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In the production of edible fungi, the use of degraded strains in cultivation incurs

significant economic losses. Based on micro-hyperspectral imaging and

machine learning, this study proposes an early, nondestructive method for

detecting different degradation degrees of Pleurotus geesteranus strains. In

this study, an undegraded strain and three different degradation-level strains

were used. During the mycelium growth, 600 micro-hyperspectral images were

obtained. Based on the average transmittance spectra of the region of interest

(ROI) in the range of 400-1000 nm and images at feature bands, feature spectra

and images were extracted using the successive projections algorithm (SPA) and

the deep residual network (ResNet50), respectively. Different feature input

combinations were utilized to establish support vector machine (SVM)

classification models. Based on the results, the spectra-input-based model

performed better than the image-input-based model, and feature extraction

improved the classification results for both models. The feature-fusion-based

SPA+ResNet50-SVMmodel was the best; the accuracy rate of the test set was up

to 90.8%, which was better than the accuracy rates of SPA-SVM (83.3%) and

ResNet50-SVM (80.8%). This study proposes a nondestructive method to detect

the degradation of Pleurotus geesteranus strains, which could further inspire

new methods for the phenotypic identification of edible fungi.
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1 Introduction

As strain quality directly affects the yield of edible fungi, it is

important to prevent strain degradation and maintain strain

stability during the preservation process. Strain degradation refers

to the deterioration of the edible fungi population, which leads to

decreases in yield, quality, resistance, and so on (Qiu et al., 2010; Yin

et al., 2017). In the production of edible fungi, the use of degraded

strains in cultivation will lead to significant economic losses.

Therefore, it is important to rapidly identify the degraded strains

to avoid using them to produce edible fungi. Currently, the

detection methods mainly use chemical or biological technology

to analyze the health condition of strains (Magae et al., 2005; Sun

et al., 2017; Chen et al., 2019; Xin et al., 2019; Zhao et al., 2022). Not

only are these methods time-consuming and complex, they may

even lack accuracy. Therefore, it is necessary to explore an

alternative method to quickly and accurately identify the early

stages of strain degradation.

With the advancements in imaging and spectroscopy,

hyperspectral imaging (HSI) has been used to detect the contents

of edible fungi, such as moisture and polysaccharides. Gaston et al.

(2010) used hyperspectral imaging to determine the activities of the

polyphenol oxidase enzyme in the caps of damaged Agaricus

bisporus in order to rapidly identify mushrooms with a higher

possibility of enzymatic browning. Xiao et al. (2020) evaluated the

soluble solids in Agaricus bisporus slices based on hyperspectral

images during ultrasonic-assisted osmotic dehydration. In our

previous study, HSI and support vector machines (SVM) were

used to detect Agaricus bisporus diseases rapidly. In these studies,

HSI demonstrated good performance in the field of edible fungi.

However, these studies were focused on the fruiting bodies rather

than strains, which play an essential role in edible fungi cultivation

(Sun et al., 2017). Therefore, methods to detect the health of mycelia

at the microscale need to be explored.

Micro-hyperspectral imaging (MHSI) combines micro-optical

imaging technology and spectral analysis technology. It has been

widely used in medical diagnosis (Hu et al., 2019; Hu et al., 2020; Lv

et al., 2021), food safety detection (Zhu et al., 2020; Huang et al.,

2021; Jiao et al., 2021), and other fields. Based on the transmittance

MHSI technique, Xu et al. (2020) used the support vector machine

(SVM) model to distinguish two microalgae with an accuracy and

specificity of 94.4% and 97.2%, respectively. Furthermore, they
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predicted the growth stage of Phaeocystis with an accuracy of

98.1% by the random forest (RF) method. Additionally, Ortega

et al. (2018) created spectral libraries of tissues from micro-

hyperspectral images at 400-1000 nm and processed them using

three different supervised classification algorithms. The results

showed the ability of MSHI to accurately discriminate between

normal and tumor tissue. Wu et al. (2022) obtained the micro-

hyperspectral images of tomato leaves to detect POD activity under

different salt stresses; the R2 and RMSEP of the partial least squares

regression (PLSR) model were 0.66 and 18.94 U/g-min, respectively.

These studies demonstrated that MHSI had a good performance at

the microscale.

