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Medicinal plants remain a valuable source for natural drug bioprospecting owing

to their multi-target spectrum. However, their use as rawmaterials for novel drug

synthesis has been greatly limited by unsustainable harvesting leading to

decimation of their wild populations coupled with inherent low concentrations

of constituent secondary metabolites per unit mass. Thus, adding value to the

medicinal plants research dynamics calls for adequate attention. In light of this,

medicinal plants harbour endophytes which are believed to be contributing

towards the host plant survival and bioactive metabolites through series of

physiological interference. Stimulating secondary metabolite production in

medicinal plants by using endophytes as plant growth regulators has been

demonstrated to be one of the most effective methods for increasing

metabolite syntheses. Use of endophytes as plant growth promotors could

help to ensure continuous supply of medicinal plants, and mitigate issues with

fear of extinction. Endophytes minimize heavy metal toxicity in medicinal plants.

It has been hypothesized that when medicinal plants are exposed to harsh

conditions, associated endophytes are the primary signalling channels that

induce defensive reactions. Endophytes go through different biochemical

processes which lead to activation of defence mechanisms in the host plants.

Thus, through signal transduction pathways, endophytic microorganisms

influence genes involved in the generation of secondary metabolites by plant

cells. Additionally, elucidating the role of gene clusters in production of

secondary metabolites could expose factors associated with low secondary

metabolites by medicinal plants. Promising endophyte strains can be

manipulated for enhanced production of metabolites, hence, better probability

of novel bioactive metabolites through strain improvement, mutagenesis, co-

cultivation, and media adjustment.

KEYWORDS
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1 Introduction

Several clinical conditions, ranging from acute to chronic, have

long plagued mankind since the dawn of time (Takahashi et al.,

2020). Traditionally, medicinal plants have been used as remedies to

sustain human health and well-being (Palanichamy et al., 2018).

Many of such plants are essential sources and reservoirs of bioactive

metabolites used in production of pharmaceuticals for therapeutic

purposes. However, several of these medicinal plants have been red-

taped and classified as threatened species by different conservative

authorities (Chen et al., 2016) due to unabated demand, aggressive

wild harvesting, habitat degradation, and ultimate fear of extinction.

Mass production of bioactive compounds from medicinal

plants often requires a high volume of biomass. The quality and

quantity of naturally synthesized bioactive compounds fluctuate

with varying environmental growth conditions, compounded by the

global climate change (Venugopalan and Srivastava, 2015; Singh

et al., 2018). Thus, there is a growing need for sustainable alternative

templates or sources for efficient production of drugs to meet the

ever-increasing demands (Asmita and Sashirekha, 2016).

Specifically, different strategies have been explored on improving

quality and quantity of bioactive secondary metabolites associated

with medicinal plants (Bourgaud et al., 2001).

Moreover, the global challenge of antibiotic resistance coupled

with recurrent, new and re-emerging life-threatening infectious

diseases necessitates dedicated search for novel therapeutic and

prophylactic agents (Golinska et al., 2015). A deliberate attention

has therefore been focused on the metabolites produced by varieties

of bacterial and fungal endophytes (Ek-Ramos et al., 2019). The

endophytes co-exist with medicinal plants and as well exhibit

pharmacological activities similar to those of the host plants

(Palanichamy et al., 2018). This positions endophytes as potential

resources for bioactive natural products which could eventually play

a significant role in the discovery of new drugs (Manandhar et al.,

2019). They are known for their unique ability to influence the

quality of bioactive secondary metabolites produced by their hosts,

hence, a better understanding of the interactions between medicinal

plants and their symbiont endophytes is paramount (Jia

et al., 2016).

Furthermore, the complex nature of secondary metabolite

production pathways could be a limiting factor for diversity of

natural products (Thomford et al., 2018). Advanced technologies

can enable the continuous manufacturing of high-valued bioactive

compounds with short production cycles (Marchev et al., 2020).

Sensitivity of new analytical instrument for compound

identification, elucidation and quantification has greatly increased.

This allows for study of important bioactive compounds even at

very low concentrations, and boosting the likelihood of discovering

new compounds that could have escaped detection due to

limitations from the previous analytical techniques. Slow-growing

trees and shrubs produce most of the high-valued and often

demanded plant-derived pharmaceuticals, but at very low rate

both in the in vivo field environments and in vitro tissue culture

set-ups. Therefore, application of modern biotechnology would

definitively play a critical role in the production of therapeutic
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plant-based metabolites at industrial and commercial scale, while

ensuring protection of nature reserves (Isah et al., 2018). Synthesis

of diverse varieties of phytochemicals have been observed in

undifferentiated plant tissue cultures under controlled laboratory

condition while induced with elicitors or feeding precursors.

However, this has not been without limitations. For instance,

introduction of the genes that are involved in biosynthesis of

artemisinin in the heterologous hosts ended up in a very low

yield (Guerriero et al., 2018).

Secondary metabolite biosynthesis involves a conglomerate of

genes, enzymes, and metabolic pathways, most of which are not well

understood due to their complexity (Castillo et al., 2013). For

instance, genes are sometimes not expressed in a functional state

which makes it impossible to determine how much of a role they

play in biosynthesis of secondary metabolites (Kroymann, 2011). In

addition, gene-metabolites networks remain unclear because most

functional genes in medicinal plants remain unknown and this

constitutes a major constraint in the upscaling of metabolite

production (Yang et al., 2014). Consequently, many metabolic

pathways are not discovered due to the unknown functional

genomic (Yang et al., 2014). Currently there are only a few

assembled genomes of medicinal plants that address the function

of genes involved in the synthesis of secondary metabolites

(Chakraborty, 2018).

In addition, plant cytochrome P450s enzymes, for example, are

one of the keystone enzymes for the biosynthesis of secondary

metabolites such as terpenoids, glucosinolates, phenylpropanoids,

and alkaloids, yet a number of their catalytic functions remains

unknown (Giddings et al., 2011). Plants contain a large number of

P450 genes, and identifying a P450 that catalyzes a specific

metabolic transformation in plants remains difficult due to P450

gene similarities and unknown catalytic activities (Nguyen and

Dang, 2021.). Catharanthus roseus, for example, is one of the

sources of anti-cancer drugs, and produces compounds such as

the alkaloid tabersonine. However, only 5 Catharanthus roseus

plant P450s (cinnamate 4-hydroxylase, flavonoid 3′ ,5′-
hydroxylase, secologanin synthase, geraniol 10-hydroxylase, and

tabersonine 16-hydroxylase) have been successfully characterized

for the biosynthesis of plant secondary metabolites such as alkaloids

(Giddings et al., 2011; Chakraborty, 2018).

This review, therefore, highlights importance of medicinal

plants in folklore remedy and how modern techniques can be

employed to improve their biomass and quality of bioactive

secondary metabolites they produce through exploring and

enhancing contributions of the symbiont endophytes in support

of the host plants. This is with a view to reducing threat of

extinction due to over-harvesting of the medicinal plants, thereby

supporting genuine conservation efforts for sustainable planet.
2 Medicinal plants in traditional
healing systems

Medicinal plants contain several compounds of therapeutic and

prophylactic importance; hence, man have relied on them
frontiersin.org
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traditionally in the management and prevention of different

ailments ranging from mild to more serious medical conditions

(Hussein and El-Anssary, 2019). Most of these plants are limited in

distribution and characterized with localized indigenous knowledge

associated with their applications. In terms of abundance, China

and India are the top two nations with the most medicinal plants,

followed by Colombia, United States and then South Africa (Chen

et al., 2016). A growing number of people in developing countries

rely on medicinal plants for their primary healthcare (Jain et al.,

2019). The historic records on the use of medicinal plants for the

treatment of ailments dated back to ~5000 years ago on a Sumerian

clay slab from Nagpur (Bernardini et al., 2018; Suntar, 2020). It

contained information on over 100 plant-derived pharmaceutics

and oils obtained from various herbal plants (Wanjari and Wanjari,

2019; Suntar, 2020). These medicinal plants are mostly used in their

raw state, either by infusion or decoction (Suntar, 2020). Studies on

the extraction and identification of chemical components from

these therapeutic plants dated back to 1800s, and morphine was

the first biochemical compound to be extracted from plants

(Bernardini et al., 2018; Suntar, 2020). In addition, extracts from

medicinal plants have proven to be the backbone for modern drug

syntheses while their bioactive secondary metabolites are primarily

responsible for this effectiveness (Hussein and El-Anssary, 2019;

Jain et al., 2019).
3 Production of secondary
metabolites and their
medicinal importance

All plants undergo primary metabolism, while the metabolites

produced are crucial for their growth and development (Sinha et al.,

2019), and serve as precursors for the synthesis of secondary

metabolites (Nielsen and Nielsen, 2017). For instance, carbon

assimilated during photosynthesis serves as a substrate for

secondary metabolism. The slow plant development under stress

conditions often increases production of secondary metabolites as

more carbon would be available for this purpose (Van Wyk and

Prinsloo, 2020). It has also been noted that plants containing large

contents of nitrogen tends to be prime producers of nitrogenous

secondary metabolites such as alkaloids (Puri et al., 2018).

