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aestivum L.) association panel
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University, Adama, Ethiopia, 2Institute of Biotechnology, Addis Ababa University, Addis
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Addis Ababa, Ethiopia, 4USDA-Agricultural Research Service, Department of Botany and Plant
Pathology, Purdue University, West Lafayette, IN, United States, 5Bio and Emerging Technology
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Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a severe disease in wheat

worldwide, including Ethiopia, causing up to 100% wheat yield loss in the worst

season. The use of resistant cultivars is considered to be the most effective and

durable management technique for controlling the disease. Therefore, the

present study targeted the genetic architecture of adult plant resistance to

yellow rust in 178 wheat association panels. The panel was phenotyped for

yellow rust adult-plant resistance at three locations. Phonological, yield, yield-

related, and agro-morphological traits were recorded. The association panel was

fingerprinted using the genotyping-by-sequencing (GBS) platform, and a total of

6,788 polymorphic single nucleotide polymorphisms (SNPs) were used for

genome-wide association analysis to identify effective yellow rust resistance

genes. The marker-trait association analysis was conducted using the Genome

Association and Prediction Integrated Tool (GAPIT). The broad-sense heritability

for the considered traits ranged from 74.52% to 88.64%, implying the presence of

promising yellow rust resistance alleles in the association panel that could be

deployed to improve wheat resistance to the disease. The overall linkage

disequilibrium (LD) declined within an average physical distance of 31.44 Mbp

at r2 = 0.2. Marker-trait association (MTA) analysis identified 148 loci significantly

(p = 0.001) associated with yellow rust adult-plant resistance. Most of the

detected resistance quantitative trait loci (QTLs) were located on the same

chromosomes as previously reported QTLs for yellow rust resistance and

mapped on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 4D, 5A,

5B, 6A, 6B, 7A, and 7D. However, 12 of the discovered MTAs were not previously

documented in the wheat literature, suggesting that they could represent novel

loci for stripe rust resistance. Zooming into the QTL regions in IWGSC RefSeq

Annotation v1 identified crucial disease resistance-associated genes that are key

in plants’ defense mechanisms against pathogen infections. The detected QTLs

will be helpful for marker-assisted breeding of wheat to increase resistance to

stripe rust. Generally, the present study identified putative QTLs for field
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resistance to yellow rust and some important agronomic traits. Most of the

discovered QTLs have been reported previously, indicating the potential to

improve wheat resistance to yellow rust by deploying the QTLs discovered by

marker-assisted selection.
KEYWORDS

genome wide association study, linkage disequilibrium, marker assisted breeding, novel
loci, Puccinia striiformis, quantitative trait loci, yellow rust
1 Introduction

Wheat (Triticum aestivum L.) is one of the major staple food

crops in the world, providing 21% of the total energy and 20% of the

protein demand for approximately 4.5 billion people globally

(Ramadas et al., 2012). In 2021, approximately 221 million ha of

the world was covered with wheat, with a total production and

productivity of 771 million tonnes and 3.5 tonnes/ha, respectively

(FAOSTAT 2021). In Ethiopia, wheat is one of the strategic food

security crops (Bezabeh et al., 2015), ranking fourth after teff

(Eragrostis tef), maize (Zea mays), and sorghum (Sorghum

bicolor) in area coverage and third after maize and teff in total

production (CSA, 2019). In 2021, approximately 1.95 million ha of

land was grown with wheat with a total national production and

productivity of 5.2 million tons (FAOSTAT 2021). Despite its

significant contribution, the current national average wheat

productivity of 2.67 t/ha is far below the global average of 3.5 t/

ha. Fungal diseases such as stem rust, stripe rust or yellow rust, and

Septoria tritici blotch (STB), which are caused by the rapidly

evolving pathogens Puccinia graminis f. sp. tritici, P. triticina, and

Zymoseptoria tritici, respectively, are the major bottlenecks for

wheat production in Ethiopia. If not controlled, rust diseases have

the potential to cause 50-100% wheat yield loss (Chen, 2005) which

is estimated to be 5.5 billion USD globally per annum (Beddow

et al., 2015).

Stripe rust, often known as yellow rust, is a devastating wheat

disease that affects cooler (2-15°C) wheat-growing regions of the

world (Roelfs et al., 1992). It is brought on by the biotrophic fungal

pathogen Puccinia striiformis f.sp. tritici. Stripe rust disease continues

to be a significant global limitation on wheat production. It impacts

leaves, where the ensuing damage to photosynthetic tissues causes a

reduction in the efficiency of light absorption and radiation usage

(Bouvet et al., 2022). Furthermore, yellow rust limits yield by

reducing the green leaf area, which supplies sugar to the developing

seed. This is due to the fact that flag leaves and second leaves are the

most important leaves for producing sugar for the developing grain

(Murray et al., 2005). Since flag leaf alone accounts for more than

70% of grain filling, its infection with stripe rust results in significant

yield loss (Marsalis and Goldberg, 2006). Moreover, yellow rust

spores migrate quickly and may travel long distances to produce

diverse populations, making it difficult to control the distribution of

the disease (Vergara-Diaz et al., 2015).
02
Yellow rust is the most widespread disease in the highlands of

Ethiopian as a result of which 36% to 100% wheat yield loss has

been reported (Badebo and Bayu, 1992; Hailu and Fininsa, 2009;

Ayele and Muche, 2019). In the highlands and mid-altitude regions

of Ethiopia, yellow rust was to blame for the collapse of the

dominant wheat varieties, including Laketch in 1977, Dashen (a

well-liked high-yielding variety with the Yr9 gene) in 1988 and

1994, Wabe in 1998 (Badebo and Bayu, 1992), and Galema and

Kubsa in 2010 (Tadesse et al. (2018). In 2010, stripe rust epidemics

occurred in all major wheat-growing areas of Ethiopia, causing large

yield losses (Solh et al., 2012; Dembel, 2014). Following the

widespread 1950s stripe rust epidemic, several studies have been

carried out related to its epidemiology and management. The most

economically efficient strategy for controlling stripe rust is the use of

resistant cultivars (Chen, 2005). Growing resistant cultivars to

combat stripe rust disease is a dependable, efficient, and

environmentally friendly strategy (Xu et al., 2013). Moreover, due

to the ongoing development and selection of rust races, it is always

preferable to look for additional sources of potent rust resistance

genes. As a result, it requires the discovery and use of new resistance

genes to defeat the dominant pathogenic races. As of now, 67 all-

stage resistance (seedling and adult-plant resistance) genes and 80

race-specific/seedling yellow rust resistance genes (Yr) have been

reported (Wang and Chen, 2017). According to Kankwatsa et al.

(2017) and Yuan et al. (2018), adult plant resistance to pathogen

mixtures is thought to be reliable and effective in field conditions.

Since conventional breeding methods have been viewed as slow and

ineffective despite their significant contributions to crop

improvement (Liu et al., 2017), molecular markers are now often

utilized in plant breeding to speed up crop improvement efforts. As

a result, the effectiveness of breeding disease-resistant wheat can be

increased by identifying molecular markers that are strongly

connected to Yr genes, or quantitative trait loci (QTLs)

(Miedaner and Korzun, 2012; Ayana et al., 2018).

A genome-wide association study (GWAS) is a powerful, fast,

and economical approach to determining genomic regions

associated with complex quantitative phenotypic variation (Yuan

et al., 2018). GWAS enables us to dissect genes or QTLs underlying

important traits using single nucleotide polymorphisms (SNPs)

derived from whole-genome sequencing (Liu et al., 2017; Nadeem

et al., 2021). Hence, its advancement is correlated with the

development of high-throughput sequencing technology (Huang
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et al., 2019). Genotyping-by-sequencing (GBS) is a reasonably

priced genetic screening method for discovering novel SNPs. GBS

includes restriction digestion followed by high-throughput

sequencing of a subset of a complex genome, which enables the

generation of high-density SNPs at a lower cost (Bernardo et al.,

2015). Moreover, GWAS has been used to dissect disease

resistance’s genetic foundations in a range of plant species,

inc lud ing maize (Rash id e t a l . , 2018) , Arab idops i s

(Rajarammohan et al., 2018), sorghum (Adeyanju et al., 2015),

and soybean (Passianotto et al., 2017). For example, leaf rust, stem

rust, stripe rust resistance, and septoria tritici blotch have all been

studied in wheat using the GWAS technique (Kidane et al., 2017;

Odilbekov et al., 2019; Mekonnen et al., 2021). According to

Mengesha (2020), the application of the GWAS technique in

breeding bread wheat resistant to yellow rust is largely missing in

Ethiopia. Therefore, the present study was targeted at determining

the genomic architecture of adult-plant resistance in 178 bread

wheat germplasms to stripe rust in Ethiopia, which could be used in

future marker-assisted breeding programs of wheat against

yellow rust.
2 Methodology

2.1 Plant materials and evaluation of stripe
rust resistance in adult plants

A total of 178 bread wheat germplasms (including 164

recombinant inbred lines received from the International Maize
Frontiers in Plant Science 03
and Wheat Improvement Center (CIMMYT-Mexico) and 13

commercial cultivars cultivated in Ethiopia) were used in the

current study (Supplementary Table 1). The germplasms from

CIMMYT were comprised of six genotype lines from the National

Variety Trial, five from the Adaptation Trial, 34 from the High Rain

Wheat Screening Nursery, 49 from the International Bread Wheat

Screening Nursery, 53 from the International Septoria Observation

Nursery, 14 from the High Rain Wheat Yield Trial, and the

remaining three genotypes were from PVT (preliminary variety

trial). The bread wheat germplasms were evaluated across three

locations (Table 1), namely, at Kulumsa Agricultural Research

Centre (KARC) (8° 02’ N/39° 15 ‘ E), Meraro (substation of

KARC) (07° 24’ 27 N/39° 14’ E), and Holeta Agricultural

Research Centre (HARC) (9° 3’ N/38° 30’ E) in the 2020/21 main

cropping season. The wheat genotype King-bird (G40) was used as

the standard check in the field evaluation. The experiment was set

up using an alpha-lattice design with two replications, six sub-

blocks, and 30 entries per sub-block per replication, with two rows

per entry (Supplementary Table 2). Each accession was sowed

manually at 1m length, 0.20 m spacing between rows, and 0.4 m

between entries. Spaces between blocks and replications were

maintained at a 1.50 m distance. All trials were seeded with

150 kg of seeds per hectare, fertilized with 100 and 75 kg of N

and P2O5 each, and weeded three times by hand-picking. To

provide enough disease pressure, the sensitive cultivar “Morocco”

was sown as a diffuser row throughout the length of the blocks.

