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Soybean [Glycine max (Linn.) Merr] is a source of plant-based proteins and an

essential oilseed crop and industrial raw material. The increase in the demand for

soybeans due to societal changes has coincided with the increase in the

breeding of soybean varieties with enhanced traits. Earlier gene editing

technologies involved zinc finger nucleases and transcription activator-like

effector nucleases, but the third-generation gene editing technology uses

clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-

associated protein 9 (Cas9). The rapid development of CRISPR/Cas9

technology has made it one of the most effective, straightforward, affordable,

and user-friendly technologies for targeted gene editing. This review

summarizes the application of CRISPR/Cas9 technology in soybean molecular

breeding. More specifically, it provides an overview of the genes that have been

targeted, the type of editing that occurs, the mechanism of action, and the

efficiency of gene editing. Furthermore, suggestions for enhancing and

accelerating the molecular breeding of novel soybean varieties with ideal traits

(e.g., high yield, high quality, and durable disease resistance) are included.

KEYWORDS
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1 Introduction

Soybean is a significant source of vegetable proteins for humans and an important

oilseed crop, making it a commercially valuable plant (Zhang A, et al., 2023). More than

90% of the soybean plants cultivated in the three main soybean-producing countries (USA,

Brazil, and Argentina) are genetically modified varieties generated using gene editing

technology (Fang et al., 2023). In terms of sustainable food production, the demand for

soybeans has continued to increase because of the scarcity of arable land. In the field of
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molecular breeding, clustered regularly interspaced short

palindromic repeats (CRISPR)/CRISPR-associated protein 9

(Cas9) has emerged as a commonly used third-generation gene

editing technology (Nakamori, 2023). Thus, many new and

desirable soybean traits have been developed using gene editing

technology, which is currently a hot topic in scientific research

(Osakabe and Osakabe, 2017; Chen et al., 2022; Zhou et al., 2023a).

In recent years, CRISPR/Cas9 gene editing technology has been

used by plant molecular breeders to improve various plant traits (Ma

et al., 2016; Zhang et al., 2017; Rao et al., 2022). Because it can simply,

effectively, and precisely edit target genes responsible for specific

characteristics, CRISPR/Cas9 has replaced previously used gene

editing techniques (Zheng et al., 2021; Impens et al., 2022; Liu H.

et al., 2022). Several crop traits, including yield, quality, stress tolerance,

disease resistance, and herbicide resistance, can be improved using

CRISPR/Cas9 systems. This can lead to the development of novel

germplasm with superior traits as well as significant advancements in

plant molecular breeding (Yin et al., 2017; Hussain et al., 2018; Wada

et al., 2020; Gan and Ling, 2022; Qi et al., 2023).

The limitations of early genome editing methods included the

inability to explore the relationships between several related genes

(Li et al., 2013; Nekrasov et al., 2013; Shan et al., 2013). These

previous methods were mostly employed to edit individual genes.

Because soybean is a paleotetraploid, it has many homologous and

redundant genes, which makes the functional characterization of

soybean genes challenging (Tran and Mochida, 2010; Du et al.,

2023). The CRISPR/Cas9 system has recently been used to edit

multiple genes in the soybean genome. This has considerably

decreased the effects of redundant genes on the efficient editing of

specific genes for breeding soybean varieties with desirable traits

(Bao et al., 2020; Xu H. et al., 2020; Baek et al., 2022; Guan et al.,

2022; Rasheed et al., 2022a).
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This review describes the recent improvements in soybean traits

via the application of the CRISPR/Cas9 gene editing technology. It

also presents information regarding the target genes and their

mechanism of action, while providing a brief overview of

transformation efficiency and gene editing efficiency.

Furthermore, suggestions for future CRISPR/Cas9 development

and use in soybean molecular breeding programs are included.
2 Application of CRISPR/Cas9 gene
editing technology in soybean
molecular breeding

There has recently been an increase in the use of CRISPR/Cas9

to edit genes in soybean, corn, wheat, rice, cotton, and other crops

(Figure 1, Table 1). The creation of new soybean germplasm with

many excellent traits using various transformation methods (e.g.,

Agrobacterium-mediated transformation) has laid the foundation

for further improving CRISPR/Cas9 gene editing technology for

soybean molecular breeding (Figure 2).
2.1 Enhancement of soybean resistance to
abiotic stresses

During different soybean developmental stages, many genetic

and biochemical processes control how soybean perceives and

responds to abiotic stresses, including salinity and drought. One

of the primary objectives of molecular breeding research is

improving stress tolerance (Deshmukh et al., 2014; Amoanimaa-

Dede et al., 2022; Cadavid et al., 2023). Osmotic stress in plant cells

is typically caused by abiotic factors (e.g., drought or excessive
FIGURE 1

Utility of CRISPR/Cas9 for editing soybean functional genes. The CRISPR/Cas9 gene editing technology has recently been used to modify soybean
genes affecting the oil content, photoperiodic flowering, seed coat color, seed size, plant height, and nodulation.
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TABLE 1 Applications of CRISPR/Cas9 in five major agricultural crops.

