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Soybean is a leguminous crop known for its efficient nitrogen utilization and ease

of cultivation. However, its intercropping with maizemay lead to severe reduction

in its growth and yield due to shading effect ofmaize. This issue can be resolved by

the appropriate application of essential plant nutrient such as molybdenum (Mo).

Aim of this study was to assess the effect of Mo application on the morphological

and physiological characteristics of soybean intercropped with maize. A two-year

field experiment was conducted for this purpose, and Mo was applied in the form

of sodium molybdate (Na2MoO4), and four different levels were maintained i.e., 0,

60, 120 and 180 g ha-1. Soybean exhibited varying responses to different levels of

molybdenum (Mo) application. Notably, in both sole and intercropped cropping

systems, the application of Mo at a rate of 120 g ha-1 demonstrated the highest

level of promise compared to other application levels. However, most significant

outcomes were pragmatic in soybean-maize intercropping, as application of Mo

@ 120 g ha-1 significantly improved soybean growth and yield attributes, including

leaf area index (LAI; 434 and 441%), total plant biomass (430 and 461%),

transpiration rate (15 and 18%), stomatal conductance (9 and 11%), and yield (15

and 20%) during year 2020 and 2021 respectively, as compared to control

treatment. Similarly, Mo @ 120 g ha-1 application resulted in highest total grain

yield (626.0 and 725.3 kg ha-1) during 2020 and 2021 respectively, which

exceeded the grain yields of other Mo levels under intercropping. Moreover,

under Mo application level (120 g ha-1), grain NPK and Mo contents during years

2020 and 2021were found to be 1.15, 0.22, 0.83 and 68.94mg kg-1, and 1.27, 0.25,

0.90 and 72.18 mg kg−1 under intercropping system increased the value as

compared to control treatment. Findings of current study highlighted the

significance of Mo in enhancing soybean growth, yield, and nutrient uptake

efficiency in maize-soybean intercropping systems.
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1 Introduction

Worldwide, agriculture is currently facing numerous challenges,

including growing populations, land use change, urban sprawl,

industrial development and climate change, all of which

contribute to food security issues (Kalugina, 2014; Hu et al.,

2016). One of the leading global challenges is to conserve natural

resources, agricultural productivity, and biodiversity while

addressing food security (Brown, 2002; Jiren et al., 2021). Soybean

(Glycine max L.), a vital leguminous crop, is valued for its high-

quality oil and protein, encompassing essential amino acids crucial

for human health (Hou et al., 2015; Zeeshan et al., 2023). In 2019,

global soybean production exceeded 333 million tons (Faostat,

2019; Jahan et al., 2023). Intercropping has been identified as a

potential solution to promote sustainable agricultural development

by improving land utilization rates and ensuring higher and

sustainable crop yields (Bedoussac et al., 2015; Iqbal et al., 2019).

Intercropping involves growing two or more crop species together

for their specific cropping periods. Recent studies have shown that

cassava intercropping is prevalent in America and Africa (Zhang

et al., 2015). Legume-cereal intercropping, particularly maize-bean

intercropping, is a common practice in East and Southern Africa

(Mucheru-Muna et al., 2010; Fischer et al., 2020). Intercropping is

also widely practice in Asian countries like China, such as wheat-

maize (Gao et al., 2014), maize-soybean (Liu et al., 2018),

sunflower-soybean (de la Fuente et al., 2014), and maize-pea

(Teng et al., 2016). Despite vast potential and applicability of

intercropping, certain challenges may arise, including nutrient

competition, imbalances, and resource acquisition between co-

existing crops (Huss et al., 2022). Intercropping also enables the

adjacent crops to ensure greater yields owing to complimentary

utilization of limited resources (Wang et al., 2023).

One of the leading concern in maize-soybean intercropping is

the shading effect of maize, and soybean plants are highly

responsive to these shading conditions caused by maize plants

(Raza et al., 2020a). Reduced light exposure results in

morphological and physiological changes in soybean, such as

increased plant height and higher susceptibility to lodging (Li

et al., 2014). Lodging of soybean is a major issue in maize-

soybean intercropping systems, which inhibits the transportation

of photo-assimilates, nutrients and water ultimately, leading to

decreased crop yield (Liu et al., 2015; Wu et al., 2017). However,

appropriate supply of essential plant nutrients such as iron (Fe),

molybdenum (Mo) etc. can alleviate the shading induced adverse

impacts on soybean growth, yield and physiology under maize-

soybean intercropping. Despite the ongoing researches in

improving the shade tolerance, and associated lodging losses in

soybean, limited data is available in literature regarding the

beneficial impacts of essential plant nutrients such as Mo in

improving the shade tolerance in soybean under maize-soybean

intercropping system (Oliveira et al., 2022).

