KZ 191, and S-15,

showed lower Pn and RWC under drought and heat stress

conditions, while stress-tolerant genotypes, such as FB-Shaheen,

Eagle-2, FH-207, FH-329, Ghauri-1, MNH-886, VH-291 andWhite

Gold showed the least decrease under both individual stresses

(Figure 3). It is noteworthy that MNH-886, FH-207, FB-Shaheen,

andWhite Gold displayed superior performance regarding stomatal

conductance, Pn, RWC and transpiration rate, under combined

stress conditions. In contrast, the remaining genotypes exhibited

significant effects of combined stress on photosynthetic rate (Pn),

relative water content (RWC), transpiration rate, and stomatal

conductance when compared to individual stress conditions.
3.4 Biochemical traits

3.4.1 Peroxidase (POD), Catalase (CAT), and
Superoxidase (SOD)

The studied genotypes were subjected to individual and

combined heat and drought stress treatments, and the activities of

peroxidase (POD), catalase (CAT), and superoxidase (SOD) were

assessed. All genotypes exhibited a significant increase in the

activities of these antioxidant enzymes in response to both

individual stresses (Figure 4). Notably, the tolerant genotypes

(FB-Shaheen, Eagle-2, FH-207, FH-329, Ghauri-1, MNH-886,

VH-291 and White Gold) exhibited the highest increase in
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antioxidant enzyme activities. Conversely, susceptible genotypes

(AA-703, KZ 191, IR-6, and S-15) showed the least increase in these

activities under both individual stress treatments (Figure 4). It is

worth emphasizing that these susceptible genotypes experienced

more pronounced negative impacts on enzymatic activities when

both drought and heat stress applied simultaneously as compared to

single stress. Conversely, tolerant genotypes (MNH-886, FH-207,

White Gold, and FB-Shaheen) displayed greater increases in

enzymatic activities under the combined treatment compared to

individual stress applications (Figure 4). Compared to above

mentioned tolerant genotypes; FH-329, VH-291, Ghuari-1, and

Eagle-2 exhibited less increase in POD, CAT and SOD activities

under combined stress conditions (Figure 4).

3.4.2 Reactive oxygen species
Under all stress conditions, cotton genotypes exhibited a marked

increase in the levels of reactive oxygen species (ROS). Nevertheless,

the detrimental effect of combined stress was more severe in

comparison to the individual stress factors. In contrast to the

control, all genotypes experienced notable elevations in the levels of

H2O2 and malondialdehyde (MDA) under the influence of drought

stress, heat stress, and the combined stress of drought and heat.

Nonetheless, the greater oxidative damage was observed in (AA-703,

KZ 191, IR-6, and S-15) suggests that this cultivar exhibits lower

tolerance to heat and drought stresses compared to (FB-Shaheen,

Eagle-2, FH-207, FH-329, Ghauri-1, MNH-886, VH-291 and White

Gold) (Figure 4). Under combined stress conditions the genotypes
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FIGURE 3

Effects of normal conditions (C), heat stress (H), drought stress (D) and combined stress (DH) conditions on physiological traits; (A) Transpiration rate, (B)
Relative water contents, (C) Photosynthetic rate, and (D) Stomatal conductance of studied cotton genotypes.
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MNH-886, FH-207, FB-Shaheen, and White Gold revealed less

accumulation of ROS. On the other hand, the remaining genotypes

exhibited greater accumulation of H2O2 and MDA under combined

stress conditions. Specifically, genotypes AA-703, KZ 191, IR-6, and

S-15 demonstrated a more significant increase in H2O2 and MDA

levels across all stress conditions (Figure 4).