Most secondary metabolites in plants are produced as defence

mechanism in response to unfavourable conditions (Cardoso et al.,

2019). Secondary metabolites can be divided into a few classes based

on their functional groups, and these include alkaloids, phenolics,

flavonoids, saponins, tannins, lignins, steroids, terpenoids,

anthocyanins, tetralones, cardiac glycosides, and anthraquinones

(Guerriero et al., 2018). Plants and microorganisms utilise three

pathways for secondary metabolite biosynthesis; shikimate,

polyketide, and mevalonate (Kumara et al., 2014; Burragoni and

Jeon, 2021). Shikimate is primarily responsible for the synthesis of

aromatic amino acid compounds, whereas polyketide and

mevalonate pathways are mainly responsible for generation of

molecules having medicinal properties (Kumara et al., 2014).
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The largest group of secondary metabolites is alkaloids, and

they are found in almost 20% of vascular plants (Mahajan et al.,

2020). Alkaloids are hydrophilic and are usually stored in the

vacuoles (Yang L. et al., 2018). They are mainly produced

through decarboxylation of amino acids such as tryptophan,

tyrosine, histidine, lysine and ornithine using different pathways

(Hussein and El-Anssary, 2019; Burragoni and Jeon, 2021). They

have a number of therapeutic applications including anticancer and

antimalarial activities (Burragoni and Jeon, 2021; Keshri et al.,

2021). It has been discovered that there are more than 20,000

alkaloids that can be extracted from plants. They are also present in

a variety of microbes, with Bacillus species being notable producers

of alkaloids (Burragoni and Jeon, 2021).

The second largest group is phenol and are produced via

shikimate pathway. They are best known as dietary metabolites

with a wide range of therapeutic applications such as anti-

inflammatory, anti-allergic, anti-cancer, anti-viral, antioxidant

and anti-ulcer properties (Jamwal et al., 2018; Burragoni and

Jeon, 2021). Phenolic compounds also play a vital role in plant

pigmentation (Yang S. Q. et al., 2018). Terpenes, which are another

prevalent group, are categorized into three main subgroups,

monoterpenes, sesquiterpenes and di-terpenes based on the

number of carbon isoprene units they contain (Awuchi, 2019).

Terpenes are normally biosynthesised from acetyl-CoA and/or

glycolytic intermediates and are lipophilic. There are two

enzymatic pathways, mevalonic acid and methylerythritol 4-

phosphate pathways that are involved in the production of

terpenes (Hussain et al., 2012). Artemisinin is a well-known

sesquiterpene metabolite produced by Artemisia species and it has

been found to be effective in controlling cancer, malaria, and several

infectious diseases (Pandey and Pandey-Rai, 2016; Guerriero et al.,

2018). Taxol is also a diterpenoid anticancer medication that is

commonly used to suppress the growth of various malignancies

(Yan et al., 2018), and it was first extracted from Taxus brevifolia

(Guerriero et al., 2018). Thereafter, it was recommended that

terpene compounds be included in daily human dietary as a

prophylactic measure against a variety of diseases (Palanichamy

et al., 2018). All these secondary metabolites have contributed

significantly to the development of medications from

medicinal plants.
4 Uniqueness and valuable attributes
of plant-based natural drugs

Over the years, there has been rising global demand for natural

products from medicinal plants and herbs which has contributed to

their enhanced market value (Williams et al., 2013). The increased

demand for medicinal plants is linked to increasing rate of

communicable and non-communicable chronic diseases such as

diabetes, cardiovascular, neurodegenerative, and cancer diseases

(Espı ́n et al., 2007; Takahashi et al., 2020). Pathogenic

microorganisms are getting more resistant to antibiotics leading

to multi-drug resistant strains becoming a global public health crisis
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(Mohammadi et al., 2020). Antibiotic resistance is estimated to

cause more than 700,000 fatalities worldwide annually, with a

prediction that the trajectory could be doubled by 2050 if proper

measures are not implemented (Ye et al., 2020).

That being the case, there is a rising demand for novel

therapeutic agents to tackle infections, and natural products have

gained popularity in combating multi-drug resistance challenges

(Ye et al., 2020). Despite a global drop in malaria-related deaths in

recent years, sub-Saharan African countries continue to have the

highest rate of malaria-related fatalities (Okell et al., 2023).

Plasmodium falciparum has developed resistance to several anti-

malarial medications, and this is prevalent mainly in Southeast

Asian and sub-Saharan countries (Dadgostar, 2019). However,

natural products such as artemisinin, have exhibited significant

efficacy against multidrug-resistant strains of malaria parasites with

minimal side effects (Gupta et al., 2020; Mohammadi et al., 2020).

Drugs of natural origin have demonstrated high level of potency

and cost effectiveness (Banyal et al., 2021). They constitute almost

half of the available medications (Banyal et al., 2021).

Despite the strong demand for natural-based drugs, the rate of

discovery of novel metabolites is quite low (Gupta et al., 2020).

There are more than half a million medicinal plants globally in

which most of them have not been exploited for their therapeutic

potentials (Dar et al., 2017; Anand et al., 2019). Most of the

commercialised high-valued secondary metabolites with minimal

or no toxicity are of plant origin (Nomura et al., 2018). Attempts to

identify and synthesize drugs from medicinal plants have reduced

drastically (Scotti et al., 2017). Some of the main reasons for this

include (i) medicinal plant population decimation leading to the

extinction of some species, (ii) generally low quantity of secondary

metabolites produced by medicinal plants, and (iii) access to

modern and sophisticated analytical equipment for novel

discovery from the crude components. Undoubtedly, there are

great potentials for more drug discoveries because only ~15% of

the existing medicinal plants have been explored for their potential

as a source of therapeutic agents (Mathur and Hoskins, 2017).

Hence, adding value to the medicinal plant research dynamic

would be another way to ensure the continuous use of medicinal

plants in the search for new medications. There have been a paucity

of investigations into the elements that influence medicinal plant

secondary metabolite production, as well as prospective tactics for

increasing their production. For example, medicinal plants harbor a

variety of endophytes capable of producing secondary metabolites

similar to those of their host plants. Thus, new paradigms including

discovery of endophyte roles in the survival and defence tactics of

their host plants are essential.
5 Endophytes intervention towards
improving limitations associated with
medicinal plant use

Endophytes as symbiont microbial community in the tissue of

plants, offer a number of inherent potential benefits towards

sustaining the mutual association (Figure 1). If consciously
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explored, the contributions by endophytes could become

manipulative templates which could help mitigate the impact of

over-harvesting due to over-reliance on medicinal plants, most

importantly in folklore remedy. This could reduce the fear of

extinction that has prompted strict regulations (red tapping) by

the conservationists.
5.1 Endophytes ameliorating factors
responsible for medicinal plants extinction

Flowering medicinal plants range from 50,000 – 80,000 among

which about 15,000 of them are threatened by extinction as a result

of over harvesting, deforestation and recurrent wildfires (Chen

et al., 2016; Maury et al., 2020). Transition from subsistence to

commercial trading of medicinal plants has been identified as one of

the primary causes of their overharvesting from the wild (Williams

et al., 2013). It is also encouraged by the high demand due to

growing human population, as huge quantities are required to meet

the market demand. It has been projected that loss of several species

of medicinal plants is at its peak with possible loss of a number of

potential drugs. This threat has been known for decades, but not

much work has been done to save the plant biodiversity (Chen et al.,

2016; Shafi et al., 2021).