Microscopic technology can observe the morphological structure

and internal characteristics of strains. Therefore, in combination with

the advantages of HIS, it is considered that the MHSI can be used to

detect and analyze the degradation of strains. This study proposes to

use MHSI and machine learning to discriminate the degree of

degradation in the Pleurotus geesteranus strains. The study findings

are expected to provide new insights and continuous monitoring

methods for the early identification of the degradation of edible

fungi strains.
2 Materials and methods

2.1 Experimental materials

In this study, the slightly degraded strain of Pleurotus

geesteranus (Xiu 57-1) was subcultured into eighth and fifteenth

generation, respectively. And the non-degraded strain (Xiu 57) was

used for comparison. The strains were obtained from the

Mycological Research Center of Fujian Agriculture and Forestry

University. The strains were inoculated into the center of culture

dishes containing potato dextrose agar (PDA) medium (Ye et al.,

2022) and placed in a 25°C room for 10 days to activate them

(Figure 1). The growth rate and enzyme activity of the four types of

strains were tested, and the degradation degrees of these four strains

were then ranked. The activity of laccase, carboxymethylcellulase

(CMC) and xylanases were determined using test kits (Suzhou

Comin Biotechnology Co., Ltd., Suzhou, Fujian, China),

respectively. The samples were each duplicated three times. The

samples were labeled Xiu57-1, Xiu57-2, and Xiu57-3 from low to
FIGURE 1

RGB pictures of undegraded and different degraded Pleurotus geesteranus strains (A) strain Xiu57-0, (B) strain Xiu57-1; (C) strain Xiu57-2; (D) strain
Xiu57-3.
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high degradation degrees, and the non-degraded strain was labeled

Xiu57-0. In the experiment, a piece of flora with a diameter of 5 mm

at the end of the activated mycelium was inoculated into the center

of a new 90 mm culture dish containing PDA. Then, these culture

dishes were placed upside down in a 25°C room, and images were

collected after 5 days of culture. In total, we collected 200 samples,

comprising 50 samples for each degradation degree.
2.2 Data acquisition

2.2.1 Micro hyperspectral image acquisition
The MHSI system used in this study consisted of an optical

microscope (BX53, Olympus, Japan), built-in push-broom portable

hyper spectrometer (GaiaField Pro-V10E, Sichuan Dualix Spectral

Imaging Technology Co., Ltd., China), light source, and computer

(Figure 2). The hyperspectral images of the Pleurotus geesteranus

strains were magnified 100 times (eyepiece 10X, objective lens 10X).

The spectra were in the wavelength range of 401-1046 nm and

contained 360 wavelength variables (sampling interval was 1.79

nm) with a spectral resolution of 2.8 nm and an image resolution of

960 × 861 dpi. The camera exposure time was set to 15 ms, and the

collection speed was 0.06 cm/s. Three positions in each culture dish

were randomly selected to collect data for each strain.

2.2.2 Correction of micro-hyperspectral images
To reduce the noise caused by the light intensity and dark

current, black-and-white correction was conducted after acquiring

the micro-hyperspectral image data. In this study, the micro-

hyperspectral image of the uninoculated PDA medium was

collected as the whiteboard data, and the cap was used to block

the light to collect the dark background. Then, it was corrected

according to Eq. (1):

R =  
Iraw − Idark
Iref − Idark  

, (1)
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Where: Iraw represents the sample images, Idark is the dark

background data, and Iref is the whiteboard data.
2.3 Data pretreatment

2.3.1 Extraction of region of interest
The region of interest (ROI) was manually created in the

mycelial region of the micro hyperspectral image using the New

Region of Interest tool in ENVI5.3 (Exelis Visual Information

Solutions, Inc., USA). The average spectral transmittance was

calculated for pixels in the region.

2.3.2 Spectral pretreatment
In order to further reduce the noise or scattering, spectral

preprocessing was performed using different methods: the

Savitzky-Golay smoothing (SG smoothing), multivariate scatter-

correction (MSC), and standard normalized variate (SNV).