3.4.3 Ascorbic acid, proline, total phenolic
contents, and flavonoid

This study revealed an augmentation in the biochemical traits of

proline, total phenolic contents (TPC), flavonoid (FLV), and

ascorbic acid (ASA) in cotton leaves when exposed to both

individual and combined stress treatments. Under combined

stress conditions, the levels of these traits were almost twice in

(FB-Shaheen, FH-207, MNH-886, and White Gold) that of the

control plants (Figure 5). Moreover, individual stress treatments

resulted in a significant increase in these biochemical traits in these

genotypes (FB-Shaheen, Eagle-2, FH-207, FH-329, Ghauri-1,

MNH-886, VH-291 and White Gold). Remarkably, the tolerant

genotypes (FB-Shaheen, FH-207, MNH-886, and White Gold)

exhibited the highest concentrations of proline, total phenolic

contents (TPC), flavonoid, and ascorbic acid under the combined

stress conditions (Figure 5). Conversely, sensitive genotypes such as

AA-703, S-15, KZ 191, and IR-6 performed poor for proline, TPC,

flavonoid, and ascorbic acid under both individual and stress

combination treatments (Figure 5).
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3.4.4 Chlorophyll a, b, total soluble protein and
carotenoid contents

In contrast to the previously mentioned biochemical traits,

chlorophyll a (Chla), chlorophyll b (Chlb), total soluble proteins

(TSP), and carotenoid (CAR) exhibited a statistically significant

decrease in all genotypes when subjected to both individual and

combined applications of drought and heat stress, as compared to

the control treatment (Figure 6). The combined treatment resulted

in a more pronounced decrease, compared to individual

applications of drought and heat stress in susceptible genotypes.

However, tolerant genotypes (FB-Shaheen, FH-207, MNH-886, and

White Gold) displayed a lesser decrease in these traits. The

susceptible genotypes, namely AA-703, S-15, KZ 191, and IR-6,

showed the highest reduction in pigments carotenoid, chlorophyll a

and chlorophyll b levels (Figure 6). This was followed by FH-329,

VH-291, Ghauri-1, and Eagle-2, while the tolerant genotypes (FB-

Shaheen, FH-207, MNH-886, and White Gold) showed the least

reduction in these pigment levels. Notably, the total soluble protein

was not significantly affected in the aforementioned tolerant

genotypes compared to the susceptible genotypes mentioned

earlier (Figure 6).

3.4.5 Correlation analysis
Correlation analysis was conducted on studied genotypes,

examining their physiological, biochemical, agronomic and fiber

quality characteristics under normal and stressed conditions
FIGURE 4

Effects of normal conditions (C), heat stress (H), drought stress (D) and combined stress (DH) conditions on physiological traits; (A) Superoxidase
dismutase, (B) Peroxidase, (C) Catalase, (D) Hydrogen peroxide, and (E) Malondialdehyde of studied cotton genotypes.
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(Figure 7). Positive and significant correlations were noted between

SCY and several other traits including agronomic, fiber quality

traits, physiological, and biochemical traits under drought stress

conditions. Conversely, the SCY exhibited a negative correlation

with MDA and H2O2. The H2O2 and MDA also revealed negative

association with PH, NBP, BW, GOT%, SCY, FL, FS, FF, BW, Car,

chlorophyll contents, CAT, proline contents, TSP, TPC, SC, Pn,

ASA, SOD, POD, FLV and RWC under drought stress conditions

(Figure 7). Under heat stress environments, stomatal conductance

and transpiration rate revealed significant positive correlation with

ROS (H2O2 and MDA). Whereas TR and SC showed negative

association with antioxidant activities, yield and fiber quality traits.

Both H2O2 and MDA were also negatively associated with all other

biochemical, physiological, fiber quality and yield contributing

characters under heat stress conditions. Under combined heat

and drought stress conditions, FLV exhibited lower positive

relationship with other antioxidants, yield and fiber quality traits.

Whereas PH, NBP, BW, GOT%, SCY, FL, FS, FF, BW, Car,

chlorophyll contents, CAT, proline contents, TSP, TPC, SC, Pn,

ASA, SOD, POD, FLV and RWC showed significant positive

correlation among themselves under combined stress conditions

(Figure 7). Both H2O2 and MDA revealed significant and negative

association with biochemical, physiological, fiber quality and

agronomic traits under combined drought and heat stress

conditions (Figure 7).
Frontiers in Plant Science 09
3.4.6 Heat mapping agro-physiological,
biochemical, and fiber quality traits of
cotton genotypes under individual and
combined stress conditions

The heat map illustrates the relative performance of different

genotypes under normal, individual and combined stress conditions.