Climate change is another factor affecting the distribution and

abundance of medicinal plants with high capability to cause

extinction (Gairola et al., 2010). According to reports from the

Intergovernmental Panel on Climate Change (IPCC), global average

temperatures have risen and this will have a significant impact on

plant diversity (Anderson et al., 2020). Each degree Celsius rise in

average temperature can have a negative impact on medicinal plant

distribution, as these changes are likely to increase plant mortality

and extinction risk (Tangjitman et al., 2015). The impact of climate

change on certain plants becomes more severe as some plants take

longer to adapt to changes in environmental conditions (Akula and

Ravishankar, 2011). Plant conservation is critical because it seeks to

preserve plant species, especially those that are endangered, in order

to ensure a steady supply of essential products while also improving

plant biodiversity (Das et al., 2016; Maury et al., 2020).

A variety of measures have been put in place with the intention

of conserving nature and guaranteeing a stable supply of vital and

vulnerable medicinal plants for drug production (Guerriero et al.,

2018). Using in-situ and ex-situ conservation strategies are among

the most effective ways to preserve medicinal plants (Chen et al.,

2016; Kadam and Pawar, 2020). Some medicinal plants are site- and

environment-specific in their ability to produce significant

secondary metabolites, and they might not be able to do so under

controlled environments (Wani et al., 2021). In such cases, it is

advised to practice in-situ conservation of such medicinal plants,

which means preserving medicinal plants in their natural habitats

(Rajpurohit and Jhang, 2015). Ex-situ conservation refers to the

preservation of medicinal plants away from their natural habitats

(Wani et al., 2021). Unfortunately, several of these techniques have

shown to be insufficient for improving the quality and quantity of

secondary metabolites frommedicinal plants, although adequate for

plant conservation.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1248319
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tsipinana et al. 10.3389/fpls.2023.1248319
Finding techniques to improve medicinal plants bioactive

chemical production is of utmost importance (Isah et al., 2018).

Awasthi et al. (2011) noted that a combination of compatible

arbuscular mycorrhizal fungi, Glomus mosseae and Bacillus

subtilis endophytic microbes increased the production of

artemisinin content in the leaves of Artemisia annua L. In

addition, endophytes are essential growth promoting agent in

plants (Golinska et al . , 2015) . They are a group of

microorganisms, mainly bacteria and fungi, that colonize the

inter- and intracellular tissues of plants without causing apparent

diseases (Gouda et al., 2016). Endophytic microbes directly enhance

plant growth through acquisition and mobilization of essential

nutrients by fixing biological nitrogen, solubilizing insoluble

phosphate, and producing siderophrores (Santoyo et al., 2016

Cueva-Yesquén et al., 2021). They further stimulate production of

hormones such as indole acetic acid (IAA), gibberellin, cytokinins,

ethylene and abscisic acid (Yan et al., 2018; Ghasemnezhad et al.,

2021). In a study conducted by Khalil et al. (2021), fungal
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endophytes (Penicillium crustosum EP-2, Penicillium chrysogenum

EP-3, and Aspergillus flavus EP-14) isolated from Ephedra

pachyclada leaves demonstrated plant growth promoting

characteristics such as IAA production. Endophytes indirectly

enhance plant growth by protecting plants from biotic and abiotic

stressors. For instance, siderophores produced can enhance plant

adaptability and tolerance to stress conditions caused by diseases,

insects, pests/nematodes while assisting with nutrient acquisition

(Dhuldhaj and Pandya, 2021; Sun et al., 2022).

Endophytes have been proven to increase the biosynthesis of

nitrogen-containing secondary metabolites such as alkaloids by

altering the biochemistry of medicinal plants through nutrient

intake and exchanges (Chadha et al., 2015). It has been postulated

that nitrogen-fixing endophytes contribute greatly into increasing

production of such secondary metabolites by medicinal plants (Tor

et al., 2009). Zhang et al. (2013) investigated the ability of Mycena

sp. to enhance Anoectochilus formosanus production of flavonoid

and kinsenoside in a greenhouse environment. Song et al. (2017)
FIGURE 1

Potentials of endophytes in mitigating the over-reliance impact on medicinal plants.
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also noted that using Bacillus altitudinis KX230132.1 as an elicitor

greatly boost the content of ginsenoside, a bioactive component

found in ginseng.

Improved plant biomass could be associated with improved

production of secondary metabolites. This is premised on the fact

that about 90% of plant dry matter are derived from photosynthetic

carbon fixation, and organic matters build-up by photosynthesis

which serves as the precursors for secondary metabolite production

(Li et al., 2023). Endophytes aid in the accumulation of

photosynthetic components of the plant by enhancing the growth

of medicinal plants, resulting in a high biosynthesis of secondary

metabolites by plants (Gupta and Chaturvedi, 2019; Li et al., 2023).

Moreover, several studies have reported degrees of influence the

environmental and biological stressors as well as developmental

factors have on the timing of flowering in plants (Jagadish et al.,

2016; Kazan and Lyons, 2016). Plants often accelerate the flowering

process as an indication of stress escape strategy (Bernal et al.,

2011), and medicinal plants are not an exception. Synthesis of

bioactive secondary metabolites which is the hallmark of the

medicinal plants are often triggered in reaction to these stress

factors. Interactions between endophytes and the host medicinal

plants are equally believed to trigger flowering processes (Khan A.

L. et al., 2017). The flowering stage of some medicinal plants is

critical to the developmental state with notable impact on the

synthesis of secondary metabolites, and production of secondary

metabolites is expected to be at its peak (Li Y. et al., 2020). Thus,

during this time, harvesting medicinal plants for therapeutic

purposes is recommended, depending on the metabolite

accumulation site and the plant part(s) used for medicinal purposes.
5.2 Endophytes as a shield for medicinal
plants against undesirable
environmental impacts

Production of secondary metabolites by plants is generally low,

about less than 1% of plant dry weight depending on plant’s

physiological and developmental stage (Guerriero et al., 2018).

Unfavourable environmental conditions result in reduced chances

for plant survival (Kliebenstein and Osbourn, 2012). Consequently,

environmental changes and/or climate change induced stress are

the main determinants for medicinal plant secondary metabolite

biosynthesis fluctuations (Verma and Shukla, 2015). In addition,

medicinal plant prevalence differs under different climatic

conditions and their ability to produce certain metabolites is

largely affected by climate variables such as temperature and

rainfall (Das et al., 2016; Li et al., 2023). Understanding the

biological controls of secondary metabolism in relation to

changing climate is essential (Akula and Ravishankar, 2011).

Though medicinal plants may evolve defense mechanisms to

cope with high or low temperatures, such mechanisms are often

insufficient, resulting in unstable production of secondary

metabolites (Chadha et al., 2015; Li T. et al., 2020). For instance,

during extremely low temperature, plants channel their metabolism

energy through the development of cryo-protective compounds

such as sugar alcohols, soluble sugars, and low-molecular
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nitrogenous compounds at the expense of essential secondary

metabolites (Thakur et al., 2019). On the other hand, elevated

temperatures are known to promote the production of some

secondary metabolites while reducing the production of others,

mainly volatile ones, due to volatilization (Gairola et al., 2010).

Furthermore, temperature influences some of the primary

metabolic processes of plants, such as photosynthesis, respiration,

transpiration, and dry matter partitioning, all of which are

prerequisites for secondary metabolism (Nahar et al., 2015). The

adaptation process that medicinal plants go through under various

conditions also causes changes in plant morphology, anatomy and

physiological processes (Li T. et al., 2020). All these have an impact

on the accumulation of secondary metabolites, therefore, depending

on the pathways and response genes that were engaged under

various conditions, different metabolites can be biosynthesized by

medicinal plants (Li T. et al., 2020).