The SG smoothing uses the method of local polynomial least

square fitting to replace each value of the signal sequence with a new

value (Jahani et al., 2018). MSC uses the average of the spectral data

as the “ideal spectrum”. It corrects the baseline shift and offset of the

spectral data through the ideal spectrum, so as to effectively

eliminate spectral differences due to different scattering levels (He

et al., 2022). SNV normalizes the original spectral data according to

the mean value and standard deviation of spectra, and each

spectrum is corrected separately (Guezenoc et al., 2019; Mishra

et al., 2020).
2.4 Feature selection

Dimension reduction is necessary to improve the accuracy of

hyperspectral images in classification applications. Depending on

the feature in spectra and spatial dimensions, dimension reduction

methods can be band selection and feature extraction, respectively.
FIGURE 2

Micro-hyperspectral imaging system.
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2.4.1 Feature band selection
Successive projection algorithm (SPA) is a variable selection

method for multivariate calibration. It uses the simplest operations

in the vector space and aims to improve the conditions of multiple

linear regression by minimizing the collinearity effect in the

calibration dataset (Wei et al., 2020). Let the spectra set as Xcal,

the initial wavebands set as k(0), N set as the number of selected

variables, the calculation step is as follows (Araújo et al., 2001; Sun

et al., 2019):

Step 1:

initialization: n = 1,   xj   =   j   th   column   of  Xcal ,   j = 1,⋯,   J ;

Step 2: Let S is the set of unselected variables

S =  fj,   1 ≤ j ≤ J ,   j ∉ k(0),⋯, k(N − 1f Þgg;
Step 3: Calculate the projection of xj on the subspace orthogonal

to xk(n−1) as

Pxj =   xj − xTj xk(n−1)
� �

xk(n−1) xTk(n−1)xk(n−1)
� �−1

(2)

Where P is the projection operator;

Step 4: Let k(n) = arg max Pxj
�� ��,   j ∈ S

� �
;

Step 5: Let n=n+1. If n< N go back to Step 1.

End: the selected wavelengths are k(n);   n   = 0,⋯,N − 1f g.

2.4.2 Image feature extraction
In this study, a pre-trained convolutional neural network

(CNN) model was used to extract image features. The principle

was to update a feature set infinitely in backpropagation based on an

initialized distribution. The two core elements of this process were

the convolution kernel and the input image. For the input image,

the convolution kernel slid over it and calculated the dot product

between the input matrix and the convolution kernel at each spatial

position. After the convolution process, each kernel was convolved

with the input image to calculate a new feature map. Since the

feature set was infinitely similar to the conceptual eigenvector in

mathematics, the matrix was extracted by the mathematical method

of eigenvectors. The specific formula is as follows:

hk = f (Wk
*x + bk), (3)

Where, the deviation b and weight Wk are shared parameters

and hk is the feature mapping generated after the convolution

calculation for subsequent convolution calculations.

In order to get more characteristics, the layer of convolution was

selected more. However, the increase in network depth could elicit

problems of saturation and rapid degradation of network training
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accuracy (Wang et al., 2019). To solve these issues, the Residual

Network (ResNet), which added residual learning based on the deep

convolutional neural network, was first proposed in 2015 (He

et al., 2016).

As shown in Figure 3, the ResNet50 network is divided into

seven parts, including 49 convolutional layers and one fully

connected layer. At first, the network performed convolution,

regularization, activation function, and max pooling on the input

part, which did not contain residual blocks. Then, there were four

residual blocks. In the next step, the full connection operation was

performed to calculate the feature vector obtained by the model (Jie

et al., 2021). Ultimately, image feature extraction was completed.
2.5 SVM classification model

SVM is a supervised machine learning method based on

generalized linear classifiers. Its main goal is to find the best

hyperplane for the classification of new data points (Sharma

et al., 2017; Tiwari and Ojha, 2019). This is achieved by

maximizing the margins between different classes and reducing

the distance between the hyperplane focuses. To identify a suitable

SVM, it is necessary to find ai and b by minimization, and then

optimize and express them as follows (Tang et al., 2020):

max oN
i=1ai −

1
2o

n
i=1on

i=1yiaik xixj
� �

yiai

� �
,  on

i=1aiyi = 0,

0 ≤ ai ≤ C,   i = 1,⋯, n (4)

where k(xi, xj) is the kernel function; C is the regularization

parameter representing the error classification tolerance parameter.