Research significance Reference

Creation of high oleic acid soybeans
(Zhou et al.,

2023b)

Creation of blast-resistant soybean germplasm
(Liu T. F.
et al., 2023)

Verify that the gene is a multifunctional gene
(Kong et al.,

2023)

Creation of high oleic acid soybean germplasm
(Li et al.,
2023b)

Creation of heat-resistant soybean varieties
(Ding et al.,

2023)

Improving the edible quality of hybrid rice
(Tian et al.,

2023)

Creation of herbicide-resistant rice
(Wu et al.,

2023)

tion of parasitic nematode resistant rice germplasm
(Huang et al.,

2023)

Creation of low cadmium rice germplasm
(Chen H. M.,
et al., 2023)

n of purple sheath deficient phenotype rice germplasm
(Chin et al.,

2016)

ion of double haploid germplasm resources of maize
(Rangari et al.,

2023)

reation of cold-stress tolerant maize germplasm
(Li et al.,
2023a)

ion of southern leaf blight resistant maize germplasm
(Chen C.,
et al., 2023)

(Continued)

Y
ao

e
t
al.

10
.3
3
8
9
/fp

ls.2
0
2
3
.12

4
770

7

Fro
n
tie

rs
in

P
lan

t
Scie

n
ce

fro
n
tie

rsin
.o
rg

0
3

Specie Gene Name Gene function
Gene
editing
method

Edit
Type

Editing
efficiency

Transformation
method

Soybean

GmFAD2 Soybean oleic acid content Single target
Deletion
And

Insertion
40%-85%

Agrobacterium-
mediated method

GmTAP1
Regulation of soybean resistance to

soybean blast
Single target

Deletion
And

Insertion
Around 50%

Agrobacterium-
mediated method

GmVPS8a Regulation of soybean phenotype Single target Deletion 81.25%
Agrobacterium-
mediated method

GmPDCT Regulation of soybean oil synthesis Dual Target
Deletion
And

Insertion
46.7%

Agrobacterium-
mediated method

GmSPL2b
Regulation of heat tolerance in

soybean during flowering
Dual Target Deletion –

Agrobacterium-
mediated method

Rice

Wx/OsBADH9
Reduced straight-chain starch
content and improved aroma

Dual Target Deletion Around 55%
Agrobacterium-
mediated method

OsHPPD Herbicide resistance Single target
Deletion
And

Insertion
Around 44%

Agrobacterium-
mediated method

OsHPP04 Anti-parasitic nematode Dual Target
Deletion
And

Insertion
Around 30%

Agrobacterium-
mediated method

Cre

OsLCD
Reduction of cadmium

accumulation in rice seeds
Dual Target

Deletion
And

Insertion
–

Agrobacterium-
mediated method

OsC1
Regulation of the phenotype of

rice purple leaf sheath
Single target Deletion –

Agrobacterium-
mediated method

Creatio

Maize

ZmPLA
Induced haploid germplasm in

maize
Triple target

Deletion
and

Replace
1.04%

Gene gun
transformation

method
Crea

ZmG6PDH1
Regulation of cold stress tolerance

in maize
Dual Target Deletion 63%-75%

Agrobacterium-
mediated method

ZmChSK1
Regulation of southern leaf blight

susceptibility in corn
Dual Target

Deletion
And

Insertion
13.1%

Agrobacterium-
mediated method

Crea

ZmbHLH121 Dual Target –
a

t

C

t
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TABLE 1 Continued

Research significance Reference

reation of maize germplasm for elimination of cortical aerial
traits in the root system

(Schneider
et al., 2023)

Creation of maize germplasm with male sterile traits
(Niu et al.,

2023)

erification that the regulation of tiller and spikelet formation
in wheat has some similar molecular mechanisms

(Sun et al.,
2023)

Creation of male sterile wheat lines
(Zhang R. Z.,
et al., 2023)

Creation of wheat germplasm with disease resistance
(Karmacharya
et al., 2023)

Confirmation that this gene regulates wheat spike structure
and grain morphological characteristics

(Errum et al.,
2023)

Creation of high quality edible wheat germplasm
(Liu et al.,
2023)

Creation of male sterile cotton germplasm with necrosis-like
black spots on anthers

(Zhang J.,
et al., 2023)

Achieving multiple gene editing in polyploid crops
(Chen et al.,

2021b)

Validation of the gene function
(Zhu et al.,

2018)

Creation of high oleic acid cotton germplasm
(Chen et al.,

2021b)

Creation of male sterile cotton germplasm
(Zhang et al.,

2021)
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Specie Gene Name Gene function
Gene
editing
method

Edit
Type

Editing
efficiency

Transformation
method

Regulation of cortical gas
formation in maize roots

Deletion
And

Insertion

Agrobacterium-
mediated method

C

ZmCals12 Gene encoding callose synthase Dual Target
Deletion
And

Insertion
–

Agrobacterium-
mediated method

Wheat

TaTFL1-5
Regulation of flowering time and
inflorescence structure in rice

Single、Dual、
Triple target

Deletion
And

Insertion
Around 40%

Agrobacterium-
mediated method

V

TaDCL4、TaDCL5、
TaRDR6

Regulation of male sterility in
wheat

Single target
Deletion
And

Insertion
70%-75%

Agrobacterium-
mediated method

TaHRC、Tsn9
Regulation of disease resistance in

wheat
Dual Target

Deletion
And

Insertion
33%

Agrobacterium-
mediated method

TaPpd Regulation of wheat flowering time Dual Target
Deletion
And

Insertion
2%

Agrobacterium-
mediated method

TraesFLD1D01G005600、
TraesFLD1B01G010600

Regulating the quality of wheat
consumption

Single target
Deletion
And

Insertion
–

Agrobacterium-
mediated method

Cotton

GhEMS1
Regulation of male sterility traits

in cotton
Dual Target

Deletion
And

Insertion
3%

Agrobacterium-
mediated method

GhCLA1
Regulation of Cotton Whitening

Phenotype
Dual Target

Deletion
And

Insertion
66.7-100%

Agrobacterium-
mediated method

GhALARP Encodes an alanine-rich protein Single target
Deletion
And

Insertion
71.4-100%

Agrobacterium-
mediated method

GhFAD2
Regulation of lipid synthesis

function
Dual Target

Deletion
And

Insertion

68.42%-
73.68%

Agrobacterium-
mediated method

GhGPAT12/25
Regulation of anther cuticle and

pollen assembly
Dual Target

Deletion
And

Insertion
–

Agrobacterium-
mediated method
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salinity). Analyses of the sequences of the related genes revealed the