The modified Cobb scale (Peterson et al., 1948) was used to

measure the disease severity (DS), with values ranging from 0% to

90%. Moreover, the genotypes’ field response (FR) to stripe rust
TABLE 1 Coefficient of infection values in wheat genotypes evaluated in three individual environments.

Trait Environment Mean Range SD Pr > F

YRPH

E1 (Holeta) 2.54 5.9 7.31 0.0017*

E2 (Kulumsa) 8.30 14.5 7.25 <.0001***

E3(Meraro) 15.43 24 9.86 <.0001***

YRH

E1 (Holeta) 4.66 24.5 10.39 <.0001***

E2 (Kulumsa) 22.69 33 10.94 <.0001***

E3(Meraro) 36.06 71 13.8 <.0001***

YRF

E1 (Holeta) 7.59 25.6 13.7 0.0001**

E2 (Kulumsa) 28.52 53 11.86 <.0001***

E3(Meraro) 47.64 86 15.24 <.0001***

YRMM

E1 (Holeta) 9.64 25.5 15.44 <.0001 ***

E2 (Kulumsa) 30.81 34 14.13 <.0001 ***

E3(Meraro) 57.30 72.5 17.02 <.0001***

YRM

E1 (Holeta) 12.32 25 30.45 0.0049*

E2 (Kulumsa) 19.51 22.5 7.22 <.0001***

E3(Meraro) 60.24 67 17.2 <.0001***

E1 (Holeta) 7.35 12.4 12.49 <.0001***
fro
YRPH, coefficient of infection at pre-heading; YRH. coefficient of infection at heading; YRF, coefficient of infection at flowering; YRMM, coefficient of infection at mid-maturity; YRM, coefficient
of infection at maturity; SD, standard deviation; ***very highly significant at p< 0.001, **highly significant at p< 0.001, *significant at p< 0.05.
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infection was scored following the procedure described by Roelfs et al.

(1992) as Immune = no uredinia or other macroscopic sign of

infection; R = resistant, small uredinia surrounded by necrosis; MR =

moderately resistant, medium to large uredinia surrounded by necrosis;

MRMS=moderately resistant to moderately susceptible; MS =

moderately susceptible, medium to large uredinia surrounded by

chlorosis; or S = susceptible, large uredinia without necrosis or

chlorosis. For statistical analysis, each replicate’s genotype responses

for immune, resistant, moderately resistant, moderately resistant to

moderately susceptible, moderately susceptible, and susceptible were

translated into the values 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively

(Elbasyoni et al., 2019). When the disease severity was greater than

or equal to 50% and a susceptible reaction (S) was seen on the spreader

rows, the plant resistance response was scored, and this resulted in a

combined value of 50S (Alemu et al., 2021). In addition to the disease

data, important agronomic traits such as days to 50% heading (HD),

days to 50% flowering (FD), days to maturity (MD), thousand kernel

weight (TKW), grain yield per plot (GYPP), plant height (PH), spike

length (SL), flag leaf area (LA), number of spikelets per spike (NSs/S),

number of kernels per spike (NK/S), number of kernels per spike (NK/

S), and spike weight (SW) were recorded. Days to heading, flowering,

and maturity were recorded for whole plots when 50% of the plants

reached the corresponding Zadock’s growth stages. Plant height and

spike length were measured at the physiological maturity stage in five

randomly selected and tagged plants from the middle rows of each

entry. Data on the number of spikelets per spike, the number of kernels

per spikelet, and the total number of kernels per spike were determined

from the five randomly tagged plants per entry per replication by

collecting their spikes separately. These yield and yield-related data

were taken from the two rows of each plot and converted to kilograms

per hectare (kg ha−1) at 12.5% moisture content using plot size as

a factor.
2.2 Data analysis

2.2.1 Phenotype data analysis
The coefficient of infection (CI), which indicates the combined

reaction of the genotypes for the disease, was created by multiplying

the disease severity score (DS=0 - 90) by the genotype field response

values (FR=0.0 - 1). An analysis of variance (ANOVA) for each and

combined environments was carried out using SAS version 9.4

(SAS, 2013) based on a linear mixed model (LMM). In the analysis

of variance for individual environments, genotype and the

incomplete block were considered as fixed and random factors,

respectively, to compute the ANOVA for each location. The

observed phenotypic response of the ith genotype in the jth

replication and the lth sub-block was calculated for an individual

environment using the following model:

yijl = μ+gi + g j + bl(j) +   ϵij     

Where, yijl = measured phenotype, gi = fixed effect of the ith

genotype, m = grand mean, gj = effect of the jth replication, bl(j) =

random effect of the ith block nested within the jth replication, and

eijl = random error term.
Frontiers in Plant Science 04
Combined ANOVA was calculated by treating the genotype as a

fixed variable and the incomplete block and location as random

effects as LMM:

Yjklm = m + gm + g jk + ej +   bjkl + (ge)jm + ϵjklm     

where Yjklm = observed response of genotype m, replication k of

block l at location j; bjkl = random effect of block l nested with

replication k in location j and is ~ NID(0, d2b); gm = fixed effect of

genotype m; m = grand mean; rjk = effect of replication k in location

j; ej = random effect of location j and is ~ NID(0, d2e); (ge)jm =

random effect of the interaction between genotype m and location j

and is ~ NID(0, d2ge); and ejklm = random residual effect and ~ NID

(0,d2e). Variance components were computed.

The genotypes were classified into resistant, intermediate, and

susceptible groups based on the average values of DS, FR, and CI for

the pooled data from all environments at each growth stage. Bar

plots showing DS, FR, and CI of the 178 genotypes were plotted

using the ggplot2 (Wickham, 2016) and ggpubr (Kassambara, 2023)

packages in R software (R Core Team, 2020). The yellow rust

resistance traits’ broad sense heritability (H2) at the environmental

level was calculated through an analysis of variance using the

following formula:

H2  =
 d2g 

d2g  +  d2ϵ=r      

Broad-sense heritability across environments was predicted by

the formula:

H2  =
d 2g 

d2g  +   d2ge=l  + d2ϵ=lr     

where, d2g is the genotypic variance, d2ge is the genotype-by-

location interaction variance, d2e is the location variance, and l and

r represent the numbers of locations and replicates, respectively.

The virility package in the R for Windows Version 4.2.3 program

was used to analyze the correlation analysis between the various

parameters (Raj et al., 2020).

2.2.2 Genomic DNA extraction and genotyping
by sequencing

For genomic DNA extraction, the study wheat plants were

grown in greenhouse conditions at the National Agricultural

Biotechnology Research Canter (NABRC), Holeta, 29 km west of

Addis Ababa. Leaves of 2-week-old seedling leaves were collected

into 96 well samples collecting plates and dried at 50°C overnight.

The samples were sent to BecA-ILRI, Hub laboratory in Nairobi,

Kenya for SNP genotyping using Diversity Arrays Technology

sequencing (DArTseq™ technology) with the support of the

Integrated Genotyping Service and Support (IGSS) program.

Genomic DNA was extracted using a Nucleomag Plant Genomic

DNA extraction kit (MACHEREY-NAGEL GmbH & Co. KG,

Germany) according to the manufacturer’s procedure. DNA

quality and quantity were assessed using a Nanodrop

spectrophotometer and 1% agarose gel electrophoresis,

respectively. SNP genotyping was done by utilizing GBS

technology, using an Illumina HiSeq2500 following the procedure
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described by Elshire et al. (2011). Genome complexity reduction

was carried out by digesting genomic DNA with ApeKI, a type II

restriction endonuclease that recognizes a degenerate 5-bp sequence

(GCWGC, where W is A or T). For genotyping, the library was

constructed by ligating common and barcode adaptors to the sticky

ends of each fragment. The adapter-ligated fragments were PCR

amplified, and then sequenced by synthesis using single-read

sequencing runs for 77 bases. Next-generation sequencing of the

GBS library was carried out using an Illumina HiSeq2500 lane

following the manufacturer’s protocol.

2.2.3 Quality control and SNP calling
Based on alignment with the reference genome of Chinese

Spring Wheat RefSeq v1.0 (IWGSC, 2018), the DArTSeq SNP

markers were scored using the DArTsoft14 software implemented

in the KDCompute plug-in system created by Diversity Arrays

Technology (https://kdcompute.seqart.net/kdcompute/login).

SilicoDArT and SNP markers, which were both scored in binary

ways (1/0), reflect the existence or absence of marker data in the

genomic representation of each sample (Akbari et al., 2006). Marker

quality control was maintained by filtering or removing mono-

morphic -markers, markers with lower call rates (>30% missing),

and markers with minor allele frequencies (MAF<5%). Genotypes

with >30% missing marker data were also removed from

the analysis.

2.2.4 Population structure analysis
Bayesian model-based clustering in STRUCTURE software

version 2.3.4 was used to determine the population admixture

pattern (Pritchard et al., 2000). The STRUCTURE program was

run with the admixture model, correlated allele frequencies, a burn-

in period of 10,000, and 50,000 Markov Chain Monte Carlo

(MCMC) replications after burn-in for the hypothetical sub-

population K from 1 to 10 with 10 iterations. The STRUCTURE

HARVESTER version 0.6.92 was used to determine the optimum K

value, according to Evanno et al. (2005). The clumpak beta version

was used to determine the bar graph for the ideal K (Kopelman

et al., 2015). Principal component analysis (PCA) was computed

using Genome Association and Prediction Integrated Tools

(GAPIT) software to determine the population spatial distribution

and clustering.

2.2.5 Genome-wide association study
GAPIT software was used to conduct a marker-trait association

analysis (Lipka et al., 2012). GWAS was carried out for the

coefficient of infection at five growth stages, including yellow rust

resistance at pre-heading (YRPH), yellow rust resistance at heading

(YRH), yellow rust resistance at flowering (YRF), yellow rust

resistance at mid-maturity (YRMM), yellow rust resistance at

maturity (YRM), and some significant agro-morphological traits

such as days to 50% (FD), days to 90% maturity (MD), leaf area

(LA), plant height (PH), number of kernels per spike (NKS),

thousand-kernel weight (TKW), and grain yield (GY) in each

individual environment and across all environments. The marker-

trait association analysis involved a total of 6,788 robust SNPs with
Frontiers in Plant Science 05
a call rate > 70% and MAF > 5%. Missing SNPs were imputed using

optimal impute ver. 1.0.0 based on the KNN imputation method in

the KDcompute_plugin system. The LD measure R2 ver.0.2.2 in

KDcompute_plugin system was used to determine marker

distribution on individual chromosomes.