In the input space, the training data will be projected into a higher

dimensional feature space when the linear separation in the kernel

function becomes easier. SVM utilizes different kernel functions in

order to find a hyperplane that could divide the data into groups more

efficiently. It has good classification performance when used for the

minimum training set (Pitchai et al., 2023). Therefore, the SVMmodel

needs an appropriate kernel function in order to correctly evaluate the

hyperplane and reduce classification errors. In this study, the kernel

function of SVM is defined by means of weighted summation. The

specific algorithm formula is as follows:

K(xi, xj) = mKs(x
s
i , x

s
j ) + (1 − m)Kw(x

w
i , x

w
j ) (5)
FIGURE 3

The structure of ResNet50.
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Wherein, m is the weighting factor, 0 ≤ m ≤ 1; KS is the spatial

kernel function and Kw is the spectral kernel function.

2.6 Evaluating indicator

In order to evaluate the classification effect of the model on

samples, this study selected the accuracy of detection classification as

an indicator to qualitatively evaluate the model. The accuracy rate is the

ratio of the number of correctly classified samples to the total number

of samples. A higher accuracy rate indicates a better classifier. The

specific calculation formula is as follows (Jin et al., 2018):

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

In the above formula,
Fron
TP (true positives): the positive class is judged to be the

positive class.

TN (true negatives): the negative class is judged to be the

negative class.

FP (false positives): the negative class is judged to be the

positive class.

FN (false negatives): the positive class is judged to be the

negative class.
3 Results

3.1 Degradation degree of the strains

The determined extracellular enzyme activities of the samples were

shown in Table 1. It shows that there were significant difference of

laccase CMC and xylanase activity among different groups(p<0.05).

Compared to the non-degraded strain(Xiu 57), the degraded strains

exhibited decreased enzyme activities. Furthermore, as subculture

generation increased, all three enzymes activities of the strains

significantly declined. In fact, these activities could decrease by more

than half compared to those of the non-degraded strain.

3.2 Spectra of Pleurotus geesteranus
strain samples

In this study, a total of 600 micro-hyperspectral images of

undegraded and three differently degraded strains of Pleurotus
tiers in Plant Science 05
geesteranus were collected, including 150 images each of 57-0, 57-1,

57-2, and 57-3. Next, 600 average spectral data points were obtained

from the ROI region of mycelium, and the curves are displayed in

Figure 4. As shown in the figure, the four Pleurotus geesteranus

strains had similar mycelial textures and hyperspectral curve trends.

With increased degradation, the mycelia became more narrow and

the transmittance slightly increased. Correspondingly, the mycelia of

the undegraded strain of Pleurotus geesteranus were relatively

stronger, and the transmittance curve was slightly lower than that

of the degraded strain.
3.3 Pretreatment

Due to the detection limitations of the camera, there was a

certain amount of instrument noise at the end of the original

spectral curve. The spectral information of 336 bands in the 400-

1000 nm wavelength range was selected as effective information.

Then, the preprocessing of spectral data was completed with SG,

MSC, and SNV, respectively. As shown in Figure 5, the spectral

curve after SG filtering was relatively smooth as spectral noise was

removed and the signal-to-noise ratio was improved. The

phenomenon of baseline shift and offset was essentially

eliminated after MSC treatment. In addition, SNV effectively

eliminated the error caused by scattering.

The Kennard Stone (KS) algorithm was used to divide the

dataset. The training set and the testing set had a ratio of 4:1. The

spectral data preprocessed by four different methods were used as

input variables to establish the SVM classification model. The

classification accuracy of the model established by different

pretreatment data was compared and tabulated in Table 2.

Compared with the model established from the original data,

the accuracy of the model established from the spectral data

processed by the three preprocessing methods was improved in

both the training and test sets. In contrast, the classification

accuracy of the spectral data model processed by SNV had the

most significant increases at 5.9% and 1.6%, respectively. Therefore,

SNV was used in subsequent model building to preprocess

spectral data.
3.4 Feature extraction

We used the SPA algorithm to extract characteristic bands from

the original spectral data that were processed by the SNV algorithm.

In this process, the root mean square error (RMSE) of the model

was calculated based on the characteristic bands preselected at each

iteration. The high accuracy of the model was based on the lowest

RMSE. As shown in Figure 6A, the RMSE is roughly negatively

correlated with the number of selected bands; when the number of

characteristic bands was 16, the RMSE achieved its lowest value

of 0.6628.