Medicinal plant associated endophytes on the other hand, are

shielded from abrupt changes in the environment (Papik et al.,

2020; Wu et al., 2021). Consequently, it has been hypothesized that

when medicinal plants are exposed to harsh conditions, the

harbouring endophytes are the primary signalling channels that

induce a defensive reaction (Singh J. et al., 2019). Endophytes go

through different biochemical process which leads to the activation

of their defence mechanisms including those of their host plants

(Ogbe et al., 2020). These processes include the synthesis of

antioxidants, phytohormones, and activation of stress-induced

genes, all of which play a part in secondary metabolite synthesis

(Ogbe et al., 2020). In order to trigger the response in plants,

endophytic signal transduction pathway first binds extracellular

signaling molecules and ligands on the cell surface or inside the cell

(Jin et al., 2016). Thus, using activating signal transduction

pathways, endophytic microorganisms influence genes involved in

the generation of secondary metabolites by the plant cells (Li et al.,

2023). Moreover, they help medicinal plants flourish by lowering

cellular oxidative stress brought on by biotic and abiotic stress

factors (Khan A. N. et al., 2017). The ability of medicinal plants to

withstand biotic and abiotic stresses might not be from the plants

themselves but rather from the associated endophytic microbes

(Chadha et al., 2015).

Extreme climatic conditions can also result in disease, insect, and

pathogen infestations, and these biotic stressors have substantial

impact on the quality and quantity of secondary metabolites

produced by medicinal plants. Pathogenic microbes in medicinal

plants induce infection and offer a significant risk to patients (Chadha

et al., 2015; Slama et al., 2021). However, controlling some plant

pathogenic diseases such as vascular wilt is challenging (Yadeta and

Thomma, 2013). On the other hand, the continued use of chemical

pesticides to combat plant pathogens has led to the emergence of

pesticide-resistant pathogenic strains (Hawkins et al., 2019).

Medicinal plants activate reactive oxygen species (ROS) and

reactive nitrogen species (RNS), which are the primary plant

defense responses to combat entry of both beneficial and non-

beneficial microorganisms (Kapoor et al., 2019). However,

endophytes are capable of degrading both the ROS and RNS

through enzymatic actions in order to pave way for the infestation

and colonization of their host plants (Chadha et al., 2015). Plant cell
frontiersin.org

https://doi.org/10.3389/fpls.2023.1248319
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tsipinana et al. 10.3389/fpls.2023.1248319
walls, including those of medicinal plants, get re-reinforced shortly

after endophytic colonization, and this aids in preventing pathogenic

infestation. Endophytes also shield medicinal plants from pathogenic

attack through a phenomenon known as the “barrier effect,” which

occurs due to their widespread and intense replication in the

colonized plants, leaving little to no space for non-beneficial

microorganisms (Mengistu, 2020).

The use of endophytes as a biological control measure has been

recognized to be most effective in controlling plant diseases and pests

as endophytes have the ability to antagonize pathogens (Mohamad

et al., 2018). An in-vitro experiment conducted by Mohamad et al.

(2020) revealed that Bacillus and Enterobacter species isolated from

Thymus vulgaris were able to significantly promote growth of tomato

(Solanum lycopersicum L) under saline conditions (NaCl

supplemented). The strains were also able to antagonise Fusarium

oxysporum. The ability of the tomato to withstand stressful

conditions was attributed to the plant’s enzymatic activity which

was believed to have been initiated by those endophytic strains. In

addition, the ability of those endophytes to assist tomato with

tolerance to stress was due to their ability to produce a variety of

compounds such as nonadecane, tetracosane, cyclohexanecarboxylic

acid, 2-, which are antimicrobials.

Endophytes can also control pathogens through a variety of

mechanisms, including (i) the synthesis of bio-control chemicals

such as siderophore, hydrogen cyanide, and antibacterial

components, (ii) competing for important resources, and (iii)

induction of systemic resistance via activation of stress signaling

hormones like jasmonate and ethylene (Kushwaha et al., 2020;

Slama et al., 2021). This was evident in an experiment conducted by

Karthikeyan et al. (2012) under saline conditions, where

Achromobacter xylosoxidans endophyte was able to enhance

growth, reduced level of ethylene, and increased metabolic

production of antioxidant enzymes by Catharanthus roseus. Yang

et al. (2015) also reported induced systemic resistance by Bacillus

amyloliquefaciens isolated from Ginkgo biloba which inhibits

pepper phytophthora blight. In another study, hydrogen cyanide

producing bacterial endophytes isolated from Panax ginseng

be long ing to Xanthomonadaceae , Paen ibac i l l a c ea e ,

Pseudomonadaceae, Micrococcaceae, and Bacillacea, successfully

controlled plant fungal pathogens, Botrytis cinerea and

Cylindrocarpon destructans (Hong et al., 2018).

Restricting access to iron by microbial pathogens appears to be

a promising strategy for combating infectious diseases in plants

(Mohamad et al., 2018). This is often accomplished through

microbial production of siderophores. Siderophores are small iron

(Fe3+) chelating ligands with less than 10 kDa molecular weight and

are produced by different microorganisms under iron-deficient

conditions (Roskova et al., 2022). The endophytes with high

affinity for iron are excellent siderophore producers because they

scavenge iron from the surroundings, thus making it unavailable for

the pathogens. Hydroxamate is one of the most abundant

siderophore secreted by various species of fungi and bacteria

(Dhuldhaj and Pandya, 2021). Certain extracellular enzymes

produced by the endophytes such as dehydrogenase, b-glucanase,
amylases, gelatinase, cellulases, lipases, pectinase, proteinase, and

chitinases also protect plants from pathogenic attack through
Frontiers in Plant Science 07
microbial cell wall degradation (Kushwaha et al., 2020; Slama

et al., 2021). They further help in strengthening plants and

endophytes cell wall boundaries which ultimately build resistance

against the pathogenic microbes (Fadiji and Babalola, 2020).
5.3 Endophytes reducing uptake of heavy
metal contaminants by the plants

Heavy metal toxicity is one of the major problems affecting the

use of medicinal plants as raw materials. Heavy metals are usually

transmitted from the soil to the plants, affecting the overall health of

the plants and their ability to produce important secondary

metabolites (Street, 2012). Their presence in non-tolerant plants

often lead to a decrease in enzyme activity of the plants which is the

backbone for production of secondary metabolites (Sharma and

Kumar, 2021). Heavy metal toxicity causes plants to accumulate

more ROS (Zheng et al., 2023). Even though ROS are produced as

normal by-products of metabolism, different conditions can result to

excessive production of ROSwhich exceeds the defense mechanisms,

leading to plant oxidative stress and ultimate cell death (Sharma et al.,

2012). Although ROS can result in increased secondary metabolite

production, excessive ROS can have a deleterious impact on

secondary metabolite production through damage to primary

metabolites such as lipids, proteins and nucleic acid compounds,

which are the building blocks for secondary metabolites (Sharma

et al., 2012). Endophytes on the other hand, are known to aid in the

elimination of ROS in plants by scavenging active oxygen systems,

which are typically triggered when plants are stressed (Zheng et al.,

2023). Endophytes limit the uptake of harmful heavymetals by plants

and/or immobilize them through a variety of mechanisms, including

transformation, chelation, solubilization, and precipitation (Singh et

al., 2020; Durand et al., 2021). For instance, they use a mechanism

called biosorption, which includes a number of procedures like ion

exchange, electrostatic contact, precipitation, and redox reaction, to

capture these dangerous heavy metals and absorb them into their cell

walls (Kushwaha and Kashyap, 2021).

Endophytes also protect medicinal plants from heavy metals by

producing volatile organic compounds (VOCs) such as terpenoids

and phenylpropanoids (Slama et al., 2021). Moreover, endophytes

produce a wide range of valuable hydrolytic enzymes which can

sequester various organic and inorganic compounds

(Suryanarayanan et al., 2012; Liu et al., 2021). Several microbes

have been reported for degrading and immobilizing hazardous

heavy metals to less-toxic forms (Kushwaha and Kashyap, 2021;

Priyadarshini et al., 2021). Microbial enzymes have therefore been

demonstrated to have outstanding unique features that many

chemical catalysts might not have. Endophytes help medicinal

plants with improvement of physiological responses and immune

activity (Khan A. N. et al., 2017). Endophytic 1-aminocyclopropane-

1-carboxylic acid deaminase (ACC), for example, aids plant tolerance

under stress condition by counteracting ethylene inhibitory effects

while enhancing plant growth and development (Kushwaha et al.,

2020; Zheng et al., 2023).