The heat maps clustered the cotton genotypes on the basis of mean

into different groups. Under control conditions the genotypes were

divided into three clusters based on performance for the studied traits

(Figure 8). Under drought stress conditions, the 12 cotton genotypes

were grouped into four clusters based on agronomical, biochemical,

and fiber quality characteristics. Genotypes belonging to cluster-I,

(FH-207, MNH-886, FH-329, and VH-291) demonstrated higher

values for agronomic and antioxidant traits and lower values for

MDA andH2O2, indicating their resistance to drought stress. Whereas

the genotypes of cluster-II (FB-Shaheen, and White Gold) revealed

moderate performance agronomic and antioxidant traits under

drought stress conditions. The genotypes of cluster-III (AA-703, S-

15, IR-6, and KZ-191) were highly sensitive to drought stress followed

by genotypes of cluster-IV (Eagle-2, and Ghauri-1) (Figure 9).

Under heat stress conditions, 12 cotton genotypes were

categorized into three clusters based on agronomical, biochemical,

and fiber quality traits. Genotypes in cluster-I (Eagle-2, FH-207,

FH-329, Ghauri-1, FB-Shaheen, and White Gold) displayed higher

values for agronomic and antioxidant traits, while showing lower
FIGURE 5

Effects of normal conditions (C), heat stress (H), drought stress (D) and combined stress (DH) conditions on (A) Ascorbic acid, (B) Proline, (C) Total
phenolic contents and (D) Flavonoid contents of studied cotton genotypes.
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values for MDA and H2O2, indicating their resilience to heat stress.

On the other hand, genotypes in cluster-II (FH-207, MNH-886,

FH-329, and VH-291) demonstrated moderate performance in

agronomic and antioxidant traits under heat stress conditions.

The genotypes in cluster-III (AA-703, S-15, IR-6, and KZ-191)

were highly sensitive to heat stress conditions and perform poor for

agronomic, biochemical, and fiber quality traits (Figure 10).

Under combined drought and heat stress conditions, the 12

cotton genotypes were classified into three clusters based on studied

characteristics. Cluster-I consisted of FB-Shaheen, FH-207, MNH-

886, and White Gold, which exhibited higher values for PH, TNB,

BW, SCY, GOT%, POD, CAT, SOD, TPC, proline, ASA, FLV,

RWC, Tr, Pn, CAR, Chla, Chlb, TSP, FS and FL and lower values for

MDA and H2O2, indicating their resistance to combined stress

conditions. In contrast, the genotypes of cluster-II (AA-703, IR-6,

KZ-191, and S-15) demonstrated poor performance for above

mentioned agronomic and antioxidant traits under combined

stress conditions. The genotypes in cluster-III (Eagle-2, Ghauri-1,

FH-329, and VH-291) were moderately tolerant to combined stress

conditions and exhibited moderate performance for agronomic,

biochemical and fiber quality traits (Figure 11).
4 Discussion

Drought and high temperatures are recognized as critical

challenges that hinder cotton’s ability to achieve high yield
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potential (Loka et al., 2020). Climate models project a rise in

surface temperature by 3–5°C in the next century, resulting in an

increased occurrence of droughts and floods (Soong et al., 2020).