Figure 6B depicts the distribution of these 16 characteristic

spectral wavelengths across the full spectral band. The selected

characteristic wavelength bands were mainly concentrated around

450nm, 700nm, and 950nm, and a few characteristic wavelengths
TABLE 1 Three different enzyme activity values.

NO.
Extracellular enzyme activity(U/L)

Laccase CMC Xylanase

Xiu 57-0 166.74a 947.75a 1278.90a

Xiu 57-1 120.34b 686.60b 803.48b

Xiu 57-2 93.98c 479.90c 564.05c

Xiu 57-3 78.68d 350.18d 458.20d
a, b, c, and d are significant differences at the 0.05 level.
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were selected at the remaining peaks and valleys. The main reason

for this was that the feature selection process of the SPA algorithm

was an unsupervised process, which was only analyzed from the

distribution of independent variables. In addition, the wavelengths

at 401.0, 404.4, 411.1, 412.8, 417.8, 422.9, 433.0, 527.0, 649.6, and

733.7 nm demonstrated that degradation degrees of Pleurotus

geesteranus strains could be to a certain extent differentiated in

the visible range. The wavelengths at 949.7 nm and 962.9 nm were

mainly related to the O-H stretching (second overtone) in water and

the CH and CH2 stretching (third overtone) in fat. The wavelengths

near 980 nm (985.7, 993.3 nm) were assigned to the second

overtone NH stretching in protein (Yu et al., 2018). The

wavelength at 980 nm was due to O–H stretching the second and

first overtones (Wu and Sun, 2013).

The grayscale image at the characteristic wavelengths of each

micro-hyperspectral image was selected as the input. The pre-

trained ResNet50 model was used to extract the features of each

image. Since the pre-trained ResNet50 model used the ImageFolder

function to read the image, the function copied the single-channel

image automatically and converted it to a three-channel image at

the same time. After converting each grayscale image into the RGB

format, it reduced the image from the center to a size of 224 * 224,

i.e., the input image size specified by the ResNet50 structure

through the resize function. At the end of the process, the fully

connected layer compressed the features extracted after convolution

and pooling. It processed and integrated the output features of the
Frontiers in Plant Science 06
previous layer into a 2048-dimensional feature vector through

different weights. Then, the features were sent to the SVM

classifier as the input. The model structure is shown in Figure 7.
3.5 Classification model

An SVM classification model was established for the spectral

data based on characteristic bands after SNV. The radial basis (REF)

function was chosen as the kernel function, and the criss-cross

method was used to select the optimal parameters during modeling.

As the classification results show in Figure 8, after the spectral data

underwent pretreatment and feature extraction, the modeling

accuracy was 91.0% for the training set and 83.3% for the testing set.

The accuracy of the model based on the feature wavelengths

extracted by the SNV-SPA algorithm in the testing set was 4.1%

higher than that of the original-spectra-input model. This difference

indicated that the SNV-SPA algorithm could reduce the complexity

of the model while improving its prediction ability. Therefore, it has

better performance.

The features extracted from the depth residual model ResNet50

were used as the input of the SVM classifier, and the training

accuracy was 87.7% and 80.8%. We also compared the results with

the SVMmodel using all the grayscale images covering 336 bands as

the input. With the “RBF” kernel function, the classification model

accuracy was 80.2% in the training set and 71.1% in the testing set.
FIGURE 4

Micro-hyperspectral images and average spectral curves of undegraded and degraded strain of Pleurotus geesteranus.
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The prediction accuracy of the ResNet50-SVM model was

improved by 9.7% over the non-SVM model.

After feature extraction, the training kernel matrix and the

testing kernel matrix were calculated based on the feature vectors

under the spectral dimension and image dimension, respectively.

All the results of SVM training and classification for each

combination of fusion coefficients were compared using a grid

search. After that, linear fusion was performed for the kernel

matrix of the two different dimensions under the optimal weight.

The final training results are shown in Figure 9. The accuracy rates

of the training and testing sets were 96.0% and 90.8%, respectively.

Generally, the classification errors were mainly concentrated

between Class 2 and Class 3. This might be because the spectral

trends of these two classes were very similar and the shapes of the

peaks and valleys had little difference, whereas, the peaks and valleys

of Class 0 and Class 1 were quite different from them. In terms of
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image dimension, some mycelia of Class 2 and Class 3 were too

narrow to be distinguished. By contrast, the mycelia of Class 0 and

Class 1 could be detected easier because they were stronger.