TASSEL Ver. 5 (Bradbury et al., 2007) was used to calculate the

pairwise LD measurements (r2 and p-value) between markers on

each chromosome. A genome-wide scale LD decay scatter plot was

produced by plotting r2 values against physical distance (bp) using

GAPIT software. An r2 = 0.2 was used as a cut-off to declare no LD

between pairs of markers. The confidence range for establishing a

discrete QTL for each chromosome was calculated using the

physical distance at which the LD declined to the crucial r2 = 0.2.

If the distance between the significant SNP markers was smaller

than the critical physical distance, they were assigned to the same

QTL if they were on the same chromosome.

Bayesian information and Linkage-disequilibrium Iteratively

Nested Keyway (BLINK) model, implemented in the GAPIT R

package (Tang et al., 2016), was used to conduct GWAS. BLINK

was selected because of its high computing efficiency and statistical

power to control spurious associations due to population structure

and kinship. BLINK presented the best Bayesian information

criterion value for across and individual environments. Kinship

(K) matrix was computed using Van-Raden (2008) method. The

model’s fitness to control population structure and familial

relatedness of the study samples was examined by observing

using the quantile-quantile (QQ) plot created from -log10 p-

values. Marker-trait associations (MTAs) were considered to be

significant when they surpassed the significant threshold of the

nominal p-values of 0.001 or -log10 (p-values) = 3. Manhattan plot

and Q-Q were observed using the R package qqman (Turner, 2014)

to identify significant MTAs. Candidate genes in the detected

significant regions were annotated MTAs from the recently

released IWGSC RefSeq Annotation v1 available at https://wheat-

urgi.versailles.inrae.fr/SeqRepository/Annotations.
3 Results

3.1 Yellow rust infection and field response

The panel was divided into resistant, intermediate, and

susceptible groups based on DS, FR, and CI data that were

pooled from all growth stages and environments (Liu et al.,

2017). The panel showed variable reaction groups for DS, FR,

and CI. For DS, 65.73% of the genotypes were resistant (0≤DS ≤

10) at Hol (Holeta), 10.11% at Kul (Kulumsa), and 1.69% at Mer

(Meraro) (Figure 1) with regard to FR, 96.6% of the genotypes

joined the resistant group at Holeta, 50.56% at Kulumsa, and

6.74% at Meraro (Figure 2). Likewise, for CI, 60.11%, 3.37%, and

1.12% tested of the wheat genotypes were resistant at the Holetta,

Kulumsa, and Meraro locations, respectively (Figure 3). Since CI is

a combined representation of DS and FR (Liu et al., 2017),

clustering based on this parameter resulted in 5 stable resistant

genotypes (2.81%), 119 intermediate genotypes (66.85%), and 54
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susceptible genotypes (32.02%) out of the 178 tested

genotypes (Figure 3).

3.1.2 Adult-plant resistance to yellow rust and
broad-sense heritability

Yellow rust coefficient of infection traits showed pseudo-

normal distributions (Figure 4) in the investigated bread wheat

genotype, indicating the quantitative nature of adult-plant yellow

rust resistance (Kidane et al., 2017). The genotypes’ mean

performance, standard deviations, range, and significance level
Frontiers in Plant Science 06
for considered phenotypic traits were measured in each

environment. The genotypes showed very highly significant

differences (p< 0.001) was measured in each and across

environments at all growth stages. The analysis revealed that the

coefficient of infection in each environment showed an increased

trend from pre-heading (2.54-15.43%) to maturity stages (12.32 -

60.24%). The highest (60.24%) mean severity values were

registered at Meraro at the maturity stage, while the lowest

infestation severity (2.54%) was recorded at the pre-heading

stage at Holeta. The pooled data revealed that the coefficient of
Field response

Key:

Resistant (0≤FR≤0.2), 

Intermediate (0.2< FR <0.8) and 

Susceptible (0.8≤ FR≤1)

FIGURE 2

Field reaction response (FR) of 178 bread wheat germplasms to yellow rust: Resistant (0≤FR ≤ 0.2), intermediate (0.2<FR<0.8), and susceptible
(0.8≤FR ≤ 1) groups.
Key:

Resistant (0≤DS≤10), 

Intermediate (10< DS<70) and 

Susceptible (70≤ DS≤90)

Disease severity

FIGURE 1

Yellow rust disease severity (DS) of 178 bread wheat genotypes at three locations. Clustering involved resistant (0≤DS ≤ 10), intermediate (10<DS<70),
and susceptible (70≤DS ≤ 90).
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infection was the highest at Meraro (43.34%), followed by

Kulumsa (21.97%), and the lowest at Holeta (7.35%) (Table 1).

For the coefficient of infection, the combined ANOVA revealed

that the effects of genotype, location, and their two-way interactions

(genotype x location) were very significant (p<0.0001) (Table 2).

Moreover, blocking had a significant effect on genotype

performance for yellow rust resistance. The ANOVA using

pooled data revealed that genotypic variance (s2g) and

environmental variation (s2e) were the major sources of the

variation for the coefficient of infection variability among the

tested wheat genotypes (Table 3). As per the scale of Robinson

et al. (1949), yellow rust resistance showed moderate broad

heritability (30% ≤H2 ≤ 60%) in all individual environments

except for the pre-heading stage, where the broad sense

heritability was lower (H2 = 27.37%). Focusing the coefficient of

infection on the narrow-sense heritability in individual

environments revealed that yellow rust resistance is highly

heritable (h2 = 74.52-88.64%) (Table 3). The genetic and
Frontiers in Plant Science 07
phenotypic coefficients of variation for variables related to the

coefficient of infection ranged from 40.23% (YRMM) to 61.49%

(YRPH) and 65.29% (YRMM) to 117.53% (YRPH), respectively

(Table 3). At 5% selection intensity, the range of magnitude of the

expected genetic gain as a percent of the mean varied from 48.76%

(YRM) to 66.36% (YRPH), whereas the genetic advance for the

coefficient of infection ranged from 5.81 (YRPH) to 16.66

(YRMM) (Table 3).

By using a comparative resistance analysis with the standard

check King-bird (G40) and the average performance of the released

varieties, it was demonstrated that among the investigated

materials, there were superior genotypes with yellow rust

resistance. Among the 178 genotypes examined, 106 (60.57%)

genotypes at pre-heading, 38 (19.66%) genotypes at heading, 120

(67.42%) at flowering, 123 (60.16%) at mid-maturity, and 132

(74.16%) at maturity stage exhibited quantitatively superior

yellow rust resistance as compared to the standard check King-

bird (Table 4; Supplementary Table 4). The top 5% best genotypes
TABLE 2 Combined ANOVA for yellow rust coefficient of infection.

Source of variation DF

YRPH YRH YRF YRMM YRM

Genotype 177 242.52*** 707.82*** 1051.76*** 1288.05*** 1325.01***

Replication 1 1322.25*** 0.13 ns 217.80ns 176.42ns 163.18ns

Incomplete block 5 177.54*** 564.62*** 647.87*** 652.17*** 704.71*

Location 2 15013.82*** 89355.23*** 144498.68*** 205404.21*** 240403.97***

Genotype*
location

358 85.28* 209.20** 274.82** 303.67* 541.58**
f

YRPH, coefficient of infection at pre-heading; YRH, coefficient of infection at heading; YRF, coefficient of infection at flowering; YRMM, coefficient of infection at mid-maturity; YRM, coefficient
of infection at maturity; ***very highly significant at p< 0.001, **highly significant at p< 0.001, *significant at p< 0.05, ns, non-significant at p= 0.05 significance level.
Coefficient of infection
Key:

Resistant (0≤CI≤2), 

Intermediate (2< CI <48) and 

Susceptible (48≤ CI≤90)

FIGURE 3

CI of yellow rust for 178 bread wheat genotypes obtained from field experiments in three environments. The genotypes were clustered as resistant
(0≤CI ≤ 2), intermediate (2< CI<48), and susceptible (48≤ CI ≤ 90).
rontiersin.org

https://doi.org/10.3389/fpls.2023.1256770
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Atsbeha et al. 10.3389/fpls.2023.1256770
TABLE 4 Comparison of top 5% of the selected genotypes for Yr resistance with KB, and mean performances of 13 released varieties.

Genotypes
Mean of selected geno-

types
at YRPH

Comparative
advantage
for Yr resis-

tance
(% over)

Genotypes
Mean of selected geno-

types
at YRH

Comparative
advantage for
Yr resistance

(% over)

KB MRV* KB MRV*

G28 0.00 100.00 100.00 G171 5.00 73.16 80.77

G32 0.00 100.00 100.00 G176 5.00 73.16 80.77

G74 0.00 100.00 100.00 G93 6.00 67.79 76.92

G90 0.00 100.00 100.00 G125 6.17 66.90 76.28

G34 1.00 89.66 88.32 G90 7.00 62.43 73.08

G133 1.33 86.21 84.42 G21 8.00 57.06 69.23

G3 1.67 82.76 80.53 G34 8.00 57.06 69.23

G38 1.67 82.76 80.53 G33 8.17 56.16 68.59

G39 1.67 82.76 80.53 G58 8.33 55.27 67.95

KB 9.67 – -12.97 KB 18.63 – 28.35

MRV* 8.56 11.44 – MRV* 26.00 -39.56 –

Genotypes
Mean of selected genotypes

at YRF

Comparative
advantage for
Yr resistance

(% over)
Genotypes

Mean of selected genotypes
at YRMM

Comparative
advantage for
Yr resistance

(% over)

KB MRV* KB MRV*

G88 4.67 80.70 86.00 G93 10.67 72.65 63.22

G93 6.00 75.19 82.00 G176 11.00 71.79 62.07

G125 6.67 72.43 80.00 G33 13.00 66.67 55.17

G176 8.00 66.91 76.00 G125 13.33 65.81 54.02

G73 9.67 60.02 71.00 G38 14.00 64.10 51.72

G159 9.67 60.02 71.00 G79 14.17 63.68 51.15

G58 10.00 58.64 70.00 G81 14.67 62.39 49.43

G147 10.17 57.95 69.50 G150 14.67 62.39 49.43

(Continued)
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TABLE 3 Variance components, heritability, and genetic advances of coefficient of infection traits of 178 wheat genotypes based on pooled data from
three environments.