The escalating threat of climate-related events to agriculture as well

as global food security, coupled with the rapid growth of the world

population, necessitates the urgent development of stress-tolerant

crops (Zafar et al., 2021a). Considering the ongoing fluctuations in

the climate, it has become essential to systematically expose cotton

plants to different stresses (Haroon et al., 2023). This approach is

crucial for identifying genotypes that are resilient to climate changes

and can be effectively exploited in future breeding programs (Nawaz

et al., 2023). The main objective of this study was to investigate the

impacts and combined influence of heat and drought stresses on the

morphological, physiological, biochemical, and agronomic traits of

12 cotton genotypes (comprising 8 tolerant and 4 susceptible

genotypes). The findings demonstrated that all genotypes

exhibited favorable performance under normal conditions, but

both drought and heat stresses individual and combined had

detrimental effects on various agronomic traits (Dabbert et al.,

2017). Interestingly, the impact of these two stresses on all traits

was relatively similar across the tolerant genotypes (FB-Shaheen,

Eagle-2, FH-207, FH-329, Ghauri-1, MNH-886, VH-291 andWhite

Gold) whereas sensitive genotypes (AA-703, KZ 191, IR-6, and S-

15) revealed more destructive effects on agronomic traits PH, NBP,

BW, SCY, and GOT%. These effects can be attributed to the

accelerated maturity of cotton plants due to a shortened

flowering-to-boll opening period under stressful conditions
FIGURE 6

Effects of normal conditions (C), heat stress (H), drought stress (D) and combined stress (DH) conditions on (A) Chlorophyll a, (B) Chlorophyll b, (C)
carotenoid contents, (D) Total soluble protein and of studied cotton genotypes.
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FIGURE 8

Heat map analysis of various traits under normal conditions.
Frontiers in Plant Science 11
FIGURE 9

Heat map analysis of various traits under drought stress.
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DC

FIGURE 7

Correlation between different agronomic, physio-chemical, and fibre-related traits in upland cotton genotypes under control (A), drought (B), heat
(C) and combined (D) stress conditions.
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(Pettigrew, 2004), as well as a reduction in the time available for

cotton boll accumulation (Xu et al., 2019). Nevertheless, the results

of our research suggest that the decline in cotton yield resulting

from a decrease in the number of bolls has a greater effect compared

to the impact of reduced boll weight. These findings are consistent

with the observations made by Hu et al. (2018) (Hu et al., 2018).

Cotton yield is further constrained by water scarcity and heat stress,

leading to a decrease in boll numbers (Snider et al., 2019; Zafar et al.,

2022a). However, when subjected to DH, drastic effects of combined

stress was observed on all cotton genotypes for agronomic

characters compared to individual stress (Gao et al., 2021). Only
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four genotypes (FB-Shaheen, FH-207, MNH-886, and White Gold)

showed higher performance for agronomic traits whereas rest of

four tolerant genotypes revealed moderate performance in

combined stress conditions. The sensitive genotypes showed poor

performance under combined stress environmental conditions.

These observations suggest that the evolving climatic conditions

are expected to have a significantly negative impact on cotton

genotypes (Manan et al., 2022).

The current study revealed elevated levels of H2O2 and MDA in

cotton genotypes when exposed to individual drought, heat, and

combined stress conditions.

The observed correlation between the extent of oxidative

damage and the vulnerability of cotton genotypes to combined

drought and heat stress suggests a direct relationship (Zandalinas

et al., 2018). The sensitive genotypes revealed higher accumulation

of H2O2 and MDA followed by moderately tolerant and tolerant

genotypes (Qaseem et al., 2019). The oxidative damage caused by

the accumulation of H2O2 and MDA adversely affects essential

cellular components such as DNA, lipids and proteins.

Consequently, this damage leads to cell death and hampers the

overall growth of plants (Zafar et al., 2021b). Proline serves as an

osmo-protectant in plants, and is actively involved in multiple stress

signaling pathways enabling them to endure stressful conditions.