To evaluate the model’s classification capability, each model was

trained by SVM. The experimental results of the training and testing

datasets are shown in Table 3. For spectral dimension data and

image dimension data, it was found that the testing set accuracies of

the models established after feature extraction using SG-SPA and

ResNet50 algorithms were 4.1% and 9.7% higher than those of the

original models, respectively.
4 Discussion

From the discriminate results, it can be seen that the pre-

processing and feature extraction methods might have had

significant effects on improving the accuracy of classification

models. The core of analyzing the image data features was to

extract the external information of objects based on image

information, such as color and texture. ResNet50 showed

effectively performance in the image feature information

extraction. In addition, the original grayscale image has problems

such as mycelium occlusion and an unclear background, which

could lead to a strong correlation between different image data.

Therefore, the over-fitting phenomenon may occur if directly used

in the training model. The ResNet50 effectively reduces the
B

C D

A

FIGURE 5

Transmittance curves of the mushroom strain of Pleurotus geesteranus. (A) original average spectral transmittance curve; (B) average spectral
transmittance curve after SG; (C) average spectral transmittance curve after MSC; (D) average spectral transmittance curve after SNV.
TABLE 2 SVM classification results of spectral data after
different pretreatment.

Pretreatments Training set Testing set

None 80.8% 79.2%

SG 82.9% 80.0%

MSC 85.2% 81.7%

SVN 86.7% 80.8%
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correlation of the original data, which could not only solve the over-

fitting problem in the model but also improve its training speed.

In contrast to image information, spectral information mainly

used the relevant characteristic wavelength of the internal material

content of Pleurotus geesteranus. It was also noted that only using
Frontiers in Plant Science 08
feature fusion modeling is better than spectral feature modeling or

image feature modeling with image feature modeling. These

findings imply that feature fusion combines feature information

from different types of sources, which reduces the dependence of

the model on a single feature to a certain extent and increases the
BA

FIGURE 8

SVM classification results of the average spectral data at the characteristic wavelength. (A) The training set results of SPA-SVM; (B) The testing set
results of SPA-SVM.
FIGURE 7

The structure of ResNet50 extracted feature model.
BA

FIGURE 6

Characteristic bands selected by SPA. (A) the process of optimization and selection of characteristic bands; (B) the selection of 16
characteristic bands.
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interpretability of features. Thus, the reliability of information

would be maintained, while the accuracy and robustness of the

model would be simultaneously improved. To sum up, compared

with the traditional method of manually identifying strain

degradation, hyperspectral technology could more effectively and

quickly identify whether the strain was degraded and its degree

of degradation.
5 Conclusion

This study compared different pre-treatments and models to

establish the methods for non-destructive detection of strain

degradation in Pleurotus geesteranus using micro-hyperspectral

imaging. Texture features were extracted from the images under

the 16 feature bands that were chosen by the SPA algorithm. The

results show that the SVMmodel established after feature extraction

is optimal, with a classification detection testing set accuracy of

90.8%. Based on the above findings, using the micro-hyperspectral

image information of the strains to establish a detection model

could be a rapid and non-destructive approach to identifying the

degradation of Pleurotus geesteranus strains. This approach was

demonstrated to have high detection speed and accuracy. It may

provide new insights and methods for the early identification of

edible fungi strain degradation and the acquisition of edible fungi
Frontiers in Plant Science 09
phenotype information. Furthermore, it will have good

development prospects in the field of biological information

breeding technology.
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TABLE 3 Comparison of classification results of SVM detection.

Data Methods

Accuracy

Training
set

Testing
set

Spectrum
None-SVM 80.8% 79.2%

SG-SPA-SVM 91.0% 83.3%

Image
None-SVM 80.2% 71.1%

ResNet50-SVM 87.7% 80.8%

Spectrum
+ image

SPA
+ResNet50-SVM

96.0% 90.8%
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FIGURE 9

SVM classification results based on fusion of spectral data features and image data features. (A) The training set results of SPA+ResNet50-SVM;
(B) The testing set results of SPA+ResNet50-SVM.
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