Trait s2g s2e s2ge PCV GCV H2 h2 GA GAM

YRPH 85.28*** 68.59*** 6.49*** 117.53 61.49 27.37 81.47 5.81 66.36

YRH 209.20*** 156.36*** 13.44*** 78.41 45.36 33.46 84.01 11.44 54.12

YRF 274.82*** 213.39*** 13.44*** 70.18 42.34 36.40 86.35 14.71 52.71

YRMM 303.67*** 257.31*** 8.79*** 65.27 40.23 37.98 88.64 16.66 51.15

YRM 541.58*** 273.88*** 8.89*** 78.65 43.12 30.05 74.54 14.97 48.76

Average 79.73 45.93 34.15 83.83 12.85 54.83
ie
YRPH, coefficient of infection at pre-heading; YRH, coefficient of infection at heading; YRF, coefficient of infection at flowering; YRMM, coefficient of infection at mid-maturity; YRM, coefficient
of infection at maturity; s2g, Genotypic variance estimate; s2p, phenotype variance estimate, s2e, residual variance estimate; GCV, Genotypic coefficient of variance; PCV, Phenotypic coefficient
of variance; GA, Genetic advance; GAM, Genetic advance as percent mean (GAM); ***very highly significant at p< 0.001, *significant at p< 0.05.
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had 82.21%-100% greater resistance at pre-heading, 55.27%-73.16%

at heading, 57.26%-80.70% at flowering, 61.11%-72.65% at mid-

maturity, and 61.34%-75.46% greater resistance at maturity stage

compared to the mean performance of the King-bird. Furthermore,

the top 5% of the best germplasms had 80.53%-100% greater

resistance at pre-heading, 67.95%-80.77% at heading, 69%-86% at

flowering, 47.70%-63.22% at mid-maturity and 71.70%-82.04% at

maturity stage, according to the average performance of the released

varieties (Table 4).

Pearson’s correlation analysis of important agronomic traits

revealed a strong negative association of yellow rust resistance with

the assessed traits, except for days of 50% flowering and maturity

date, where the associations were non-significant. Spike length

showed a non-significant, weak negative correlation with all

yellow rust resistance traits except at the pre-heading stage, where

the association was strongly negative. All the yellow rust resistance

traits showed a strong negative correlation with leaf area, plant

height, thousand kernel weight, number of kernels per spike, spike

weight, and grain yield. The yellow rust resistance traits showed a

significant weak to moderate negative correlation with spike length

and plant height. (Table 5).
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3.2 SNP statistics

DArTSeq genotyping of the 178 bread wheat germplasms

resulted in a total of 35,672 SNPs (Figure 5). Among the three

wheat sub-genomes (A, B, and D), 10,317, 10,979, and 9,756 SNPs

were distributed, respectively (Figure 5). Among the 21 wheat

chromosomes, chromosome 4D contained the lowest (833)

number of SNPs, while the highest (2065) number of SNPs was

found on chromosome 7D. After filtering with call rates > 70% and

minor allele frequencies > 0.05, a total of 6,788 SNP markers were

obtained that were distributed as 2,410 SNPs on the A sub-genome

and 2,872 on the B sub-genome, and the filtered 6,788 SNPs were

used in successive analyses.
3.3 Population structure analysis

Three sub-populations were inferred based on the output of the

STRUCTURE software (Figure 6A). The three clusters (Figure 6B)

showed a significant degree of genetic mixing, indicating that the

studied wheat populations are closely related. All of the individual
TABLE 4 Continued

Genotypes
Mean of selected geno-

types
at YRPH

Comparative
advantage
for Yr resis-

tance
(% over)

Genotypes
Mean of selected geno-

types
at YRH

Comparative
advantage for
Yr resistance

(% over)

KB MRV* KB MRV*

G59 10.33 57.26 69.00 G147 15.17 61.11 47.70

KB 24.18 – 27.45 KB 39.00 – -34.48

MRV* 33.33 -37.84 – MRV* 29.00 25.64 –

Genotypes
Mean of selected genotypes

At YRM

Comparative
advantage for
Yr resistance

(% over)

KB MRV*

G93 11.00 75.46 82.04

G176 13.00 71.00 78.78

G38 14.00 68.77 77.14

G147 15.17 66.17 75.24

G150 15.67 65.05 74.42

G125 15.83 64.68 74.15

G33 16.33 63.57 73.33

G79 17.00 62.08 72.24

G55 17.33 61.34 71.70

KB 44.83 – 26.80

MRV* 61.25 -36.63 –
front
G, genotypes; Yr, yellow rust; KB, King-Bird; MRV*, Mean of 13 selected released varieties. Negative values for comparative advantage indicate less yellow rust resistance of the genotype. YRPH,
coefficient of infection at pre-heading; YRH, coefficient of infection at heading; YRF, coefficient of infection at flowering; YRMM, coefficient of infection at mid-maturity; YRM, coefficient of
infection at maturity.
iersin.org
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genotypes shared genes inherited from all three subpopulations.

The scatter plot (Figure 7A) and 3D plot of the first three principal

components (Figure 7B) also confirmed the existence of three

clusters in the association with greater admixture, where the first

two PCs (PC1 and PC2) coordinates explained the majority of the

variation in the association panel. The presence of cryptic familiar

relatedness was also verified by kinship analysis (Figure 7C),

demonstrating the significance of including both population

structure (Q) and kinship (K) as covariates in marker-trait

association analyses.
3.4 Linkage disequilibrium analysis

For the 6,788 SNP markers across 178 genotypes, LD was

calculated. LDs’ alleles differ between chromosomes and within

sub-genomes (Table 6). The scatter plot of the genome-wised

pairwise LD decay plot is shown in Figure 8. Overall, 97,723

(27.61%) of the 338,125 marker pairings with average LD values of

r2 = 0.11 showed significant p ≤ 0.01 LD. The B sub-genome had

the highest number of (143,600, or 42.47%) marker pairs, while

the D sub-genome had the fewest (75,300, or 22.27%) marker

pairs. Comparatively, SNPs on the B sub-genome showed the

greatest LD with a mean value of r2 = 0.1187. The LD between

SNPs declined across all chromosomes at the LD cut-off r2 = 0.2

within a physical distance of 31.44 Mbp. The marker pairs on
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chromosome 4D and 2D showed the poorest (r2 = 0.03, and

strongest r2 = 0.21) (Table 6.
3.5 Genome-wide association study

Linkage-disequilibrium and Bayesian information were used in the

MTA analysis. At a nominal p-value of 0.001, or –log10 (0.001) =3 the

BLINK statistical model-based association analysis discovered 148

SNPs significantly associated with the coefficient of infection.

Supplementary Table 4 reports MTAs that exceeded the nominal p-

value of 0.001 or -log10 (0.001) = 3 significance thresholds for yellow

rust resistance at pre-heading, heading, flowering, mid-maturity, and

maturity growth stages. In addition, allele identity, marker position, p-

values, additive effects, and r2 of the identified MTAs were computed.

Among 148 identifiedMTAs, 17 (11.49%)MTAs conferred yellow rust

resistance at pre-heading, 24 (16.22%) at heading, 34 (24.32%) at

flowering, 21 (18.24%) at mid-maturity, 25 (16.89%) at the level of

maturity, and 28 (18.92%) MTAs for all stages were effective. The

percentage of phenotypic variation explained by the markers varied

significantly from 1.3% for yellow rust resistance measured at heading

at Holeta to 14.14% for the resistance measured in the pre-heading

stage at Meraro.

At the pre-heading stage, the proportion of phenotypic

variation (r2) explained by the detected significant markers

extended from 2.19% for the SNP 1214020|F|0-68:A>C-68:A>C
TABLE 5 Correlation analysis among disease severity, field response, coefficient of infection, and other agronomic traits at different plant stages. .

DS Traits FD MD LA PH SL TKW NKS SW GY

YRPH 0.20 ** -0.05ns -0.55** -0.51*** -0.21*** -0.51*** -0.72*** -0.88*** -0.66***

YRH 0.20*** -0.06 ns -0.48*** -0.51** -0.14 ns -0.48*** -0.63*** -0.78*** -0.60***

YRF 0.18* 0.004 ns -0.45*** -0.50*** -0.07 ns -0.51*** -0.63*** -0.88*** -0.66***

YRMM 0.17* 0.001ns -0.49*** -0.51*** -0.06 ns -0.47*** -0.63*** -0.81*** -0.65***

YRM 0.13 ns -0.02 ns -0.50*** -0.52*** -0.55 ns -0.47*** -0.64*** -0.81*** 0.65**

FR traits FD MD LA PH SL TKW NKS SW GY

YRPH 0.27 ** -0.01ns -0.39** -0.34*** -0.14** -0.48*** -0.61*** -0.78** -0.50***

YRH 0.54** 0.15* -0.55*** -0.02ns -0.29ns -0.81*** -0.62*** -0.82*** -1.07***

YRF 0.10ns 0.02ns -0.44*** -0.34** -0.05ns -0.51** -0.54*** -0.62*** -0.85**

YRMM 0.29** 0.16* -0.55*** -0.42*** -0.10*** -0.67*** -0.67*** -0.82*** -1.02***

YRM 0.12ns -0.15 -0.37*** -0.60** -0.08ns -0.75*** -0.70*** -0.72*** -0.77***

CI Traits FD MD LA PH SL TKW NKS SW GY

YRPH 0.26 *** -0.02 ns -0.55** -0.48*** -0.04 ns 0.80*** -0.73*** -0.89*** -0.68***

YRH 0.29*** -0.04 ns -0.48** -0.49*** -0.12 ns -0.49*** -0.62*** -0.79*** -0.62***

YRF 0.23*** -0.01 ns -0.50** -0.48** -0.09 ns -0.51** -0.65*** -0.80*** -0.67***

YRMM 0.23*** -0.01 ns -0.54** -0.50*** -0.10 ns -0.50*** -0.67*** -0.83*** -0.71***