regulatory effects of various plant cellular components, such as

sensors, receptors, phytohormones, transcription factors, kinases,

phosphatases, and microRNAs, on abiotic stress response-related

pathways (Ramesh et al., 2019; Mangena, 2020; Staniak et al., 2023).

Water deficiency substantially restricts soybean growth and

development, which can decrease the soybean yield by up to 40%

(Khan, 2018). Thus, there is a critical need for exploring the

mechanism underlying soybean drought resistance and generating

new drought-resistant soybean germplasm (Ramlal et al., 2022). By

deleting miR398c in soybean, Zhou et al. (2020) increased the

expression of GmCSD1a/b, GmCSD2a/b/c, and GmCCS (relative to

the corresponding levels in over-expression strains), thereby

increasing the capacity to scavenge O2− (Zhou et al., 2020). In

2021, Xiao et al. identified 112 GmPLA family genes in the soybean

genome and used CRISPR/Cas9 technology to knock out two

homologous genes (GmpPLA-II epsilon and zeta). Knocking out

one or both genes affected the root response to phosphorus

deficiency, with some mutant lines exhibiting increased resistance

to flooding and drought conditions (compared with the control)

(Xiao et al., 2021). Additionally, in 2021, Yu et al. reported that the

GmNF-YC14 deletion mutant created using CRISPR/Cas9

technology is more susceptible to drought stress than wild-type
Frontiers in Plant Science 05
soybean, implying GmNF-YC14 may be useful for increasing

soybean drought tolerance (Yu et al., 2021). By comparing the

agronomic features of soybean plants over-expressing sHSP26 with

those of soybean plants in which sHSP26 had been edited, Liu S. Y.,

et al. (2022) revealed that sHSP26 may considerably increase

soybean drought tolerance and yield (Liu S. Y., et al., 2022). In

2022, Yang et al. edited the soybean transcription factor gene

GmNAC12, which decreased the survival of the transgenic plants

exposed to drought stress by at least 12%. They concluded that

GmNAC12 is a key gene that positively regulates soybean tolerance

to drought conditions (Yang C.F., et al., 2022).

Salinity can severely decrease the seed yield and quality of

soybean, which is a salt-sensitive crop species (Phang et al., 2008;

Cai et al., 2022; Feng et al., 2023). In addition to accelerating the

development of salt-tolerant soybean varieties to increase grain

yield, research on salt stress tolerance can also optimize the use of

saline farmland (Chen et al., 2018; Jin et al., 2021). In 2021, Niu

et al. clarified the effects of knocking down and over-expressing

lncRNA77580 on the expression of nearby protein-coding genes

linked to the soybean response to salt stress. Additionally, increases

in the length of the DNA fragment deleted from lncRNA77580 via

the application of CRISPR/Cas9 technology increased the changes

in the expression of lncRNA77580 and nearby genes (Niu et al.,
FIGURE 2

General soybean genetic transformation process. The following steps are generally included in the genetic transformation of soybean: sprouting,
cotyledon treatment, infestation, induction of healing tissue, indeterminate shoot induction, elongation, and rooting. A schematic diagram is
provided to show how the CRISPR/Cas9 system cleaves the target genomic segment.
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2021). By simultaneously targeting six GmAITR genes using a

CRISPR/Cas9 system, Wang et al. (2021) produced a Cas9-free

GmAITR3 and GmAITR6 double mutant and a GmAITR2

GmAITR3 GmAITR4 GmAITR5 GmAITR6 quintuple mutant.

They determined that salt tolerance was more pronounced in the

higher-order mutants, suggesting that mutating GmAITR genes can

enhance soybean salt tolerance (Wang et al., 2021). Zhang M.H.

et al. (2022) produced three soybean mutants in which GmSOS1was

edited and observed that Na+ accumulated significantly more in the

mutants than in the control. Accordingly, this gene is essential for

soybean salt tolerance because it helps maintain Na+ homeostasis

(Zhang M.H., et al., 2022).