When plants experience stress, they tend to accumulate higher

levels of proline (Alagoz et al., 2023). The accumulation of proline is

essential for combating stress as it effectively scavenges ROS from

the cell, safeguarding it against ROS-induced cellular damage, while

preserving the normal biological activities within the cell. This

mechanism protects the cell and helps maintain the structural

integrity of proteins (Alagoz et al., 2023). Our research focused

on evaluating proline accumulation and revealed that sensitive

genotypes exhibited reduced proline levels under stress conditions

whereas the tolerant genotypes, however, (FB-Shaheen, FH-207,

MNH-886, and White Gold) exhibited increased level of proline

under both individual as well as combined stress conditions. Under

separate and combined stress conditions, tolerant plants exhibited a

significant rise in proline accumulation, consistent with the study

(Raja et al., 2020). This study revealed that increased proline levels

serve as an osmoprotectant in plants, safeguarding them against the

combined stresses of drought and heat, as reported by (Moreno-

Galván et al., 2020). RWC acts as a reliable indicator of stress

resistance in plants across diverse stress conditions. Plants

exhibiting decreased RWC content are typically regarded as more

vulnerable to both individual and combined stress conditions,

primarily due to enhanced protoplasmic permeability (Aslam

et al., 2023), similarly, we also observed reduced RWC value in

sensitive genotypes, indicating their susceptibility to stress. The

species which are able to maintain RWC are considered as tolerant/

resistant to combined stress (Zandalinas et al., 2018). Chlorophyll

pigments are engaged directly in metabolic processes plants. The

reduction in chlorophyll contents is directly associated with

reduced growth, productivity as well as tolerance (Nawaz et al.,

2023). Likewise, we also found a substantial reduction in

chlorophyll content among all genotypes during individual as well

as combined stress, which might be attributed to harm to the

chloroplasts (Zafar et al., 2022c). In comparison to tolerant
FIGURE 11

Heat map analysis of various traits under combined stress condition.
FIGURE 10

Heat map analysis of various traits under heat stress.
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cultivars, drastic reductions in chlorophyll contents were observed

in sensitive genotype under combined stress conditions.

Carotenoids, known for their antioxidant properties, play a

defensive role by preventing chlorophyll photo-oxidation (Mekki

et al., 2015). All stress treatments have a notable impact on

carotenoids contents while most substantial reduction was found

under combined stress environment (Ashraf et al., 2019). Previous

studies have also reported the reduction in the contents of

carotenoid under several stress environments (Manan et al., 2022;

Zafar et al., 2022c). Carotenoid have ability in quenching the singlet

oxygen, therefore, relative levels of carotenoid can act as an

indicator of tolerance (Ashraf et al., 2019; Manan et al., 2022).

Our study found the decline in transpiration rate, stomatal

conductance and overall photosynthetic rate while examining

photosynthetic performance during combined stress (heat and

drought). Notably, the combination of heat and drought stress

exhibited a severe effect on photosynthesis (El Sabagh et al., 2020).

Moreover, we ascertained that heat and drought stress act

synergistically, simultaneously limiting photosynthesis in field

conditions. Total soluble protein was reduced in all genotypes

when exposed to single stress (heat and drought) as well as

combined stresses. This reduction in protein content might be

ascribed to a significant decline in photosynthesis (Shallan et al.,

2012) or a limited availability of protein assimilates, which are

crucial for protein synthesis. The convergence of drought and heat

leads to an intensified negative effect on photosynthesis (Ru et al.,

2022), encompassing both stomatal and non-stomatal limitation

(Zhou et al., 2020). Plants have evolved protective mechanism to

mitigate the harmful impact of reactive oxygen species (ROS).

These mechanisms involve the synthesis of both enzymatic and

non-enzymatic antioxidants. Enzymatic antioxidants like catalase

peroxidase (POD), superoxide dismutase (SOD) and CAT are

crucial in breaking down ROS into less harmful substances (Zafar

et al., 2022b). In our experiment, we observed that the tolerant

genotypes exhibited higher expression levels of ROS-scavenging

enzymes, including SOD, POD, and CAT, when subjected to stress

conditions. This likely contributed to their superior performance,

and similar results were documented by (Zhanassova et al., 2021).