YRM 0.22*** -0.00 ns -0.49** -0.48** -0.09 ns -0.52*** -0.67*** -0.83*** 0.68***
front
YRPH, coefficient of infection at pre-heading; YRH, coefficient of infection at heading; YRF, coefficient of infection at flowering; YRMM, coefficient of infection at mid-maturity; YRM, coefficient
of infection at maturity; FD, flowering date; MD, maturity date; LA, leaf area; TKA, thousand kernel weight; NKS, number of kernels per spike; SW, spike weight; GY, grain yield; ***, very highly
significant at p< 0.001, **highly significant at p< 0.001, *significant at p< 0.05, ns, non-significant at p= 0.05 significance level.
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on chromosomes 1D to 14.14% for the SNP 5969589|F|0-49:

C>G-49:C>G on 1D. Likewise, the proportion of phenotypic

variation (r2) explained by the significant SNP markers at the

heading stage ranged from 1.3% for 3020463|F|0-7:A>G-7:A>G

and 1000215|F|0-22:G>T-22:G>T A on chromosomes 1A to

11.09% for 4910323|F|0-27:C>A-27:C>A on 1D. Similarly, the

r2 for MTAs for yellow rust resistance at flowering ranged from

9.74 - 14.05% for the allele 1062638|F|0-63:G>A-63:G>A and

1000215|F|0-22:G>T-22:G>T A on chromosomes 1A and 2A

respectively. The r2 of MTAs for yellow rust resistance at mid-

maturity ranged from 8.71 - 13.63%, for the SNP markers
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1115117|F|0-21:T>C-21:T>C and 1094246|F|0-48:A>G-48:A>G

on chromosomes 1A and 2B respectively. Moreover, the

phenotypic variance explained by the MTAs at maturity for

yellow rust resistance ranged from 7.1% for the SNP 1245237|F|

0-24:G>A-24:G>A on chromosomes 2A to 14.05% for the SNP

marker 2264044|F|0-68:T>C-68:T>C on chromosomes 3B.

Furthermore, the proportion of yellow rust resistance explained

by the significant alleles at the maturity stage ranged from 7.94%

for the allele whereas the allele 4008773|F|0-17:G>A-17:G>A on

chromosomes 2B to 13.63% for the SNP 1094246|F|0-48:A>G-48:

A>G on chromosomes (Supplementary Table 4).
FIGURE 4

Frequency distribution of some yellow rust resistance traits for the combined data from three locations. The right and left ends of the bars indicate
the uppermost and lowermost infection classes, respectively. The disease resistance at the pre-heading, heading, and mid-maturity stages and
combined followed a virtually pseudo-normal distribution. YRPH, coefficient of infection at pre-heading; YRH, coefficient of infection at heading;
YRF, coefficient of infection at flowering; YRMM, coefficient of infection at mid-maturity; YRM, coefficient of infection at maturity; and
Kulmsa, Kulumsa.
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A genome-wide scan for the coefficient of infection in

individual environments identified significant markers associated

with yellow rust resistance at different locations. For instance, MTA

analysis at Holeta identified six MTAs significantly associated with

yellow rust resistance at the pre-heading stage on chromosomes 1D,

2B, 3A, 5A, 3D, 4A, and 6B; 12 MTAs at the heading stage on

chromosomes 1D, 2B, 3B, 6B, 7A, and 7D; seven significant MTAs

conferring coefficient of infection at the flowering stage on

chromosomes 2A, 2B, 3A, 5A, 7A, and 7D; nine MTAs at the

mid-maturity stage on chromosomes 2B, 3A, 5A, 7A, and 7D; eight

significant MTAs at the maturity stage on chromosomes 2B, 3A,

and 6A; and seven MTAs for yellow rust resistance across all stages

on chromosomes 2B, 3A, 5A, 7A, and 7D. The analysis revealed that

MTAs on chromosome 2B conferred stable yellow rust resistance

across all growth stages at Holeta. Likewise, a GWA scan for yellow

rust resistance at Kulumsa identified 30 MTAs conferring resistance

to the coefficient of infection at various growth stages: two MTAs at

the pre-heading stage on chromosome 1B; seven MTAs at the

heading stage on chromosomes 1D, 4D, 6B, and 7A; four MTAs at

the flowering stage on chromosomes 1A, 1B, 1D and 7A; six MTAs

at the mid-maturity stage on chromosomes 1A, 1B, 1D, 6B and 7A;

five MTAs at the maturity stage on chromosomes 1D, 1B and 7A;

and six MTAs for yellow rust resistance across all stages on

chromosomes 1A, 1B, 1D, 6B and 7A. Moreover, a GWA scan for

the yellow rust resistance analysis at Meraro discovered numerous

(46) MTAs that confer resistance to yellow rust at various growth

stages. The analysis identified four MTAs at the pre-heading stage

on chromosomes 1A, 1D, 2B, and 5B; three MTAs at the heading

stage on chromosomes 2B, 3A, and 7D; 15 MTAs at the flowering

stage on chromosomes 1A, 2A, 2B, 3B, 4B, 5A, 5D, 6B, and 7A; five
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MTAs at the mid-maturity stage on chromosomes 2B, 3A, 4B and

6B; eight MTAs at the maturity stage on chromosomes 2D, 3A, 4A,

4B, 5A, 6B and 7A; and 11 MTAs for yellow rust resistance at all

stages of growth on chromosomes 1A, 1B, 2D, 3A, 3B, 3D,4B, and

5A. The combined measure of yellow rust resistance across

locations at the heading, mid-maturity, and maturity stages

provided significant associations. It found 20 MTAs, including

one at mid-maturity on chromosomes 1A, two at the maturity

stage on chromosomes 1A and 1B, and two for yellow rust

resistance across locations and all stages on chromosomes 3A and

3B (Supplementary Table 4; Figure 9; Supplementary Figure 1).

Eight MTAs were found at the flowering stage on chromosomes 1A,

2D, 3D, 5A, and 7A; one MTA at the mid-maturity stage on

chromosomes 1A; two MTAs at the maturity stage on

chromosomes 1A and 1B; and two MTAs for yellow rust

resistance across locations and all stages on chromosomes 3A and

3B. It was observed that MTAs on chromosome 7A were detected to

contribute to stable yellow rust resistance across all environments.

The allele contributes to yellow rust resistance at the flowering stage

across all environments. Moreover, the allele on chromosome 2B is

also found to confer yellow rust resistance at Holeta and Meraro.

The coefficient of infection putative QTLs were discovered by

combining the MTAs based on their physical distance in Mbp.

MTAs on the same linkage group within the physical distance for

LD decay specific to that chromosome were assigned to the same

putative QTL (Supplementary Table 5; Figure 10; Supplementary

Figure 2). Accordingly, the 148 MTA markers were assigned to 54

putative coefficients of infection QTLs based on our LD criteria.

The association analysis for yellow rust resistance at pre-heading

in individual environments found 12 putative QTLs that were on
FIGURE 5

Distribution of DArTSeq SNPs on 21 bread wheat chromosomes.
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chromosomes 1A (qYrS.02), 1B (qYrS.06 and qYrS.08), 1D

(qYrS.09, qYrS.10, and qYrS.11), 2A (qYrS.12), 2B (qYrS.17

and qYrS18). It was observed that some of the detected putative

QTLs were effective for the coefficient of infection at several

growth stages while others contributed to the coefficient of

infection at a particular growth stage (eg., qYrS.56 contributed

to yellow rust resistance at the maturity stage). For instance,

qYrS.10 contributed to a stable coefficient of infection at the pre-

heading, heading, mid-maturity, and maturity stages. Similarly,

qYrS.28 was found to be effective for yellow rust resistance at the

heading, flowering, mid-maturity, and maturity stages. qYrS.02

also contributed to the coefficient of infection at the pre-heading,

mid-maturity, and maturity stages. qYrS.54 was effective for

yellow rust resistance at the heading, flowering, and maturity

stages. Likewise, qYrS.13 contributed to resistance in later stages

such as the mid-maturity, and maturity stages. Putative QTLs

that contributed to stable yellow rust resistance from the

flowering to maturity stages include qYrS.20, qYrS.27, qYrS.28,

and qYrS.43. Supplementary Table 5 presents more information

on the detected putative QTLs.

By annotating genes detected in the QTL regions using the

recently released IWGSC RefSeq Annotation v2.1, the functional

relationship between the identified QTLs and yellow rust resistance

was further studied. Annotation identified several resistance-

associated genes that are involved in the plant defense system
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(Supplementary Table 7). Some of the identified high-confidence

candidate genes involved in defense response to fungus include

TraesCS1A02G325400 on chromosome 1A, TraesCS1B02G067000

on 1B, TraesCS1D02G018500 on 1D, TraesCS2B02G548900 on 2B,

TraesCS2D02G497400 on 2D, TraesCS3A02G395300, on 3A,

TraesCS3B02G041900 on 3B, TraesCS3D02G461200 on 3D,

TraesCS4A02G312500 on 4A, TraesCS4B02G074400, on 4B,

TraesCS4D02G286100 on 4D, TraesCS5D02G483900 on 5D,

TraesCS6A02G083200 on 6A, TraesCS6B02G328600 on 6B, and

TraesCS7A02G028300 on 7A. Furthermore, regarding high-

confidence candidate genes important for systemic acquired

resistance (SAR), it has been revealed that wheat has a long-lasting,

broad-spectrum resistance to pathogen infections. These include

TraesCS1A02G18340 on 1A, TraesCS1B02G324300 and

TraesCS1B02G480300 on 1B, TraesCS1D02G018500 on 1D,

Trae sCS2A02G540000 on 2A, Trae sCS2B02G533800 ,

TraesCS2B02G535000 and TraesCS2B02G583600 on 2B,

Trae sCS3B02G041900 on 3A, TraesCS5D02G480600 ,

TraesCS5D02G501100 and TraesCS5D02G501800 on 5D,

TraesCS7A02G026100 and TraesCS7A02G175200 on 7A, and

TraesCS7D02G016800 on 7D. Focusing on the significant QTL

regions identified that high-confidence genes TraesCS1B02G324300

on 1B, TraesCS6B02G017900 on 6B, TraesCS7A02G175200 on 7A

and TraesCS7D02G016800 on 7D regulate mitogen-activated protein

kinase (MAPK) cascades, which are involved in signaling a variety of
FIGURE 6

Population structures of 178 bread wheat genotypes representing eight populations. (A) Best delta K value estimated, and the pick at k = 3 indicates
the number of sub-populations in the wheat panel. (B) Estimated population structure for K = 3 according to the breeding materials. The different
colors (blue, orange, and black) represent genetic groups or sub-populations: the x-axis represents individual samples and the y-axis represents the
proportion of ancestry to each cluster. Population abbreviations are IBWSN, International Bread Wheat Screening Nursery; ISEPTON, International
Septoria Observation Nursery; HRWYT, High Rain Wheat Yield Trial; HRWSN, High Rain Wheat Screening Nursery; ADAPT, Adaptation trial; NVT,
National Verification Trial; and PVT, Preliminary Verification trial.
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plant defense responses against pathogen infections (Meng and