The adaptation of soybean to severe drought and salt stresses

involves the activation of overlapping pathways at the

morphological, physiological, and molecular levels. Drought

tolerance and salt tolerance are polygenic traits (Chen et al., 2018;

Kofsky et al., 2018; Mammadov et al., 2018). Additionally, the

perception of stress and its effects on soybean growth or

development are similar among the abiotic stress factors. In an

earlier study by Du et al. (2018), soybean plants in which the

transcription factor gene GmMYB118 was silenced were more

susceptible to drought and saline conditions than soybean plants

over-expressing GmMYB118. Moreover, the decreased production

of minor heat shock proteins increased the resistance of plants to

drought, cold, and salt stresses (Du et al., 2018). However, when

Zhang M.H. et al. (2022) knocked out GmHsps_p23, which encodes

a minor heat shock protein in soybean, the transgenic plants were

highly susceptible to salt and drought conditions. Future research

will need to focus on the use of several gene editors to

simultaneously target and regulate the expression of functional

genes mediating drought and salinity tolerance to produce novel

soybean genotypes with superior traits (Zhang Y.Z., et al., 2022).
2.2 Enhance disease and insect resistance
in soybean

Tobacco ringspot virus, soybean dwarf virus, soybean vein

necrosis virus, soybean mosaic virus (SMV), bean pod mottle

virus, and alfalfa mosaic virus are only a few of the viruses that

can infect soybean (Liu et al., 2016; Widyasari et al., 2020; Lin et al.,

2022). Multiple viruses can simultaneously infect soybean plants,

causing more harm than an infection by a single virus. Hence, the

use of gene editing tools to target genes that control soybean disease

resistance and improve disease resistance-related traits has become

a major objective in soybean molecular breeding programs (Chang

et al., 2016; Chandra et al., 2022; Zhao et al., 2023).

Several non-homologous end-joining and homology directed

repair-mediated gene replacement mutants were produced by Fang

et al. (2015), who targeted the soybean blast fungal pathogenicity gene

Avr4/6. These mutants were more resistant to diseases caused by

oomycetes than the controls (Fang and Tyler, 2016). Ochola et al.

(2020) edited the usual effector genes of the soybean root pathogen

Phytophthora sojae. They observed that disease resistance was

affected by the Avr gene expression level in soybean (Ochola et al.,

2020). In 2020, Ma et al. confirmed that GmLMM2 deficiencies
Frontiers in Plant Science 06
increased the resistance to P. sojae by increasing tetrapyrrole

biosynthesis, but decreased the chlorophyll content by disrupting

tetrapyrrole biosynthesis. The elimination of GmLMM2 expression

resulted in the appearance of necrotic regions in the growing leaves of

the CRISPR/Cas9-edited mutants (Ma et al., 2020). Zhang P.P, et al.

(2020) targeted GmF3H1, GmF3H2, and GmFNSII-1 in soybean

plants (including the hairy roots) using a CRISPR/Cas9-mediated

multiple gene editing system. They detected a significant increase in

the isoflavone content and a significant decrease in the SMV coat

protein content (approximately 33% decrease) in the mutants,

indicating that the increased isoflavone content enhanced the leaf

resistance to SMV (Zhang P.P., et al., 2020). Three crucial genes in the

soybean Rsc4 gene family (Rsc4-1, Rsc4-2, and Rsc4-3) were modified

by CRISPR/Cas9 in 2021 to alter soybean resistance to SMV (Yin

et al., 2021). To investigate the effector gene Avr1b-1 in the soybean

pathogen Blastomyces in terms of its function as well as the

underlying mechanism. Gu et al. (2021) created target locus-

specific knockout and knock-in mutants. All selected knockout

mutants were virulent on plants expressing Rps1b, whereas the

infection of plants lacking Rps1b was unaffected. When a sgRNA-

resistant variant of Avr1b-1 was re-introduced into the Avr1b-1 locus

of the mutants in which Avr1b was knocked out, the resulting knock-

in transformants expressing Avr1b-1 were unable to infect soybean

plants carrying Rps1b (Gu et al., 2021). Compared with the RNAi and

over-expression strains, the soybean plants in which GmDRR1 was

knocked down (in 2022) were considerably less resistant to

Blastomyces infections (Yu et al., 2022). By altering the coding

region of the soybean transcription factor gene GmTCP19L, Fan

et al. (2022) produced a mutant with a 2 bp deletion. This mutant

soybean germplasm resource exhibited increased susceptibility to

blast molds (Fan et al., 2022).

Plants that are resistant to Rps gene products can perceive

certain pathogen effectors encoded by Avr genes. By deleting

Avr45a, Arsenault-Labrecque et al. (2022) produced novel

soybean plants resistant to Rps8 (Arsenault-Labrecque et al.,

2022). In 2022, Zhang et al. identified Glyma.07g110300

(LOC100775351) as a quantitative trait locus (QTL)-M marker

gene encoding the UDP-glycosyltransferase (UGT) primarily

responsible for soybean resistance to leaf-chewing insects. Using a

CRISPR/Cas9 system, they enhanced the resistance of soybean to

Helicoverpa armigera and Spodoptera litura via the following two

mutation types: large fragment deletion and single base insertion.

Zhang Y.X., et al. (2022) confirmed that GmUGT confers resistance

to leaf-chewing insects by changing the flavonoid content and the

expression of genes related to flavonoid biosynthesis and defense

(Zhang Y.X., et al., 2022). By editing the soybean 14-3-3 gene

(Glyma05g29080) via large fragment insertions and deletions and

producing transgenic plants with increased susceptibility to hard

tick infestations and decreased nodulation, Zhang Y.F., et al. (2023)

showed Glyma05g29080 contributes to nodulation and defense

responses (Zhang Y.F., et al., 2023). Using a CRISPR/Cas9 gene

editing method, Liu et al. (2023b) silenced GmTAP1 in soybean,

which resulted in increased resistance to P. sojae strains P231, P233,

and P234. An analysis of reactive oxygen species revealed that a

loss-of-function mutation to GmTAP1 does not substantially alter

plant basal immunity (Liu T.F., et al., 2023).
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The soybean cyst nematode (SCN) is responsible for the