Other researchers (Niu et al., 2018; Hanif et al., 2021) have also

reported increased activities of catalase (CAT) and superoxide

dismutase (SOD) under both individual and combined stress

conditions, as observed in our current study. However, under

combined stress conditions, the moderately tolerant genotypes

displayed only moderate levels of SOD, POD, and CAT. In

contrast, the susceptible genotypes showed minimal accumulation

of these enzymes. In addition to enzymatic components, non-

enzymatic components including phenols, flavonoids, and

ascorbic acid also contribute to preventing the effects of oxidative

stress by improving the scavenging of ROS (Yildiz-Aktas et al.,

2009). Flavonoids have been found to provide photoprotection to

plants against high temperatures and drought stress (De Souza

Junior et al., 2023). In the present study, flavonoid contents were

enhanced among tolerant genotypes when exposed to combined

heat and drought stress as compared to individual heat or drought

stresses. However, moderately tolerant genotypes showed a lesser
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extent of increase in flavonoid content. Susceptible genotypes did

not exhibit any increase in flavonoid content.

Plants usually enhance the production of secondary

metabolites, such as polyphenols, as a typical response to abiotic

stresses. Phenolics, in particular, confer higher tolerance to plants

against drought and heat stress (Ashraf et al., 2019). Similarly,

phenolic contents were significantly enhanced in tolerant genotypes

under combined stress as compared to the control group.

Conversely, moderately tolerant genotypes exhibited a slight

elevation in phenolic content compared to individual stress

conditions. There is a scarcity of specific reports that discuss the

synergistic impacts of drought and heat stress on the accumulation

of phenols and antioxidant potential.

Under individual stress treatments, we found that non-

enzymatic antioxidant ascorbic acid (ASA) was enhanced

significantly in plant’s leaves. Ascorbic acid actively participates in

the ascorbate-glutathione cycle, which involves APX enzymes.

Moreover, under stress conditions, ensuring sufficient levels of

these enzymes is critical as they serve as guardians of cells,

protecting them from oxidative damage (Wu et al., 2015). The

increased ASC levels found in our study align with previous findings

in drought-stressed chickpea (El-Beltagi et al., 2020), sweet pepper

(Khazaei and Estaji, 2020), and wheat (Gupta and Thind, 2015).

Both fiber yield and quality are affected by the simultaneous

occurrence of water deficit and high temperatures. These stresses

interacted and influenced the formation of fiber length. When

temperatures surpassed the optimal range, fiber length reduction

was observed due to a shortened period of fiber elongation.

Additionally, drought disrupts the equilibrium of turgor pressure

within cotton fiber cells, resulting in a reduction in fiber length (El

Sabagh et al., 2020; Zafar et al., 2022a). Similarly, high temperature

exacerbates the negative effects of water deficit on length of the fiber

under combined conditions, with more severe drought stress

leading to stronger co-effects (Lokhande and Reddy, 2014; Hu

et al., 2022). However, under combined stress, the performance of

these genotypes was moderate in comparison to the tolerant

genotypes. In contrast, susceptible genotypes exhibited a notable

decrease in fiber quality and yield-related traits.
5 Conclusion

The findings of this study provide valuable insights into the

intricate interplay of combined heat and drought stress and their

effects on cotton plants, thereby making a noteworthy contribution to

our comprehension of these complex interactions. Through a

comprehensive investigation of physiological, biochemical, and

yield traits, we have gained valuable insights into how cotton

genotypes respond to this multifaceted challenge. The results

highlight pronounced differences in stress tolerance among the

categorized cotton genotypes under combined stress conditions.

The tolerant varieties demonstrated remarkable resilience

compared to the susceptible and moderately tolerant ones, as

evidenced by their ability to maintain higher yields and favorable

fiber traits when subjected to the combined stress treatment.
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However, the accumulation of various osmolytes, enzymatic as well as

non-enzymatic antioxidants, can enhance the tolerance of cotton

crop under these challenging conditions. It is important to note that

studies focusing solely on individual abiotic stresses do not fully

capture the specific responses of cotton plants to combinations of

different stresses, which can significantly impact crop performance in

field conditions. By investigating the alterations and interconnections

among the physiological and biochemical responses of cotton

genotypes to drought, heat, and combined stress, this study aims to

make a substantial contribution to the identification and breeding of

resilient cotton cultivars capable of withstanding both single and

combined stress conditions. This research sets the stage for future

studies that explore additional traits, such as genetic markers

associated with stress tolerance, and investigate the long-term

impacts of combined stress on cotton yield and its quality.
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