Zhang, 2013) (Supplementary Table 6).
3.6 MTAs for Agronomic Traits

The association analysis for some agronomic traits, including FD,

LA, PH, SL, NKS, and SW, resulted in significantMTAs at the nominal

p-value. For instance, a GWA scan for days to 50% flowering for

pooled dates resulted in seven MTAs on chromosomes 2B, 2D, 3A, 4B,

6B, 7A, and 7D. However, dissecting the traits in individual

environments detected considerable MTAs at the nominal

significance threshold. The same trait provided six MTAs that were

produced by days to flowering on chromosomes 2D, 3A, 4B, 5A, 6B,

and 6D. The identified SNPs explained 11.66% (1123012|F|0-16:G>C-

16:G>C on 6B) to 14.70% (1090345|F|0-8:T>A-8:T>A on 6B) of the

total variations in days to flowering. Likewise, the association analysis
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for leaf area identified six MTAs on chromosomes 1A, 2B, 3B, 4D, 6A,

and 7B at Holeta; seven MTAs at Kulumsa on chromosomes 1B, 3A,

5D, 6A, 6B, and 7A; and eight MTAs at Meraro on chromosomes 1A,

2B, 2D, 3B, 4D, 6A, 7B, and 7D. The identified SNPs explained 10.04-

17.29% of the total variation in leaf area for the SNP markers 1119123|

F|0-11:C>G-11:C>G on chromosome 1D and 1265768|F|0-44:T>C-44:

T>C on chromosome 4D, respectively. The association analysis for

plant height data collected at Meraro identified five MTAs pointing to

chromosomes 1D, 2B, 4A, 5D, and 7B. The identified SNPs explained

6.61% (3025953|F|0-25:G>A-25:G>A on 4A) to 12.30% (SNP 1099369|

F|0-26:C>T-26:C>Ton 5D) of the total phenotypic variance for plant

height (Supplementary Table 7; Figure 11; Supplementary Figure 3).

The association analysis for pooled spike length identified five

MTAs on chromosomes 1A, 2A, 5B, 6B, and 7A. Analysis of the pooled

data for days to maturity identified significant SNPs on chromosomes

1B, 2A, 2B, 3A, 5B, and 5D. The association analysis for days to

maturity in individual environments identified 9 MTAs at Holeta on
B

C

A

FIGURE 7

Principal component and familiar relatedness analysis of 178 wheat genotypes using 6,788 SNP markers. (A) Scatter plot and (B) 3D plots of the
principal components. (C) Kinship displayed through a heat map and a tree out of the heat map. The kinship values showed a normal distribution
(turquoise curve), and orange represents a weak correlation between pairs of individuals in the panel while red shows a high correlation. The
resulting clustering tree is indicated outside of the matrix.
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TABLE 6 Summary of LD analysis among marker pairs per chromosome and sub-genomes.

Chr
Total
marker
pairs

r2
Distance
(Mbp)

Significant marker
pairs (P<0.01)

Chr
Total
marker
pairs

r2
Distance
(Mbp)

Significant marker
pairs (P<0.01)

1A 12,475 0.11 58.05 5,032 (35.06) 5B 22,750 0.14 40.22 8,193 (36.01)

1B 19,900 0.10 44.93 5,820 (29.8) 5D 11,100 0.12 59.51 2,273 (20.48)

1D 10,250 0.13 72.36 1,783 (17.40) 6A 14,700 0.08 57.51 3,928 (26.72)

2A 21,200 0.15 50.03 7,342 (34.63) 6B 18,800 0.11 50.53 6,163 (32.78)

2B 28,100 0.11 36.88 9,511 (33.85) 6D 7,950 0.05 87.75 911 (11.46)

2D 14,550 0.21 57.45 4,771 (32.79) 7A 22,750 0.09 42.53 6,382 (28.05)

3A 17,450 0.09 57.38 4,259 (24.41) 7B 22,450 0.11 42.47 7,492 (33.37)

3B 22,000 0.12 49.85 6,795 (30.89) 7D 14,100 0.08 60.62 2,246 (15.93)

3D 14,650 0.12 56.41 3,940 (26.90)
A
sub-
genome

119,225 0.11 56.04 35,012 (29.44)

4A 13,050 0.11 75.78 3,830 (29.35)
B
sub-
genome

143,600 0.12 51.63 47,527 (33.24)

4B 9,600 0.14 96.54 3,463 (36.08)
D
sub-
genome

75,300 0.11 65.7 15,184 (20.16)

4D 2,700 0.03 218.8 1,71 (6.34) Total 338,125 0.11 57.79 97,723 (27.61)

5A 17,600 0.09 52.97 4,897 (27.83)
F
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FIGURE 8

Genome-wide LD decay plot over physical distance based on 6,788 SNP markers. The yellow curve represents the model fits to LD decay. The
horizontal magenta dash-line represents the arbitrary threshold for no LD (r2 = 0.2). The vertical blue line indicates the intersection between the
critical r2 value and the average map distance (31.44 bp) to determine QTL confidence intervals.
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chromosomes 1A, 1B, 3B, 5A, and 5B; nine MTAs on chromosomes

1B, 1D, 3A, 3B, 4B, 5B, and 7A for data collected at Kulumsa; and eight

MTAs on chromosomes 1B, 2A, 2B, 4A, 5D, 6A and 6B for days of

maturity collected at Meraro (Supplementary Table 5). The identified

SNPs explained 5.54% to 8.04% of the total variations in days to

maturity for the SNPs 1104531|F|0-39:T>A-39:T>A on 2B and

4911245|F|0-46:A>G-46:A>G on 6B, respectively. Association

analysis for the pooled number of kernels per spike identified eight
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MTAs on chromosomes 1B, 1D, 2B, 3A, 3D, 4A, 6B, and 6D. Analyses

of the same trait at Meraro provided five MTAs pointing to

chromosomes 1D, 2B, 4A, 5D, and 7B. The identified SNPs

explained 6.62% of 3025953|F|0-25:G>A-25:G>A on 4A to 13.64%

(for 992022|F|0-9:G>A-9:G>A) of the total variations of days to

maturity (Supplementary Table 7; Figure 11; Supplementary

Figure 3). GWAS for cumulative number of kernels per spikelets

identified seven MTAs pointing to the chromosomes 1B, 3B, 4A, 6D,
FIGURE 9

Some examples of Manhattan plots for the coefficient of infection and GWAS scans resulting in significant associations. Each dot represents an SNP.
On the x-axis is the genomic position of the SNPs on the corresponding chromosomes indicated in different colors. On the y-axis is the -log10 of
the p-value depicting the significance of the association test. The horizontal orange line is the nominal p-value 0.001 significance threshold used in
the association analysis for YRPH, coefficient of infection at pre-heading; YRH, coefficient of infection at heading; YRF, coefficient of infection at
flowering; YRMM, coefficient of infection at mid-maturity; and YRM, coefficient of infection at maturity. The quantile-quantile (Q-Q) plots at the
right side of the Manhattan plots indicate how well the used BLINK model accounted for population structure and kinship for each of the disease
traits. In each plot, the observed –log (P values) from the fitted GWAS models (y-axis) are compared with their expected value (x-axis) under the null
hypothesis of no association with the trait. Each blue dot represents a single nucleotide polymorphism; the red line is the model for no association.
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7A, 7B, and 7D. The same trait analysis at each individual environment

revealed 20 MTAs: six at Holeta on chromosomes 1B, 2B, 3B, 7A, 7B,

and 7D; seven at Kulumsa on chromosomes 1B, 2A, 3D, 5A, 5D, 6A,

and 7B; and seven at Meraro on chromosomes 1B, 2B, 2D, 3A, 4A, 7A,

and 7D. The obtained SNPs explained 6.75-19.15% of the total

phenotypic variations in the number of kernels per spikelets by the

SNPs 1081747|F|0-27:T>C-27:T>C on 1B respectively.

The association analysis for spike weight found four MTAs on

chromosomes 2D, 3A, 3B, and 5B at Kulumsa, and seven MTAs were

found on chromosomes 1B, 2B, 2D, 3B, 4D, 5D, and 6A at Meraro.

Similar to this, the association analysis for kernels per spike at Meraro

identified five MTAs pointing to chromosomes 1D, 2B, 4A, 5D, and

7B. The identified SNPs explained 7.50-11.06% of the total variations in

kernels per spike for the SNPs 1000905|F|0-46: A>G-46:A>G on 3B

and 1126316|F|0-23:A>G-23:A>G on 2B, respectively (Supplementary

Table 7; Figure 11; Supplementary Figure 3). The study showed that

certain QTLs discovered for yellow rust resistance overlapped with

QTLs for agronomic traits. For instance, the qYrS.12 gene, which was

found to be associated with yellow rust resistance at the flowering stage,

is co-mapped with the putative QTL found for plant height on

chromosome 2A. Similarly, the putative QTL for grain yield

discovered on 1B is also co-mapped with the yellow rust resistance

qYrS.07 identified at the maturity stage (Figure 10).
4 Discussion

4.1 Phenotypic variability in resistance to
Puccinia striiformis f. sp tritici

The average disease severity and field response of 178 bread

wheat genotypes to P. striiformis f. sp. tritici at Holeta, Kulumsa,
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and Meraro were recorded in the field. The mean DS, FR, and CI of

the tested wheat genotypes at Holeta, Kulumsa, and Meraro were

8.35, 26.92, and 45.08 for DS; 0.22, 0.73, and 8.30 for FR; and 27.55,

45.05, and 47.16 for CI, respectively. Meraro showed the highest DS,

FR, and CI, confirming that it is a national hotspot for P. striiformis

infestation. It is one of the national and international screening sites

of international enter for maize and wheat improvement

(CIMMYT) wheat germplasm for yellow rust resistance. The

analysis revealed the existence of significant genetic variation

among the wheat genotypes examined for a coefficient of

infection, suggesting that yellow resistance could be improved

through selection breeding. The coefficient of infection for

resistance reaction detected in this research (69.66%) is

comparable with the reaction response reported by Khalil et al.