soybean disease associated with the largest economic losses (Bent,

2022). By altering two functional genes (Glyma.12G194800 and

Glyma.16G154200) in the syntaxin family of SCN resistance genes,

Dong et al. (2020) produced SCN-resistant soybean cultivars (Dong

et al., 2020). In 2021, Butler et al. demonstrated that

Glyma.15G191200 of cqSCN-006, which encodes gamma-SNAP,

influences SCN resistance. Additionally, using CRISPR/Cas9 gene

editing technology to disrupt the cqSCN-006 allele decreased the

SCN resistance of the transgenic roots (Butler et al., 2021). In 2022,

Zhang et al. mutated Glyma.07g110300 by introducing a CRISPR/

Cas9 expression vector into the Tianlong 1 soybean variety to

increase the resistance to S. litura and H. armigera (Zhang Y.X.,

et al., 2022).
2.3 Improvement of seed quality
in soybean

Soybean is used as a source of food for animals, including

humans (Medic et al., 2014). It has the highest protein content of

any crop and is a significant source of edible oils (Gupta and

Manjaya, 2022; Zaaboul et al., 2022; Song et al., 2023). In the past

few years, several studies have employed CRISPR/Cas9 gene editing

technology to enhance the protein and oleic acid contents

of soybean.

Using germinal root transformation technology, Li et al. altered

the soybean seed storage protein-encoding genes Glyma.20g148400,

Glyma.03g163500, and Glyma.19g164900 to increase soybean seed

protein contents (Li et al., 2019a). By simultaneously modifying the

soybean genes GmFAD2-1A and GmFAD2-1B, Do et al. (2019)

managed to increase the oleic acid content by more than 80%, while

also decreasing the linoleic acid level by 1.3%–1.7% (Do et al., 2019).

Zhang et al. (2019) silenced the soybean phospholipase D1-

encoding gene, which increased the oil content and germination

rate of the mutant seeds (compared with the wild-type seeds) at

high temperatures and high humidity levels (Zhang et al., 2019). In

2021, Qu et al. analyzed the oleic acid contents of soybean plants

over-expressing Gm15G117700 and soybean plants in which the

gene was edited; the oleic acid content increased in the gene-edited

plants by 3.49% (Qu et al., 2021). Zhou et al. (2023a) recently edited

five important enzyme-encoding genes in the GmFAD2 family and

analyzed the associated effects on soybean oil synthesis. Editing

GmFAD2-1A increased the oleic acid content by 91.49% (Zhou

et al., 2023a). In another recent study, Li et al. (2023) edited two

target genes by altering the conserved PAP2 structural domain-

encoding sequences of GmPDCT1 and GmPDCT2. The decrease in

phosphatidylcholine-derived diacylglycerol contents via the

k n o c k d own o f GmPDCT p r e v e n t e d t h e e n t r y o f

phosphatidylcholine-modified polyunsaturated fatty acids into the

triacylglycerol biosynthesis pathway (Li et al., 2023b).

In addition to increasing the protein and oleic acid contents,

researchers have attempted to enhance other soybean

characteristics. Phytic acid (PA) is an anti-nutrient in grains that

prevents humans from absorbing trace minerals (e.g., iron and

zinc). In soybean, GmIPK1 encodes an enzyme that converts
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inositol 1,3,4,5,6-pentaphosphate to inositol 1,2,3,4,5,6-

hexaphosphate (Alkarawi and Zotz, 2014; Sarkhel and Roy, 2022).

Using the CRISPR/Cas9 system, Song et al. (2022) edited the

GmIPK1 gene and sgRNA to introduce mutations to create

soybean lines with low PA levels. The decreased PA levels in the

T2 generation mutant seeds were not accompanied by defective

growth or seed development (Song et al., 2022).

Flavor is an important soybean quality-related attribute.

Accordingly, CRISPR/Cas9 technology has been exploited to

develop soybean germplasm with superior flavor-related traits

(Fernandez-Marin et al., 2014). Because soybean proteins are

allergens, decreasing the abundance of allergenic proteins will

likely increase the utility of soybean as a source of protein (e.g., in

processed food) (Cordle, 2004; L'Hocine and Boye, 2007;

Gharibzahedi et al., 2022; Gracio et al., 2023). In 2020, Sugano

et al. simultaneously targeted and edited GmBd28k and GmBd30K

to eliminate two allergenic proteins in the Japanese soybean

cultivars Enrei and Kariyutaka (Sugano et al., 2020). Soybean

flavor and quality are influenced by three lipoxygenases (LOX1,

LOX2, and LOX3). By editing three genes in the soybean GmLox

family (GmLox1, GmLox2, and GmLox3), Wang J., et al. (2020)

improved the edibility of soybean oil and protein products. Editing

these genes decreased soybean odors (Wang J., et al., 2020). The

raffinose oligosaccharide (RFO) family members are the main

soluble carbohydrates in soybean seeds, but they are anti-

nutritional seed components because they typically cause gas and

indigestion, while also decreasing energy efficiency (Salvi et al.,

2022). In 2021, Le et al. decreased the soybean seed RFO content by

knocking down two galactinol synthase-encoding genes, namely

GmGOLS1A and its homolog GmGOLS1B (Le et al., 2020). To

decrease the RFO content in mature seeds, Cao et al. (2022) used a

CRISPR/Cas9 multi-gene editing method to delete the RS2 and RS3

genes in soybean and cottonseed (Cao et al., 2022). Qian et al.