Lastly, even though heavy metals can enter through other parts

of the plant, the root is regarded as their main entry point. Fungi
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have been proven to be the most prominent in heavy metal and

other toxic compounds remediation. The hyphae from fungal

microbes help in amelioration of heavy metals through cell wall

thickening and increased surface area, which assist in improved

absorption of those toxic elements to their cell wall (Nandy et al.,

2020; Sharma and Kumar, 2021). Endophytic cell walls also

synthesize polysaccharides such as hydroxyl, carboxyl, and amino

groups, which function as a barrier to metal ions by increasing the

binding sites with positive metal compounds (Zheng et al., 2023).
5.4 Endophytes controlling gene clusters in
the host plants for biosynthesis of novel
active agents

Finding new novel bioactive compounds to treat diverse

ailments is a fundamental goal of all drug discovery initiatives. To

combat newly emerging and old incurable diseases, new bioactive

compounds must be discovered. Despite the strong demand for

natural drugs from medicinal plants, the rate of discovery of novel

metabolites for treatment of diseases and infections is on decline

(Gupta and Chaturvedi, 2019). In the past few years, there has been

high probabilities of extracting already known therapeutic

components with little to no luck in discovering new compounds

for potential new drug discovery from medicinal plants (Li and

Vederas, 2009; Dias et al., 2012). The extraction of new and

sophisticated metabolites is limited when using the traditional

extraction methods only, hence the problems with repeated

rediscovery of the same secondary metabolites predominates

(Roopashree and Naik, 2019). Medicinal plants contain complex

compounds often in relatively small quantities that may be difficult

to extract/isolate and identify, hence their capability may be under-

investigated (Thomford et al., 2018).

Production of novel natural drugs requires development of

innovative multidisciplinary drug discovery methods beyond

traditional techniques (Li and Lou, 2018; Zhang and Elliot, 2019).

For instance, the employment of high-throughput and molecular

models have proven to be effective in the discovery and

identification of bioactive secondary metabolites from both plants

and microbes (Tawfike et al., 2019; Prasanna, 2022). Historically,

identification of secondary metabolites from plants and

microorganisms have been reliant on approaches such as

traditional culture-based methods, biochemical screening

employing GC/LC-MS, HPLC, and NMR (Tiwari and Bae, 2022).

However, it has been demonstrated that integrating low- and high-

throughput genomic approaches has the ability to preserve the

therapeutic novelty of medicinal plants and they can aid in

supplying a direction for the optimization of secondary

metabolite production for higher yields (Suntar, 2020). However,

there is a shortage of studies on the potential use of genome mining

approaches to estimate the pathways for biosynthesis of novel

secondary metabolites by medicinal plants (Rivera-Chávez et al.,

2022). The interaction between endophytes and plants is complex

and sometimes misunderstood, but evaluating, identifying, and

characterizing genes involved in their mutual association can be
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helpful in unravelling the underlying mechanisms between the two

(Isah, 2019).

Plant-endophyte symbiosis is driven by cohabitation and co-

evolution which ultimately leads to a stronger mutualism that

becomes engraved with influence on the expression of certain

traits in the genetic makeup of both partners (Mengistu, 2020).

These endophytes can obtain and transfer certain genes

horizontally with the host plants under specific metabolic

pathways during colonisation (Gohain et al., 2020). After

endophytes colonize their host plant, a number of genes regulate

their behavior, resulting in changes in their genotypic features as

well as that of the plants (Yan et al., 2019). Thus, there is high

likelihood that some of the secondary metabolites extracted from

medicinal plants are due to medicinal plants interaction with

endophytes (David et al., 2015; Wu et al., 2021). Genomic based

approach gives insight on various generic information,

physiological, biological and evolutionary interactive processes of

the plants (Sharma and Shrivastava, 2016). Understanding plants-

endophytes physiological interactions and evolutionary relatedness

can also assist in elucidating the relationship between certain

metabolites and their therapeutic effectiveness (Atanasov et al.,

2015). This can aid in the formulation of targets that focus solely

on the relevant trends of secondary metabolites produced by plants

and their associated endophytes (Li and Lou, 2018).

Comparing genomic traits of closely related endophytes with

different functional roles obtained from the same plant is of most

importance as this can help in determining their distinctive

adaptability and evolutionary trend (Kaul et al., 2016). This can

also help in comprehending different gene clusters that are

responsible for different production of secondary metabolites

(Kaul et al., 2016; Li and Lou, 2018). Metagenomics can as well

aid in the discovery of novel biocatalysts and metabolic pathways by

revealing previously unknown genomes (Bosamia et al., 2020).

Genomic approach would help predicting whether metabolites

produced by plants and microbes are due to novel gene clusters

(Sinha et al., 2019; Atanas et al., 2021).

Different genomic techniques can be used to predict the direct

biosynthetic gene clusters (BGCs) that encode the biosynthesis of

secondary metabolites in microbial genomes (Keller, 2019). The

archetypal cluster is the most significant as it contains the genes that

are responsible for secondary metabolite synthesis (Rivera-Chávez

et al., 2022). Following the identification of critical gene clusters for

secondary metabolite production, it is imperative to discover

limiting pathways for enhancing their biosynthesis, and thereafter

eliminate them while modifying the pathways responsible for the

metabolites of interest (Dutta et al., 2009). This could be through

repetitive gene expression, deletion of unfavourable and

competitive genes, and/or introduction of new genes required for

better bioactive compound biosynthesis (Li and Lou, 2018; Pham

et al., 2019). Deleting a competitive pathway helps in saving useful

cellular resources for better and sufficient production of high-

quality secondary metabolites (Pham et al., 2019; Li T. et al.,

2020). This helps in creating conditions that are conducive for

the gene of interest which is responsible for the production of the

desired metabolite(s) (Venugopalan and Srivastava, 2015).
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Synergism also can improve the possibilities of discovering

novel compounds and boost therapeutic effectiveness of drugs.

The possible identification of synergistic bioactive compounds

under the umbrella of systems biology can usher this generation

into the new era of drug discovery. It may be simple to combine and

grow many endophytes and facilitate their interaction, which

increases the likelihood of synthesising a variety of bioactive

compounds (Sun et al., 2013). With medicinal plants, it may not

be possible to combine two or more plants to produce a new

bioactive compound. Nonetheless, the substances produced by the

individual plants can be combined. Synergistic endophytes can then

be used as biological elicitors for cultivation of medicinal plants in a

controlled environment.
6 Endophytes as an important source
of bioactive compounds

Dependence on medicinal plants for production of significant

bioactive compounds for the development of novel drugs has a few

drawbacks, including variation in secondary metabolites produced

due to seasonal, spatial, and environmental conditions (Singh et al.,

2018; Van Wyk and Prinsloo, 2020). Additionally, some medicinal

plants have long generation time to reach maturity while some are

strictly seasonal and thus unavailable during the off-season (Verma

and Shukla, 2015; Isah, 2019). A considerable quantity of medicinal

plants is required for the production of high yield secondary

metabolites, however, due to rapid changes in climate and other

factors, it is becoming more difficult to have a consistent supply of

medicinal plants all year long. Finding a quick, economical, and

reproducible solution for producing these compounds of

pharmaceutical value is of utmost importance (Asmita and

Sashirekha, 2016; Choi and Shin, 2020).

Novel strategies proposed for production of secondary metabolites

should be more versatile, effective, and capable of promoting

sustainable use of natural resources and as well support economic

growth (Riisgaard et al., 2010; Dzoyem et al., 2013). Endophytes appear

to be a feasible alternative for production of these key bioactive

compounds. Endophytes are not only fast growing and inexhaustible,

but they have also been classified as one of the sustainable natural

resources since they encourage green processes (Choi and Shin, 2020).

Thus, exploring them for different therapeutic properties is crucial. In

addition, large-scale growth of endophytes in a fermenter under control

conditions can result in an inexhaustible supply, which would ensure

steady supply of the secondary metabolites. Furthermore, due to rapid

development of mycelial biomass, production of bioactive compounds

from fungal endophytes offers bigger benefits (Berde et al., 2020; Banyal

et al., 2021).