(2022) (77%) for 426 Indian bread wheat materials. All the

considered traits showed moderate heritability (H2 = 30 – 60%)

except for the coefficient of infection at the pre-heading stage which

showed low heritability (H2 = 27%). Narrow-sense heritability,

which estimates the proportion of phenotypic variations in yellow

rust resistance in a wheat panel, is due to the additive genetic effect

and was high (h2 = 60%), indicating the presence of a strong genetic

signal in the data and hence the promising possibility of improving

yellow rust resistance by exploiting the resistance source through

selection breeding. Comparable high heritability (h2 = 88%) for

yellow rust resistance traits was reported by (Zegeye et al., 2014).

Similarly, Li et al. (2020) described high heritability (h2 = 81%) for

yellow rust resistance analysis in Chinese endemic wheat genotypes.

Correlation analyses using CI revealed that yellow rust

resistance traits were significantly negatively associated with leaf

area, plant height, thousand kernel weight, number of kernels per

spike, spike weight, and grain yield, indicating that high yellow rust

infestations have a considerable effect on reducing yield and yield-
FIGURE 10

Some examples of genomic positions of detected putative QTLs effective for the coefficient of infection. Significant DArTSeq SNPs are presented
according to their physical positions on chromosomes in million base pairs. The putative QTLs identified in this study for the MTAs are indicated on
the right side of the bars. YRPH, coefficient of infection at pre-heading; YRH, coefficient of infection at heading; YRF, coefficient of infection at
flowering; YRMM, coefficient of infection at mid-maturity; YRM, coefficient of infection at maturity; HD, days to heading; FD, days to flowering; DM,
days to maturity; TKW, thousand kernel weight; LA, leaf area; PH, plant height; SL, spike length; NSs/S, number of spikelets per spike; NK/S, number
of kernels per spike; NK/Ss, number of kernels per spikelets; SW, spike weight; and GYPP, grain yield per plot.
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related traits. Moreover, plant height has a considerable escaping

effect from yellow rust, as the infestation can initiate from the soil.

Similarly, a significant negative association between yellow rust

infestation and plant height, thousand kernel weight, grain yield,

and number of kernels per spike was reported by Solomon (2022)

and Saleem et al. (2022). Nevertheless, days to maturity and spike

length showed a moderate negative correlation (r< -0.3) with all

yellow rust severity, indicating that late maturing and long spiked

genotypes have an escaping mechanism for yellow rust infection.

The strong negative associations of yield-related, vegetative, and

phenological traits with yellow rust resistance traits indicate that

these traits should be considered in indirect selection for yellow rust

disease resistance.
4.2 Population structure, relatedness,
and LD

The presence of three sub-populations (K=3) with substantial

mixing was supported by analysis of the population structure and

principal components. Ovenden et al. (2017) showed similar

indistinct population grouping, increased admixing, and poor

population sub-structuring for 312 wheat genotypes using 5k SNP

markers. The existence of cryptic familiar relatedness was also

verified by kinship analysis, highlighting the significance of using

both population structure (Q) and kinship (K) as covariates in

marker-trait association analyses. The population stratification,

relatedness, and marker effects have been effectively accounted for

using the BLINK model employed in the association studies,

reducing the confounding effects that could lead to false-positive

MTAs. Visualizing the Q-Q plots helped to confirm effective control

of the confounding factors.

According to the study, there is a relatively even distribution of

markers among the bread wheat sub-genomes, with the A sub-genome

contributing the most (10,317), the B sub-genome coming in second

(10,979), and the D sub-genome harboring the least (9,756). Similar

findings were published by Vikas et al. (2022), who found that 6,036 of

the 18,932 mapped SNPs were mapped to the A sub-genome, 7,191 to

the B sub-genome, and 5,705 to the D sub-genome. This indicates that

the history of natural selection, gene conversion, mutation, and other

mechanisms that result in gene-frequency evolution is reflected in each

genomic region’s LD (Slatkin, 2008; Rahimi et al., 2019). The A and B

sub-genomes had a disproportionately high number of SNPs, which

was probably caused by the relatively recent joining of the D-genome to

the hexaploid wheat genome. The LD varied amongst the three sub-

genomes, and it was low for the A and B sub-genomes, perhaps as a

result of their lengthy evolutionary histories in comparison to the

D genome.
4.3 Marker-trait associations and
identification of candidate genes

The discovery of significant marker-trait relationships at

different growth stages revealed the presence of significant

genotypic diversity among the investigated bread wheat
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genotypes. At a nominally significant threshold of p-value ≤

0.001, GWAS analysis discovered 148 MTAs, pointing to 54

QTLs for the coefficient of infection and 179 MTAs for

agronomic traits. (Zegeye et al., 2014) also found 38 SNPs in

synthetic hexaploid wheat evaluated at Meraro and Arsi Robe.

The large sample size and SNPs employed in the current

investigation could be the main cause for the considerable

variation in the number of significant markers. Among the 18

responsible reported by (Zegeye et al., 2014) for yellow rust

resistance, four (1A, 1B, 2B, and 5A) shared the same physical

position, which could be due to the difference in the number of used

SNPs (2590), genotyping platform (iSelect array), and

wheat populations.

In the current study, 48 of the identified yellow rust resistance

SNPs were found to be location-specific (at Meraro), showing the

presence of P. striiformis races at the test site that was distinct from

other test sites, along with race-specific resistance genes. The

present study confirmed that chromosome 2B contains more

yellow rust resistance loci (24 MTAs). This finding is consistent

with previous reports by Chen et al. (2012) and Mallard et al.

(2005), who reported approximately 112 P. striiformis resistance

genes on wheat chromosome 2B, for instance: Yr9, Yr10, Yr15,

Yr24/Yr26/YrCh42 (Cheng et al., 2014), Yr29/Lr46 (Lan et al., 2014),

YrExp1 (McIntosh et al., 2020), and YrH52 (Klymiuk et al., 2020).

Similarly, the present study identified that chromosome 2B

harbored many yellow rust resistance putative QTLs, and this

finding was in line with the reports of Feng et al. (2018) and

Khalil et al. (2022), who described several yellow rust resistance

QTLs on the same chromosome, including Yr64, Yr65, YrTr1,

YrAlp, YrH122, YrL693, YrC142, YrMY41, QYr.cau-1BS,

QYrco.wpg-1BS.1, and QYrco.wpg-1BS.2. Interestingly, markers

found in the current study are located at 74.20-793 Mbp.

A total of 54 QTLs were observed across all environments. Of

the 54 QTLs, 17 putative QTLs were detected at Holeta, 3 at

Kulumsa, 23 at Meraro, and 11 QTLs were observed in all

environments (Table 7). Moreover, 22 of the 54 QTLs were

observed across different growth stages, including 10 QTLs at two

different growth stages, seven QTLs in three growth stages, one QTL

in four growth stages, and two QTLs in all growth stages (Table 8).

The failure to generally not repeat QTL effects across all

environments could be due to site-specific QTL effects and

different disease pressures. The prolonged and intense rains that

characterize Meraro led to the largest natural yellow rust

infestations across all growth stages. Climate factors, including

lingering crop moisture and protracted periods of heavy rain,

encourage disease infection and dissemination across the crop

canopy (Helen and Sarah, 2015).

Even though it is challenging to compare the positions of

QTLs from different studies because of the different mapping

methodologies, marker systems, and mapping populations

employed, some QTLs found in this study coincided with the

mapping positions of previously reported yellow rust resistant

genes in the literature. Similar to the current study, several earlier

studies reported yellow rust-resistant QTLs on 1A (Fu et al., 2019;

Tehseen et al., 2020; Yao et al., 2021; Baranwal et al., 2022; Bouvet

et al., 2022), on 1B (Losert et al., 2017; Alemu et al., 2020; Baranwal
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et al., 2022), on 1D (Long et al., 2019; Jia et al., 2020; Zhang et al.,

2021; Baranwal et al., 2022; Kumar et al., 2023) on 2A (Tehseen

et al., 2020; Zhang et al., 2021; Zhang et al., 2021; Baranwal et al.,

2022), on 2B (Li et al., 2020), on 2D (Mu et al., 2020; Baranwal et al.,

2022), on 3A (Tehseen et al., 2022), on 3B (Zegeye et al., 2014;
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Kumar et al., 2020), on 3D (Bouvet et al., 2022), on 4A (Mu et al.,

2020), on 4B (Alemu et al., 2020), on 4D (Rollar et al., 2021), on 5A

(Zhang et al., 2021), on 5B (Lu et al., 2014), on 5D (Zhang et al.,

2021), on 6A (Baranwal et al., 2022), on 6B (Zhang et al., 2021) on

7A (Yel et al., 2019; Alemu et al., 2020; Tehseen et al., 2020;
FIGURE 11

Some examples of Manhattan plots for agronomic and yield-related traits in each environment and combined data. HD, days to heading; FD, days to
flowering; DM, days to maturity; TKW, thousand kernel weight; LA, leaf area; PH, plant height; SL, spike length; NSs/S, number of spikelets per spike;
NK/S, number of kernels per spike; NK/Ss, number of kernels per spikelets; SW, spike weight; and GYPP, grain yield per plot. The quantile-quantile
plots at the right side of the Manhattan plots indicate how well the GWAS model accounted for population structure and kinship for each of the
disease traits. In each plot, the observed –log (p-values) from the fitted GWAS models (y-axis) are compared with their expected value (x-axis) under
the null hypothesis of no association with the trait. Each blue dot represents a single nucleotide polymorphism; the orange line is the model for
no association.
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Baranwal et al., 2022), and on 7D (Long et al,. 2019; Rollar

et al., 2021).

Out of the 54 putative QTLs detected in the current study, 12

QTLs (qYrS.11 on chromosome 1D; qYrS.16, qYrS.17, and qYrS.18

on chromosome 1B; qYrS.26 on chromosome 3A; qYrS.31 and

qYrS.32 on chromosome 3B; qYrS.40 on chromosome 4B; qYrS.45

and qYrS.46 on chromosome 5D; qYrS.50 on chromosome 6B; and

qYrS.58 on chromosome 7D) were not reported in previous

literature on wheat and hence could potentially be novel

(Supplementary Table 8).