(2022) mutated GmBADH2 and confirmed this gene contributes to

soybean odors (Qian et al., 2022). In addition, Bai et al. (2022) used

CRISPR/Cas9 gene editing technology to produce two multi-gene

mutants, one lacking the 7S subunit and the other lacking the 11S

subunit. Both of these mutations enhanced the flavor of soybean

meal (Bai et al., 2022).
2.4 Improvement of phenotype in soybean

One of the key factors influencing the development of high-

yielding soybean cultivars is the appropriate regulation of plant

structural features (e.g., plant height, number of nodes, number of

pods, internode length, number of branches, and number of grains)

(Hu and Wiatrak, 2012; Kuzbakova et al., 2022). In recent years,

soybean phenotype-related genes have been edited using CRISPR/

Cas9 gene editing technology to produce soybean germplasm with a

variety of improved features.

Using the CRISPR/Cas9 system, Bao et al. (2019) mutated four

SPL9 family genes that encode SQUAMOSA promoter-binding

protein-like (SPL) transcription factors. The higher-order mutant

plants with different combinations of mutations had more nodes

and branches on the main stem (compared with the control plants),
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resulting in varying numbers of nodes per plant (Bao et al., 2019). In

2019, Cheng et al. used four gRNAs to alter four late elongated

hypocotyl (LHY)-encoding GmLHY genes in soybean. Phenotypic

analyses showed that the quadruple mutant plants had relatively

short internodes and exhibited dwarfism (Cheng et al., 2019). In the

Tianlong 9 variety, Jia et al. (2020) knocked out two copies of the

soybean DCL2 gene, which altered the color of the soybean seed

coat from yellow to brown (Jia et al., 2020). To increase soybean

production, Cai et al. (2021) modified the low-latitude spring

soybean variety Huachun 6 using a CRISPR/Cas9 multi-gene

editing technique. Specifically, they targeted GmJAG, which affects

the number of seeds per pod (Cai et al., 2021). In 2022, Mu et al.

targeted six GmBIC genes in soybean using CRISPR/Cas9

technology. The single, double, and quadruple mutants were

shorter than normal (Mu et al., 2022). In another recent study,

Zhong et al. (2022) edited the soybean GmHdz4 gene, which

increased the total root length, root surface area, and number of

root tips (compared with the mutant lines over-expressing

GmHdz4) (Zhong et al., 2022). Furthermore, Zhang Z. et al.

(2023) silenced the soybean GmNSS gene, which resulted in the

production of abnormally small seeds. (Zhang Z. et al., 2023).

Abscisic acid is an essential phytohormone that controls various

processes related to plant growth, development, and stress

responses (Nguyen et al., 2023). Using a CRISPR/Cas9 system,

Zhang Z. H. et al. (2022) mutated GmPYL17, GmPYL18, and

GmPYL19. Compared with the wild-type plants, the mutants were

taller, had more branches, and were less sensitive to abscisic acid

during the seed germination stage (Zhang Z. H. et al., 2022).

The shattering of soybean pods can significantly decrease yield.

By altering the GmPDH gene family in soybean variety Huachun 6,

Zhang Z. et al. (2022) showed that the PDH1mutation dramatically

increases pod shatter resistance without modifying other important

agronomic parameters (Zhang Z. et al., 2022).
2.5 Regulation of nitrogen fixation
by nodules

Rhizobia can produce a symbiotic nitrogen-fixation system with

legumes that increases plant output without damaging the local

ecosystem (Chakraborty et al., 2022; Hawkins and Oresnik, 2022).

More than 65% of the nitrogen fixation is due to the symbiotic

interaction between rhizobia and legumes (Fields et al., 2021;

Jimenez-Guerrero et al., 2022). Soybean converts free nitrogen in

the air to chemosynthetic nitrogen that can be absorbed and used by

the plant via nitrogen-fixing nodules. This process yields soybean

seeds with a high protein content, thereby increasing the nutritional

value of soybean (Dadnia, 2011; Meng et al., 2015; Igiehon

et al., 2021).

Xu et al. (2021) promoted soybean nodulation by using

CRISPR/Cas9 technology to knock down miR9c (Xu et al., 2021).

By deleting the soybean RFG193 gene, Fan et al. (2020) generated

transgenic plants with mature nitrogen-fixing nodules on purple or

red roots, which produced anthocyanins, whereas nodules were

undetectable on the non-transgenic roots (Fan et al., 2020). In 2021,

Yang et al. reported that a loss-of-function mutation to GmHSP17.9
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significantly affects soybean plant growth and seed yield through the

associated changes to the number of root nodules, nodule fresh

weight, nitrogenase activity, poly-hydroxybutyrate vesicles, and

urea and total nitrogen contents (Yang Z.W., et al., 2022).

Nguyen et al. (2021) silenced GmUOX in a soybean mutant,

which exhibited nitrogen deficit atrophy and early nodule

senescence as revealed by decreased nitrogenase (acetylene

reduction) activities in the nodules, a greenish-white hue inside

the nodules, and a decreased root protein output (Nguyen et al.,

2021). Gao et al. (2021) investigated the role of the PIN protein

during the nitrogen fixation by soybean nodules. More specifically,

they produced a triple mutant (GmPIN1-abc family) (Gao et al.,

2021). The modification of the soybean Rfg1 allele by Fan et al.