Endophytes can produce secondary metabolites with various

and distinct structures from that of their host plants, thus,

suggesting a host-independent model of producing metabolites

(Egamberdieva et al., 2017; Caruso et al., 2020). Endophytes have

independent capacity to synthesize cyclic peptides of great

pharmaceutical value (Ludwig-Müller, 2015). For instance,
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(NRPS) and independent NRPS pathways for additional

production of bioactive compounds (Dhuldhaj and Pandya, 2021;

Swayambhu et al., 2021). This has highlighted the potential of

endophytes as a long-term pipeline for novel drug production and

exploration to combat not only infectious diseases but also non-

infectious illnesses like cancer, diabetes, arthritic conditions, and

cardiac issues (Toghueo, 2019). Endophytes-based pharmaceuticals

are attracting attentions due to their structural diversity, multitarget

therapeutic actions and low cost of productions (Alvin et al., 2014).

They are often found to be significantly safe, especially in cancer

treatments, with minimal side effects on normal cells (Banyal et al.,

2021). Substantial efforts have been carried out on the development

of bioactive compounds from endophytic microbes and their

application in the management of different medical conditions

(Tables 1–3).
6.1 Fungal and bacterial endophytes

Endophytic fungi are essential sources of valuable bioactive

compounds linked to most of the commonly used antibiotic and

anticancer drugs, among which are vinblastine, camptothecin,

hypericin, paclitaxel, diosgenin and podophyllotoxin (Kumar

et al., 2014; Gouda et al., 2016). The penicillenols, derived from

Penicillium sp., are cytotoxic to a variety of cell lines. Taxol, derived

from the endophytic fungi Taxomyces andreanae, is the most potent

and successful anticancer medication to date. Clavatol (Torreya

mairei), sordaricin (Fusarium sp.), jesterone (Pestalotiopsis jesteri),

and javanicin (Chloridium sp.) are all known to have potent

antibacterial and antifungal activities against a wide range of

pathogens. Pestacin, derived from Microsporum sp. has very

powerful antioxidant properties (Kumar et al., 2014; Gouda et al.,

2016). Pestalotiopsis neglecta BAB-5510 and Cupressus torulosa are

endophytic fungi considered to be a promising source of phenols,

flavonoids, terpenoids, alkaloids, and tannins (Pimentel-Elardo

et al., 2010). Capsaicin, a bioactive compound prevalent in red

and chilli peppers, is a pain reliever and an anti-cancerous agent

applied in the treatment of human malignancy. Capsaicin is

produced by Alternaria alternata, an endophytic fungus identified

from Capsicum annum (Zhao et al., 2011a).

Moreover, actinomycetes particularly Streptomycessp. sp., have

been identified as a promising source of bioactive metabolites (Zhao

et al., 2011b; Golinska et al., 2015). To date, over 140 genera of

actinomycetes have been identified, but only a small fraction of

them produce the majority of known essential antibiotics

(Pimentel-Elardo et al., 2010). Streptomyces are known to be rich

in many bioactive compounds such as munumbicins (A and B),

naphthomycin (A and K), clethramycin, coronamycin, cedarmycin

(A and B), saadamycin, and kakadumycins. Streptomyces rochei

CH1, an endophytic actinomycete of Cinnamomum sp., showed

significant antibacterial activity against various pathogens like

Aeromonas caviae, Vibrio parahemolyticus and Pseudomonas

aeruginosa (Roy and Banerjee, 2015).
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7 Metabolite yield enhancement
strategies by the endophyte

In general, microorganisms are susceptible to genetic

manipulation for desired performance. Different techniques have

been successfully applied in the attempt to enhance secondary

metabolite production by endophytes, and these include strain

improvement, mutagenesis, co-cultivation, and medium

optimization (Kumar et al., 2014) (Table 4).
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7.1 Strain improvement

The process of strain improvement involves genetically modifying

microbial strains with the aim of enhancing their capabilities for a wide

range of applications. This involves interactive genetic modifications

and fermentation techniques (Barrios-Gonzalez et al., 2003;

Ademakinwa et al., 2017). The process would not only bring about

elevated product yield, but also focus on enhancing and creating new

genetic traits, such as eliminating unwanted co-metabolites, improving
TABLE 1 Anticancer compounds produced by endophytic microorganisms.

Host Plants Endophytes Metabolites produced References

Capsicum annuum L. Alternaria alternata Alkaloid, capsaicin Devari et al. (2014)

Nothapodytes foetida Entrophospora infrequens Camptothecin Puri et al. (2005)

Panax ginseng Burkholderia sp. Saponin: Ginsenoside Rg3 Singh and Dubey (2018)

Taxodium distichum, Taxus
wallichiana

Pestalotiopsis microspora Paclitaxel or Taxol Berde et al. (2020)

Panax ginseng Burkholderia sp. Saponins: Ginsenoside Rg3, Ginsenoside Rg2 Fu et al. (2017)

Zingiber officinale (Ginger) Streptomyces aureofaciens 4-arylcoumarins Taechowisan et al.
(2007)

Cinnamomum cassia Streptomyces cavourensis Vu et al. (2018)

Camptotheca acuminata Trichoderma atroviridae Camptothecin Kumar et al. (2014)

Taxus sp. Fusarium chlamydosporum Kaempferol Chaturvedi et al. (2014)

Mangrove Fusarium sp. (No. DZ27 Beauvericin Tao et al. (2015)

Markhamia platycalyx Aspergillus flocculus 4hydroxymellein, 5hydroxymellein, diorcinol, botryoisocoumarin
A

Tawfike et al. (2019)

Anvillea garcinii Fusarium chlamydosporium Fusarithioamide benzamide derivative Ibrahim et al. (2016)

Miquelia dentata Bedd. (Icacinaceae) Lysinbacillus sp, Bacillus
cereus

Camptothecine Shweta et al. (2013)

Isodon eriocalyx Streptomyces sp. YIM66403 Anthracyclin Li et al. (2015)

Taxus cuspidata Pericona spp. Periconicin A and B Kim et al. (2004)

Mangrove Streptomyces sp. Indolocarbazoles Xu et al. (2014)
TABLE 2 Antifungal compounds from endophytic microorganisms.

Plants Endophytes Metabolites produced References

Moringa oleifera Nigrospora sp. LLGLM003 Mullein, Griseofulvin, 8-dihydroramulosin Zhao et al. (2012)

Fragraea bodenii Pestalotiopsis jesteri Jesterone Li and Strobel (2001)

Camellia sinensis Pestalotiopsis fici Ficipyrone A Liu et al. (2013)

Taxus mairei Aspergillus clavatonanicus Clavatol patulin Zhang et al. (2008)

Senna spectabilis Phomopsis sp. Cytochalasin H Chapla et al. (2014)

Ephedra fasciculata Xylaria sp Sordaricin (17) Chen et al. (2018)

Garcinia dulcis Eutypella scoparia PSU-D44 Scoparasin B Pongcharoen et al. (2006)

Glycyrrhiza uralensis Bacillus atrophaeus,
Bacillus mojavensis

1,2 bezenedicarboxyl acid, Methyl ester, Decanodioic acid, bis(2-ehtylhexyl) ester Mohamad et al. (2018)
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nutrient utilization, and modifying cellular morphology to enhance

oxygen transfer during fermentation or to facilitate downstream

processing (Barrios-Gonzalez et al., 2003). It also offers several

advantages such as modifying product ratios, by-products removal,

product excretion enhancement, increasing tolerance to high product

concentrations, reduction in fermentation time, and high production

of native or foreign products through genetic recombination (Li P.

et al., 2012).
7.2 Mutagenesis

The classical technique of induced mutagenesis has been

successfully applied in strains improvement and increasing

production of microbial metabolites that are of commercial

significance. This approach has contributed significantly to the

progress made in strain improvement (El-Sayed et al., 2019).