Molybdenum (Mo) is an essential micronutrient that serves a

crucial role in nitrogen (N) metabolism as a cofactor for nitrate

reductase and nitrogenase. (Mendel, 2013; Cakmak et al., 2023). In

legumes, Mo is particularly important for N-fixation, as it directly

affects nitrogenase functioning in root nodules (Yang et al., 2020).
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Numerous studies have highlighted the significance of Mo in

soybean production (Laltlanmawia et al., 2004; Raut et al., 2004;

Kadlag et al., 2006) as well as effects of its combined application

with Rhizobium (Sunita et al., 2000; Adkine et al., 2011). Improved

crop growth and development in terms of branch number, root

nodules, leaf chlorophyll content, grain and straw yield, seed

protein, and oil contents have been observed through the use of

zinc, iron, and seed priming with Mo (Tiwari et al., 2018). High

soybean yields necessitate substantial nitrogen (N) input, with the

most cost-effective source of N for soybean being biological

nitrogen fixation (BNF) by the symbiotic association between

plant and bacteria, mainly belonging to genus Bradyrhizobium

(Htwe et al., 2019). Interspecific competition between maize-

soybean intercropping leads to more efficient utilization of

applied N (Zhang et al., 2023). Adding Bradyrhizobium with

these three micronutrients zinc, iron, and molybdenum have

resulted in a remarkable yield response in soybean as reported

earlier by Tiwari et al. (2018) and Joglekar et al. (2023).

Furthermore, Mo can influence the interaction between maize

and soybean in intercropping systems, potentially impacting

overall crop productivity and quality (Abendroth et al., 2017;

Oliveira et al., 2022). Thus, understanding the role of Mo in

maize-soybean intercropping systems is crucial for optimizing

crop management practices and maximizing productivity in order

to address the existing knowledge gap. Present study aimed at to

assess the impact of Mo application on morphological and

physiological attributes of soybean intercropped with maize.

Hypothesized adequate Mo application and subsequent

availability to soybean promotes plant growth, N-fixation, and

biomass accumulation, enhancing overall productivity and

resource utilization in such systems. These findings are expected

to be of practical importance for farmers, agronomists, and

researchers in the fields of plant nutrition, crop physiology, and

agroecosystems, providing valuable insights to optimize crop

management strategies.
2 Materials and methods

Current field study was carried out at experimental area of

Sindh Agriculture University Tandojam, Hyderabad, Pakistan

located at (26.1° N, 68.5° E). Meteorological data of experimental

site are presented in Table 1. Experimental units were arranged by

following randomized complete block design (RCBD) with three

replications. Foliar applications of Mo in the form of sodium

molybdate (Na2MoO4) was done at various rates 0, 60, 120 and

180 g ha-1), and it was applied during the R1 growth stage of

soybean crop by dissolving in 200 L of water.

Physicochemical properties of experimental soils before

planting are presented in Table 2. Soil texture was determined

using Hydrometer method (Bouyoucos, 1962; Qasim et al., 2023).

Five grams of soil were mixed with 10 ml 1 N HCl and 50 ml

distilled water. Boiled 2 mins, cooled, and 3 drops phenolphthalein

added. Titration against 1 N NaOH followed. Calcium carbonate

calculated using (Horváth et al., 2005) respectively. Soil EC was

determined by soil water extraction (1:2) method by using
frontiersin.org
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conductivity meter. Soil pH was measured by soil-water suspension

method (U.S. Salinity Laboratory Lab Staff, 1954). Organic carbon

was determined by modified Walkley-Black titration and

ammonium saturation methods, respectively (Walkley and Black,

1934). Extractable phosphorus was determined using the Olsen

method (Olsen and Sommers, 1982). Extractable potassium was

determined by mixing 5 g of soil with 1 N ammonium acetate

solution, followed by flame photometry analysis (Rhoades, 1983),

and available nitrogen was determined by alkaline potassium

permanganate method (Wang et al., 2013).
2.1 Seed procurement and
agronomic practices

Present study utilized two crop varieties, determinate soybean

‘NARC−16’ and semi-compact maize ‘DK-6317’. Seeds were

procured from National Agricultural Research Centre (NARC),
Frontiers in Plant Science 03
Pakistan. Two rows of soybean per strip were planted at row-to-

row spacing of 40 × 60 cm. Sole soybean plots had row spacing of 50

cm (Figure 1). All the agronomic practices were performed

manually. Basal fertilization was applied before sowing, with a

dose of N (120 kg ha-1 urea), P (180 kg ha-1 diammonium

phosphate), and K (150 kg ha-1 sulfate of potash) for maize and

N (75 kg ha-1 urea), P (150 kg ha-1 diammonium phosphate), and K

(100 kg ha-1 sulfate of potash) for soybean. Two additional N doses

were applied at 60 and 100 kg ha-1 for maize at the V6 and tasseling

stages (Abendroth et al., 2017). Experimental plots were irrigated

with 550 ± 100 mm water throughout the experiment using the

furrow irrigation method.
2.2 Sampling and measurements

2.2.1 Observation of plant
morphological characteristics

Root fresh and dry weights were recorded using an analytical

balance and were expressed in g plant−1. Whereas, stem internodal

length, shoot height and root length were measured using a tape.