(2022) revealed Rfg1mediates the resistance to Sinorhizobium fredii

and Bradyrhizobium japonicum strains, leading to broad-spectrum

resistance to nodulation in transgenic plants (Fan et al., 2017). After

knocking downGmNN1, Li et al. (2022) detected yellowing leaves as

well as decreased nitrogen contents and decreased nodulation

(compared with the wild-type control plants) (Li et al., 2022). By

silencing GmNAC039 and GmNAC018 as well as the four target

genes GmCYP35, GmCYP37, GmCYP39, and GmCYP4, Yu et al.

(2023) showed that the transcription factors encoded by

GmNAC039 and GmNAC018 directly increase the expression of

GmCYP genes to induce root tumor senescence (Yu et al., 2023).
2.6 Regulation of flowering time
in soybean

Because soybean is a short-day (SD) plant, it blooms more

quickly during SD conditions than during long-day (LD) conditions

(Weller and Ortega, 2015; Lin et al., 2021; Xia et al., 2021).

Modulating the blooming time and minimizing the sensitivity to

sunshine duration through molecular breeding can increase

soybean adaptability and production by mitigating photoperiodic

responses (Zhang L.X. et al., 2020; Zhang M. et al., 2022; Du

et al., 2023).

Cai et al. (2018a) edited the soybean genes GmFT2a and

GmFT9a and discovered that both mutants in the T2 generation

exhibited a late-blooming phenotype (Cai et al., 2018a). Using a

double sgRNA design and CRISPR/Cas9 technology, Cai et al.

(2018b) deleted specific DNA fragments in GmFT2a

(Glyma16g26660) and GmFT5a (Glyma16g04830) . The

homozygous GmFT2a mutants (1,618 bp deletion) in the T2

generation flowered late (Cai et al., 2018b). Two QTL regions that

respectively included GmFT2a and GmFT5a were identified by Cai

et al. (2020b). They were linked to various genetic effects on

flowering during various photoperiods. Under LD and SD

conditions, the flowering times of transgenic plants over-

expressing GmFT2a or GmFT5a, GmFT2a mutants, GmFT5a

mutants, and GmFT2a and GmFT5a double mutants were

examined. There was no overlap between GmFT2a and GmFT5a,

which cooperatively control the blooming time, but GmFT2a has a

greater effect than GmFT5a under SD conditions, while GmFT5a

has a greater effect than GmFT2a under LD conditions (Cai et al.,

2020a). Wang L. W. et al. (2020) mapped QTLs and identified
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GmPRR37 as a functional gene encoding a regulator of soybean

flowering. A natural mutation to GmPRR37 results in early

flowering, thereby enabling the cultivation of soybean plants at

high latitudes (Wang L. W., et al., 2020). Li et al. (2020) used

CRISPR/Cas9 technology to knock out GmPRR3b. The resulting

soybean mutant exhibited retarded growth and a delayed transition

to the flowering stage (Li et al., 2020). In 2020, Chen et al. modified

the soybean GmAP1 gene in a quadruple mutant. The observed

increase in plant height was associated with delayed flowering,

altered flower shapes, and increases in the number of nodes and the

internode length. In contrast, under SD conditions, the over-

expression of GmAP1 led to early flowering and dwarfism (Chen

et al., 2020). Li et al. (2021) edited four LNK2 genes using a CRISPR/

Cas9 system to produce a quadruple mutant lacking transgenes.

This mutant flowered earlier than the wild-type control under LD

conditions. In addition, the LNK2 transcript level was lower in the

quadruple mutant than in the wild-type plants (Li et al., 2021). Zhao

et al. (2022) mutated GmPHYA or GmPHYB using CRISPR/Cas9

technology. The phenotypic changes due to the mutations to

GmPHYA2 and GmPHYA3, which have redundant and additive

roles in seedling responses to daylight, indicated GmPHYB1 is

primarily responsible for daylight-induced photomorphogenesis

(Zhao et al., 2022). In 2022, Zhai et al. suggested that GmMDE

and GmFT2a/GmFT5a contribute to a positive feedback regulatory

loop that promotes flowering in soybean. Knocking down the

soybean E1 gene induces GmMDE expression. Moreover, the

over-expression of GmMDE06 increases the expression of

GmFT2a and GmFT5a, which regulate flowering (Zhai et al.,

2022). In 2023, Wan et al. investigated the relationship between

the dominant E1 gene and photoperiodic regulation via the

CRISPR/Cas9-mediated targeted mutation of E1 in soybean

variety Tianlong 1. Four mutations were introduced into the E1

coding region. The significant structural changes in the generated

mutants included the commencement of terminal flowering, the

creation of distinct stems, and a decrease in the number of branches

(Wan et al., 2022).
2.7 Creation of male sterile soybean
germplasm resources

Because soybean is a self-pollinated plant that has small flower

organs, artificial cross-breeding is both difficult and ineffective (Li

et al., 2019b; Chen G. M., et al., 2021). Furthermore, differences in

flowering times among varieties originating from various

geographical regions frequently further restrict the exchange of

genes, resulting in a limited genetic base for soybean breeding and

genetic modifications (Li et al., 2019b). Accordingly, methods for

increasing the genetic diversity of soybean varieties are needed

(Bohra et al., 2016). In particular, for sexually reproducing crops,

male sterility is a crucial precondition for hybrid seed generation

and crop reproduction (Jiang et al., 2011; Yang et al., 2014). Male

sterile lines can increase the quality of hybrids, lower the cost of
Frontiers in Plant Science 09
hybrid seed production, and even broaden the utility of hybrids.