Mutagens are chemical compounds such as hydroxylamine,

nitrosoguanidine, methyl methanesulfonate, ethyl methanesulfonate,

nitrosoguanidine, ethyl methyl sulfonate, sodium nitrite and diethyl

sulfate, as well as physical forms of radiation such as ultraviolet (UV)

light or X-rays. These mutagens have the ability to cause permanent

and inheritable changes (mutations) in the microbial genome (Ma

et al., 2011; Khan et al., 2020). When selecting for improved mutants,

there are two approaches: random selection for the desired feature or
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target selection based on specific characteristics that differ from the

previous genotype of interest (Zhang et al., 2018).
7.3 Genetic engineering

In order to enhance secondary metabolites, various genetic

methods are employed in strain improvement. These include

amplification of secondary metabolite gene clusters, cloning of

regulatory genes, inactivation of competing pathways, disruption

or amplification of regulatory genes, manipulation of secretory

mechanisms, and expression of a suitable heterologous proteins.

These are accomplished through application of different techniques

namely; (i) transposition mutagenesis, (ii) target deletions and

duplications by genetic engineering and (iii) genetic recombination

by protoplast fusion (Genilloud, 2018). Recent additions to these

techniques include genomics, transcriptome, proteomics, metabolic

engineering analyses, and whole genome shuffling (Adrio and

Demain, 2006).
7.4 Molecular breeding techniques

Techniques of DNA shuffling and molecular breeding involve in

vitro homologous recombination i.e., mimicking the natural process
TABLE 3 Antibacterial compounds from endophytic microorganisms.

Host plants Endophytes Metabolites produced References

Taxus cuspidata Pericona sp. Periconicin A and B Kim et al. (2004)

Quercus sp. Cytonaema sp. Cytonic acids A and B Guo et al. (2000)

Polygonum senegalense Phomopsis longicolla Dicerandrol A, dicerandrol
B, dicerandrol C

Lim et al. (2010)

Urospermum picroides Ampelomyces sp. Altersolanol A Aly et al. (2008)

Salicornia bigelovii Torr Fusarium tricinctum Enniatin B Zhang et al. (2015)

Ephedra fasciculata Fusarium tricinctum Fusartricin Zhang et al. (2015)

Kennedia nigriscans Streptomyces NRRL 30562 Munumbicins Castillo et al. (2002)
TABLE 4 Examples of successful strain improvement strategies.

Compound Type of strain improvement strategy Original organisms Yield
(folds)

References

6′-deoxy-bleomycin Z UV, mutagenesis and ribosome engineering Streptomyces flavoviridis G-4F12 7.00 Zhu et al. (2018)

Vinblastine gamma irradiation Alternaria alternata 3·98 El-Sayed (2021)

Glycoside digoxin Gamma irradiation Epicoccum nigrum 5.00 El-Sayed et al. (2020)

Taxol UV irradiation, Nitrous acid Ethidium bromide Aspergillus sp. 1.10 Khan et al. (2020)

Paclitaxel UV, gamma irradiation Aspergillus fumigatus, Alternaria tenuissima 1.22
1.24

El-Sayed et al. (2019)

Tanshinone IIA UV, NaNO2 Emericella foeniculicola TR21 1.46 Ma et al. (2011)

Tanshinone IIA Genomic shuffling Emericella foeniculicola 11.07 Zhang et al. (2018)

Lovastatin Genomic shuffling Fusarium sp. ALAA20 11.55 El-Bondkly et al. (2021)
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of recombination (Gunatilaka, 2006). These methods include both

the recombination of DNA fragments and the controlled

introduction of point mutations at a low rate (Bode et al., 2002;

Paranagama et al., 2007). Genome shuffling of similar genes from

different species or strains yields significant improvements, unlike

site-directed mutagenesis which is more expensive and time

consuming (Patten et al., 1997). An updated approach of this

method involves breeding a population with high genetic

variability i.e., DNA family shuffling. By starting with four

cephalosporinase genes, this method led to a significant increase

in cephalosporinase activity ranging from 240 to 540 folds (Raimi

and Adeleke, 2021). In contrast, when each of these genes was

shuffled independently, only an eight-fold improvement was

achieved. Whole genome shuffling is a new approach for strain

improvement that combines the benefit of multi-parental crossover

enabled by DNA shuffling with the recombination of whole

genomes. According to Halpin et al. (2001), this technique

increased the production of tylosin in Streptomyces fradiae.
7.5 Co-culturing

Microbial co-cultivation, also called mixed fermentation, refers

to the process of cultivating two or more microorganisms in a single

confined environment. When endophytes are isolated and cultured

in axenic monocultures to produce the desired product, repeated

culturing may lead to the loss of access to the specific

microenvironment of the host plant to which the endophyte has
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adapted. This loss of access may result in the silencing of the

endophyte’s secondary metabolite genes, and standard culture

conditions may not be sufficient to activate the expression of

these genes (Somjaipeng et al., 2016; Venugopalan et al., 2016).

Moreover, typical cultural methods might not be sufficient to

activate the hidden biosynthetic gene clusters observed in

endophytes, which could lead to either redundancy in terms of

identifying new metabolites or a decrease in the amount of

generated metabolites. Based on whole genome sequencing

techniques, the quantity of genes encoding biosynthetic enzymes

in various fungi and bacteria surpasses the number of secondary

metabolites that are currently recognized in these microorganisms.

Co-culturing is regarded as a highly effective ecological method

that involves replicating the natural environment of the host in a

laboratory setting, which includes both competition and coexistence

with other endophytic communities. As shown in Table 5, this

approach can have a positive effect on the production of particular

metabolites. By fermenting a mixture of microbes, it is possible to

stimulate the expression of silent biosynthetic genes that may result

in the creation of novel secondary metabolites, often through the

use of signaling molecules such as auto-regulators, quorum-sensing

molecules and siderophores (Bertrand et al., 2014; Marmann et al.,

2014). A different interpretation proposes that this phenomenon

may be connected to the creation of enzymes that stimulate the

production of the metabolite precursor generated by the producing

strain leading to the active metabolites (Abdelmohsen et al., 2015).

Alternatively, the inducing strain might prompt epigenetic changes

in the producing strain. To fully comprehend these interactions
TABLE 5 Effect of co-cultivation strategy on product yield and discovery of novel metabolites from endophytes.

Products Original species Co-culturing strain Yield
enhancement

References

Luteoride D pseurotin G 11-O-methylpseurotin Aspergillus fumigatus
MR2012

Streptomyces leeuwenhoekii C34
& C58

New metabolites Wakefield et al. (2017)

Taxol Paraconiothyrium
SSM001

Alternaria alternate 3 fold Soliman and Raizada
(2013)

Taxol Fusarium Taxus suspension cells 38 fold Li et al. (2009)

Enniatins A1 and B1 Fusarium tricinctum Bacillus subtilis 168 trpC2 78 fold Wätjen et al. (2009)

Enniatins A1, B1, and B (cyclic depsipeptides) Bacillus subtilis 168 trpC2 Fusarium tricinctum 78 fold Ola et al. (2013)

Taxol Taxus chinensis var.
Taxus cuspidate

Fusarium mairei 38 fold Li et al. (2009)

Cercosporin Cercospora sp Bacillus velezensis B04
Lysinibacillus sp. B15

4.89 fold Zhou et al. (2021)

Hypocrellin A Shiraia sp P. fulva, P. putida, and P.
parafulva

3.25 fold Ma et al. (2019)

Camptothecine Colletotrichum fructicola
UK1

Corynespora cassiicola SUK2 4 fold Bhalkar et al. (2016)

Bisvertinol, Koninginin A, Mevastatin, 1-
naphthylacetic acid

Trichoderma atroviride
SG3403

Bacillus subtilis 22 Increased 20

metabolites
Tang et al. (2020)

Citrinin Aspergillus sydowii EN-
534

Penicillium citrinum EN-535 Novel ten citrinin
analogues

Wang et al. (2022)

Chrysophaein, resveratrol, chrysophanol, emodin,
physcion

Fusarium sp. Aspergillus sp. 3.85-fold Ding et al. (2018)
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between endophytes, as well as between endophytes and host plants,

a thorough knowledge of their ecological relationships is necessary

(Wakefield et al., 2017).
7.6 Medium optimization

The initial phase in carrying out a substantial metabolite

synthesis is medium optimization, which remains a highly

scrutinized process and has several challenges associated with it.