On chromosome 1A, the discovery of defense-related candidate

genes like TraesCS1A02G325400 and TraesCS1D02G018500on in the

significant markers suggests that the observed QTL areas are

functionally associated with plant defense mechanisms against fungal

infections. Furthermore, genes such as TraesCS1A02G183400, found

on the qYrS.02 QTL region on chromosome 1A, and

TraesCS1B02G480300, found on the qYrS.08 QTL region on

chromosome 1B, are involved in plants’ systemic acquired resistance

to pathogen infections. According to Lawton et al. (1995), systemic

acquired resistance is a broad-spectrum resistance acquired following

the initial localized infection of plants by pathogens. Genes such as

TraesCS1B02G324300, found in qYrS.07, and TraesCS6B02G017900, in
Frontiers in Plant Science 20
the qYrS.49 region, on chromosome 1B and 6B, respectively, control

the MAPK cascades that signal various defense reactions, such as the

production of or signaling of plant stress, gene activation, and

hypersensitive response cell death. Additionally, it is assumed that

the majority of the genes similar to the discovered key markers are

involved in the manufacture of salicylic acid, an important plant

hormone well known for mediating host responses to pathogen

infection (Lefevere et al., 2020; Mekonnen et al., 2021).

Due to the lack of shared genetic effects for yellow rust

resistance, the majority of the QTLs discovered for vegetative,

yield-related, and phenological traits did not overlap with those

discovered for yellow rust resistance traits. Numerous associations

between agronomic traits and yellow rust resistance traits were non-

significant, had minimal to weak negative coefficients, or were both,

showing that the traits were independent. However, this study

showed that some putative QTLs determined for agronomic traits

and putative QTLs identified by yellow rust resistance data

overlapped. For example, the potential QTL identified on 1B for

grain yield was co-mapped with qYrS.07, identified for yellow rust

resistance at the maturity stage. This implies that these traits are

controlled by similar loci. As anticipated, grain yield may be

impacted by the disease’s vertical advancement rate. The putative
TABLE 7 Stable putative QTLs across all locations identified through bread wheat chromosomes for the coefficient of infection.

No QTL Chr Position (bp) Phenotypes _Location

1 qYrS.01 1A 16417326 YRF_Combined

2 qYrS.02 1A 337947849 YRM_Combined, YRM_Kulumsa, YRMM_Combined, YRMM_Kulumsa, YRPH_Meraro

3 qYrS.03 1A 512496605 YRF_Combined,

4 qYrS.04 1A 588261371 YRF_Combined, YRF_Meraro

5 qYrS.06 1B 73576935 YRM_Combined, YRM_Kulumsa, YRMM_Holeta, YRMM_Kulumsa & YRPH_Meraro

6 qYrS.09 1D 7734813 YRH_Holeta & YRPH_Holeta

7 qYrS.10 1D 49605264-54911805 YRH_Kulumsa, YRM_Kulumsa, YRMM_Kulumsa, YRF_Kulumsa, YRH_Kulumsa & YRPH_Combined

8 qYrS.12 2A 733216778-750201766 YRF_Holeta & YRPH_Combined

9 qYrS.14 2B 237588008-243083729 YRM_Holeta, YRH_Combined & YRH_Meraro

10 qYrS.17 2B 647897009 YRH_Combined, YRH_Holeta, YRMM_Holeta, YRPH_Combined & YRPH_Holeta

11 qYrS.22 2D 74936166 YRF_Combined-

12 qYrS.24 2D 591603469 YRF_Combined

13 qYrS.25 3A 250818410 YRF_Holeta, YRGM_Combined, & YRM_Holeta

14 qYrS.29 3B 20999249 YRF_Combined

15 qYrS.35 3D 569281482 YRF_Combined

16 qYrS.36 4A 521603853 YRM_Meraro

17 qYrS.37 4A 603746204 YRPH_Holeta

18 qYrS.38 4B 15149905 YRMM_Meraro & YRMM_Meraro

19 qYrS.42 5A 36021495 YRM_Meraro, YRF_Combined, YRF_Meraro, & YRF_Combined

20 qYrS.53 6B 675702168 YRH_Kulumsa, YRMM_Kulumsa, YRM_Meraro, YRH_Holeta & YRPH_Holeta

21 qYrS.55 7A 96563306-128909455 YRF_Holeta, YRH_Holeta, YRMM_Holeta & YRF_Meraro
QTL, Quantitative trait locus; Chr, Chromosomes; Phenotype_Location, coefficient of infection measured at individual or across locations (Holetta, Kulumsa, and Meraro); YRPH, coefficient of
infection at pre-heading; YRH, coefficient of infection at heading; YRF, coefficient of infection at flowering; YRMM, coefficient of infection at mid-maturity and YRM, coefficient of infection
at maturity.
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QTL determined for plant height on chromosome 2A is co-mapped

with qYrS.12, identified for the resistance of yellow rust at

flowering. That is consistent with the finding of Mekonnen et al.

(2021), who stated that the putative QTL controlling grain yield is

co-mapped with the Septoria tritici blotch progress coefficient on

chromosome 1A. Traits that facilitate escape, such as tallness,

reduce disease resistance by limiting or delaying the vertical

spread of the spores up the plant, probably leading them to be

scored as resistant when they are inherently not resistant (Miedaner

et al., 2013).
5 Conclusion

Stripe rust caused by the fungus P. striiformis is the major

bottleneck to wheat production worldwide, including in Ethiopia.
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The use of resistant varieties is a durable, effective, and eco-friendly

way to control crop diseases. Genome-wide association analysis is a

powerful tool to dissect the genetic basis of disease resistance in crop

plants. In this study, genomic regions underlying adult-plant resistance

to yellow rust were explored using genome-wide scanned SNPs and

multi-environment-derived phenotype data in a bread wheat

association panel. The analysis revealed that yellow rust resistance is

highly heritable e (h2 = 60%), and hence could be improved by

exploiting the resistance source through selection breeding. The

study also found 148 SNPs that were significantly associated with

strong yellow rust resistance, pointing to 54 QTLs. Some of these

putative QTLs were consistently identified at all growth stages, and

hence, they could be considered major genomic loci containing

combinations of genes conferring resistance to P. striiformis across

all growth stages of wheat. Functional dissection of the detected QTL

regions in the wheat database identified several defense-related
TABLE 8 Stable putative QTLs across locations identified through bread wheat chromosomes for yellow rust resistance.

No
QTLs Chr Position

Growth
stage Phenotypes _Location

1 qYrS.02 1A 337947849 3 YRM_Combined, YRM_Kulumsa, YRMM_Combined, YRMM_Kulumsa, YRPH_Meraro

2 qYrS.06 1B 73576935 3 YRM_Combined, YRM_Kulumsa, YRMM_Holeta, YRMM_Kulumsa & YRPH_Meraro

3 qYrS.08 1B
605007601-
687536131 2 YRPH_Kulumsa & YRH_Kulumsa

4 qYrS.09 1D 7734813 2 YRH_Holeta & YRPH_Holeta

5 * qYrS.10 1D 49605264-54911805 5
YRH_Kulumsa, YRM_Kulumsa, YRMM_Kulumsa, YRF_Kulumsa, YRH_Kulumsa
& YRPH_Combined

6 qYrS.12 2A
733216778-
750201766 2 YRF_Holeta & YRPH_Combined

7 qYrS.13 2B 74203726 2 YRM_Holeta & YRMM_Holeta

8 qYrS.14 2B
237588008-
243083729 2 YRM_Holeta, YRH_Combined & YRH_Meraro

9 qYrS.17 2B 647897009 3 YRH_Combined, YRH_Holeta, YRMM_Holeta, YRPH_Combined & YRPH_Holeta

10 qYrS.20 2B
759523837-
768053989 3 YRM_Holeta, YRMM_Holeta, YRM_Kulumsa, YRM_Holeta, YRMM_Holeta & YRF_Meraro

11 qYrS.25 3A 250818410 2 YRF_Holeta & YRM_Holeta

12 qYrS.27 3A 639713075 3 YRF_Holeta, YRM_Holeta & YRMM_Holeta

13 qYrS.28 3A
733636208-
739951852 3 YRH_Meraro, YRM_Meraro, YRMM_Meraro & YRM_Meraro

14 qYrS.34 3D 339476105 2 YRH_Kulumsa & YRPH_Holeta

15 qYrS.42 5A 36021495 2 YRM_Meraro, YRF_Combined, YRF_Meraro, & YRF_Combined

16 qYrS.43 5A 429474426 2 YRF_Holeta, & YRMM_Holeta

17 * qYrS.53 6B 675702168 5 YRH_Kulumsa, YRMM_Kulumsa, YRM_Meraro, YRF_Holeta & YRPH_Holeta

18 qYrS.54 7A 12800907-50346076 5 YRF_Kulumsa, YRH_Kulumsa, YRM_Kulumsa, YRMM_Kulumsa & YRF_Meraro

19 qYrS.55 7A
96563306-
128909455 4 YRF_Holeta, YRH_Holeta, YRMM_Holeta & YRF_Meraro

20 qYrS.56 7D 9295305-14621383 3 YRH_Holeta, YRH_Holeta, YRH_Holeta, YRF_Holeta, & YRMM_Holeta
QTL, Quantitative trait locus; Chr, Chromosomes; Phenotype_Location, coefficient of infection measured at individual or across locations (Holetta, Kulumsa, and Meraro); YRPH, coefficient of
infection at pre-heading; YRH, coefficient of infection at heading; YRF, coefficient of infection at flowering; YRMM, coefficient of infection at mid-maturity and YRM, coefficient of infection at
maturity; *=QTLs stable across all environments and all growth stages.
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candidate genes involved in plant resistance against fungal infections,

systemic acquired resistance, and MAPK pathways that are relevant in

signaling numerous plant defense systems. The identified candidate

genes close to the detected SNPs can be targeted to disclose the actual

genes underlying the target trait in the association loci. Most of the

detected putative QTLs shared similar chromosomal positions with

previously reported genes and QTLs. However, their use in marker-

assisted resistance breeding needs validation. Overall, the study

confirmed that the association panel possessed considerable P.

striiformis resistance alleles that could be deployed into the high-

yielding but yellow rust-susceptible wheat varieties. The detected

QTLs can be used in a wheat resistance breeding program to develop

broad-spectrum and durable-resistant wheat varieties against the

rapidly evolving wheat pathogen P. striiformis.
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