The scarcity of adequate male sterile lines has limited the

commercial use of soybean accessions (Li et al., 2016; Ramlal

et al., 2022).

To create stable male sterile soybean lines, Chen et al. (2021)

targeted AMS homologs using CRISPR/Cas9 technology. Although

editing GmAMS2 failed to produce a male sterile line, editing

GmAMS1 yielded plants with a male sterile phenotype. GmAMS1

contributes to the development of pollen walls as well as the

regulation of soybean tapetum degeneration (Chen et al., 2021a).

Jiang et al. (2021) modified Glyma.13G114200 using a CRISPR/

Cas9 system; the phenotypes of two gene-edited lines were

consistent with the male sterility of the MS1 mutant (Jiang et al.,

2021). By eliminating GmSPL2b, Ding et al. (2023) decreased the

heat tolerance of a soybean cytoplasmic male sterility-based

recovery line during flowering (Ding et al., 2023).
2.8 Application of other CRISPR gene
editing technology in soybean

Compared with Cas9, the CRISPR family member Cas12a is

more practical and effective. Hence, CRISPR/Cas12a can effectively

edit multiple genes because of the specific way that CRISPR RNA

(crRNA) functions (Bandyopadhyay et al., 2020; Paul and Montoya,

2020; Zhou et al., 2023b). In 2017, Jiang et al. used CRISPR/Cas12a

to achieve editing in the soybean FAD2 gene for the first time (Jiang

et al., 2017). In addition, large chromosomal segments of the target

genome were deleted by Duan et al. (2021) using CRISPR/Cas12a,

with an editing efficiency of 91.7% (Duan et al., 2021). In 2023,

Liang et al. produced CRISPR/Cas12a-edited soybeans in just 45

days, with transformation and gene editing efficiencies of 30% and

50%, respectively (Liang et al., 2023). To produce gene-edited

soybeans with better traits, CRISPR/Cas12a-based multi-gene

editing methods will increasingly be used to modify the

soybean genome.

Because they enable the replacement of a single base via RNA

editing without introducing DNA double-strand breaks or requiring

donor templates, base editor tools created using the CRISPR/Cas9

system are especially useful for plant molecular breeding (Molla et al.,

2021; Yang et al., 2021; Hua et al., 2022). A CRISPR/Cas9-mediated

base editing tool was designed by Cai et al. (2020a) to alter individual

bases in the soybean genome. A base editor was developed by

combining Cas9n (D10A), rat cytosine deaminase (APOBEC1), and

a uracil glycosylase inhibitor. This base editor was then cloned into the

pTF101.1 vector. The targeted genes were GmFT2a and GmFT4a,

which were under the control of the 2× CaMV 35S promoter. There

were two types of base substitutions (C to T and C to G), both of which

occurred within the target sequence (Cai et al., 2020a). Single

nucleotide polymorphisms, which influence phenotypic diversity and

are linked to many significant agronomic parameters, are abundant in

the soybean genome. Future genetic improvement and breeding of

soybean can greatly benefit from the application of base editing

technology (Bharat et al., 2020; Xu R. F., et al., 2020).
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3 Discussion and prospect

Because of increases in the global population and living

standards, CRISPR/Cas9 technology must be exploited to quickly

develop high-yielding, high-quality soybean varieties (Khan et al.,

2018; Zhang and Showalter, 2020). Field tests of high-oleic soybean

varieties produced using CRISPR/Cas9 gene editing technology in

the US have produced positive results, with potential implications

for soybean molecular breeding. There have been considerable

advances in the molecular breeding of soybean since the

development of CRISPR/Cas9 gene editing technology, which has

decreased concerns about the safety of products made from

genetically modified soybeans, leading to the gradual acceptance

of genetically modified crops. The CRISPR/Cas9 system, which

continues to be refined and enhanced, has largely outperformed the

older technologies involving zinc finger nucleases and transcription

activator-like effector nucleases in terms of gene editing efficiency

and convenience (Samanta et al., 2016; Demirci et al., 2018; Farooq

et al., 2018). Researchers will use CRISPR/Cas9 gene editing systems

to develop soybean lines with improved features as more functional

soybean genes are identified and characterized.

However, there are certain limitations to the utility of CRISPR/

Cas9 for soybean breeding. Unanswered questions include the

following: (i) How can genome editing tools be efficiently

delivered to soybean plants? (ii) How can the functional

redundancy in gene families be rapidly and precisely determined?

(iii) How can the editing of multiple genes be exploited to modify

various traits? (iv) How can base editing, prime editing, and

government regulations regarding genome-edited crops further

increase the effectiveness of gene editing? Despite encouraging

results, many obstacles must be overcome before CRISPR/Cas9

can be widely used for soybean breeding.

Additionally, numerous sgRNAs for different plant genomes have

been assembled into CRISPR editing vectors. Moreover, sgRNA

pooling techniques have made it possible to mutate multiple genes.

The diversity in the sequences that PAM can detect has increased,

leading to improved gene editing, because of the creation of Cas9

homologs, such as StCas9 and SaCas9, for plant molecular breeding.

The highly efficient editing of plant genomes has been achieved using

the nCas9-mediated single-base editing system, while the saturation

mutagenesis of plant genomes and optimal gene editing efficiencies

have been attained via the two-base editing method. The CRISPR/Cas9

gene editing method will be applied to soybean molecular breeding

more effectively, conveniently, and broadly in the future, thereby
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facilitating increasingly precise molecular breeding and accelerating

soybean molecular breeding.
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