In the past, traditional methods were used for media optimization

which were costly, time-consuming, and involved numerous

experimental procedures with less accuracy. However, with the

advent of sophisticated mathematical and statistical techniques,

such as artificial neural networks and genetic algorithms, media

optimization has become more dynamic, productive, cost-effective,

and dependable in yielding results (Franco-Lara et al., 2006). The

production of Zofimarin, a potent antimicrobial agent derived from

Xylaria sp. Acra L38, was increased by 8 times through the

optimization of carbon and nitrogen sources by utilizing

orthogonal array and Plackett Burman designs (Chaichanan et al.,

2014). Similarly, in the case of taxol, a renowned anticancer

bioactive substance obtained from Fusarium mairei UH23, the

yield was increased by 10.2% through optimization of carbon and
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nitrogen sources and the fermentation period, making use of single

factor experiment (Wen-yi, 2008).

Camptothecin, which is a prominent anticancer agent of the

21st century, is produced by Trichoderma atroviride (Egbuna et al.,

2020). Through the use of the single factor method, by optimizing

the medium composition, fermentation time (including elicitor and

adsorbent addition), the production of camptothecin was increased

by 50 to 75 times (Pu et al., 2013). Optimisation of medium

parameters has been proven to enhance production of secondary

metabolites by microorganisms (Table 6). For instance, modifying

the carbon and nitrogen sources, and trace elements through the use

of factorial design and RSM, the yield of exopolysaccharide (EPS)

from Berkleasmium sp. Dzf12 was also improved by 6.29 times (Li J.

et al., 2012).
7.7 Limitations of secondary metabolites
production by the endophytes

It is a well-established concept that microbial metabolisms are

tightly connected to the selection of culture media and other

conditional parameters (Kusari et al., 2012). Considering the scale

of complexity in the endophyte-endophyte and endophyte-plants

interactions in their ecological niche, choice of appropriate growth
TABLE 6 Effect of changed parameters on yield of metabolites of different microorganisms.

Product Producing Strain Optimized parameters Yield
(folds)

Reference

Vitexin Dichotomopilus funicola
Y3

Medium composition 4·59 Gu et al. (2018)

Epothilone B Aspergillus fumigatus Sucrose, tryptone and incubation time 2.8 - 3.0 El-Sayed (2021)

Palmarumycin
C13

Berkleasmium sp. Dzf12 Glucose, peptone and yeast extract conc opt 2.50 Zhao et al. (2013)

Exo-
polysaccharide

Berkleasmium sp. Dzf12 C and N sources 6.29 Li J. et al., (2012)

Beauvericin Fusarium redolens Dzf2 C andN sources, initial pH 1.27 Tao et al. (2015)

Zofimarin Xylaria sp. Acra L38 C and N sources, temperature, fermentation period 8.00 Chaichanan et al. (2014)

Antibiotics Streptosporangium Aeration (gas flow), agitation system and stirrer speed 20.00 Pfefferle et al. (2000)

Taxol Nodulisporium sylviforme pH, temperature, agitation rate, 1.15 Zhao et al. (2011b)

Lovastatin Aspergillus terreus B-group vitamins, MgSO4 and sodium acetate. 42.00 Ravuri and Shivakumar,
(2020a)

Lovastatin Meyerozyma guilliermondii Zinc sulphate, histidi, tween-8 and B-group vitamins 11.40 Ravuri and Shivakumar,
(2020b)

Palmarumycin
C13

Berkleasmium sp. Dzf12 Metal ions 6.00 Mou et al. (2013)

Camptothecin Fusarium oxysporum
NFX06

Glucose, peptone and MgSO4 1.02 Musavi et al. (2015)

Camptothecin Fusarium solani Initial pH, temperature and agitation speed 152.00 Venugopalan et al. (2016)

Camptothecin Trichoderma atroviride
LY357

Medium composition, fermentation time, pH, temperature,
agitation rate

50 - 75 Pu et al. (2013)

Vincamine XM-J2 Medium composition and pH 1.40 Yin and Sun (2011)
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support media and varying morphological and physiological

responses of the endophytic microbes in different culture media

remain a major pitfall. For instance, Paranagama et al. (2007)

demonstrated a significant switch in the secondary metabolites

produced by endophytic Paraphaeosphaeria quadriseptata after

the tap water used in the preparation of the growth media was

substituted with distilled water. The production of radicicol instead

of chaetochromin A was also reported when the agar medium was

replaced with broth during in vitro laboratory culture of the

Chaetomium chiversii. Inefficiency of endophytes in the

biosynthesis of certain molecules of interest when grown in

different culture media in laboratories creates a wide gap in the

understanding of full potential of the endophyte biosynthetic

capability (Toghueo et al., 2020).

In addition, when endophytes are isolated from respective host

plants to be screened for their biosynthetic active metabolite

capabilities, there might be substantial loss of great potentials which

were built on inherent ecological chemical interactions while

functioning within their niche. Most isolated endophytes are often

discarded as incompetent endophytes after in vitro screening based on

the observed potential as individual microbe. This results in losing out

on whole lots of desired important metabolites which can only be

synthesized optimally in synergy with endophytic community while

interacting with the host plant tissues (Kusari et al., 2012). Moreover,

due to undiscovered genes or unknown enzyme pathways, endophytes

heterologous gene expression makes it even more difficult to precisely

link secondary metabolite biosynthetic pathways with specific

enzymatic activities (Medema et al., 2021). Understanding the full

potential of endophytes in biosynthesis of secondarymetabolites could

be further hindered by linear gene functions, gene co-expression, and

gene duplication as well as various kinetics and characteristics of

enzymes involved (Isah et al., 2018). As much as omics techniques

like transcriptomics, metabolomics, and proteomic analyses are helpful

in revealing the secondary metabolite-producing and/or non-

metabolites producing microbes, they are not without limitations

(Paz et al., 2017). It is still a difficult task to deeply comprehend the

relationship between proteomics and metabolomics patterns in an

endophyte (Isah et al., 2018).
7.8 Prospects of the endophytes-medicinal
plants secondary metabolite production

The major limiting factors in the supply of medicinal plants for

drug discovery include conservation regulatory measures, off-

season periods and environmental variations, pathogens attack,

heavy metal contamination, and low production of secondary

metabolites. Hence, a deep understanding of how endophytes

enhance and regulate secondary metabolite production by the

host plants is vital to the desired up-scaling of therapeutic values

of medicinal plants, because endophytes are the primary drivers of

the host plant resistance to abiotic and biotic stress. The interaction

between the two symbiotic partners is informed by very strong

synergy rooted from their genetic makeup (Mengistu, 2020).

Understanding the balance between plant defense and microbial

virulence may also offer better outcomes in unlocking the full potential
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of medicinal plants and endophytes for secondary metabolite

production. Investigating possibility of chemical elicitors influence

on the full capacity of endophytes in biosynthesis of secondary

metabolite appears to be a viable solution. Chemical elicitors, for

instance, could induce epigenetic changes in endophytes, and thereby

activatemost silent genes (Pacheco-Tapia et al., 2022). Xue et al. (2023)

have also mentioned that the use of small molecular weight

compounds such as proteasome and histone deacetylase could be

useful in rectifying limitations regarding inadequate production of

secondary metabolites by endophytes.

Eliciting increased bioactive secondary metabolite production in

medicinal plants by the endophytes has been demonstrated to be an

effective approach. Combination of endophytic genes that encode a

specific biosynthetic pathway for a secondary metabolite via hybrid

pathways could also be effective in overcoming gene-based secondary

metabolite constraints. For example, the synthesis of terpenoid

secondary metabolites, which have anti-cancer properties, from

actinomycetes bacteria was successfully increased with a

biosynthetic hybrid isoprenoids (Gallagher et al., 2010). Lastly,

chemo-taxonomic information and molecular phylogenetic data

can also be used to better understand the relationship between

certain metabolites and their therapeutic effectiveness (Atanasov

et al., 2015). This would aid the formulation of particular targets

that focus solely on the relevant trends of secondary metabolites

produced by plants and their associatedmicrobes (Li and Lou, 2018).
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