Stem and internode diameter and lodging were also measured using

the vernier caliper. Leaf area and number of plants were assessed

five times (at 45, 65, 85, 105, and 125 days) after sowing (DAS) in

two consecutive years. Five soybean plants were destructively

sampled from each plot at each time point. The leaf area was

determined by multiplying the maximum width and length of the

leaves by a crop-specific coefficient factor of 0.75 for soybean (Gao

et al., 2010). Leaf area index (LAI) was then calculated as followed

(Raza et al., 2019).

LAI =  
(Leaf  area plant−1 � Plant number plot−1)

Plot area
(1)
TABLE 2 Physico-chemical properties of experimental soils.

Property Soil

Texture Silt clay loam

pH (1:5 soil water extract) 7.42

EC 0.93 dS m−1

Calcium carbonate 13.37%

Organic matter 0.85%

Total N 0.07%

Extractable phosphorus 3.62 mg kg−1

Extractable Potassium 146.0 mg kg−1
TABLE 1 Two years month-wise average meteorological (2020–2021) in Tandojam.

Month
Temperature (°C) Relative

Humidity (%)
Sunshine
(hour)

Wind Speed
(km day−1)Maximum Minimum Mean

January 24.0 9.10 16.55 68 8.40 21.82

February 27.4 11.4 19.40 64 8.80 18.71

March 33.2 16.0 24.60 58 9.20 21.38

April 38.3 21.2 29.75 54 9.70 35.18

May 40.4 25.4 32.90 61 10.2 50.77

June 44.9 27.2 33.05 67 8.60 64.13

July 46.3 26.9 31.60 74 7.20 52.55

August 38.1 26.2 30.65 77 8.10 32.96

September 35.2 24.4 29.80 75 9.30 48.54

October 35.5 19.8 27.65 69 9.50 13.36

November 31.1 14.9 23.00 64 9.00 16.03

December 25.5 10.7 18.10 67 8.20 18.71
Source: Meteorological station from Agriculture Research Institute Tandojam, Sindh Pakistan.
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2.2.2 Observation of yield and
yield components

Phenological plant stages were observed by collecting five

soybean plants from each plot during the study (Table 3) that

indicated the growth stages of the plants at specific DAS (45, 65, 85,

105, and 125 DAS). Ten soybean plants from each planting pattern

were collected for total dry matter accumulation analysis (Raza

et al., 2019). Plant parts were separated into root, straw, and grain,

and sun-dried for 7-10 days to reach a constant weight. Total dry

matter accumulation was determined by summing the dry matter of

each part. To measure seed yield, 40 soybean plants were collected

and sun-dried, then threshed and weighed to determine yield

(kg ha-1) (Raven, 1988; Mao et al., 2012).
2.3 Physiological and biochemical indexes

2.3.1 Photosynthetic indices
Leaf photosynthetic rate (Pn), stomatal conductance (Gs),

intercellular CO2 concentration (Ci), and transpiration rate (Tr)

were measured on sunny days between 09:00-12:00 (local time)

from fully expanded top leaves (3 leaves per experimental units

from 3 different plants) with a Li-Cor 6400 photosynthesis

measuring system. Measurements were performed on the 4th and

5th fully expanded leaves at 100 DAS (R6).

2.3.2 Chlorophyll content analysis
Chlorophyll content was determined during reproductive stages

by taking three replication from each leaf of a plant using a portable

chlorophyll meter SPAD-502 (Minolta, Japan) (Hong et al., 2005).

The value of chlorophyll (Chl) content (mg m−2) was estimated

from corresponding SPAD values by using the following equation:

Chl content (mg m−2)  =  15:68 (SPAD unit – )  −  209:03 (2)
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2.3.3 Antioxidant enzymes
Analyses involving antioxidant enzyme activities were

performed in triplicates. Activities of superoxide dismutase (SOD)

was measured by using a photochemical reduction of nitro blue

tetrazolium (NBT) inhibition method (Kalimuthu et al., 2022),

where reaction mixture consisted of a potassium-phosphate buffer

(125 mm, pH 7.8), 3 mM MgSO4, 3.1 mM EDTA, 2% polyvinyl

polypyrrolidone (PVPP), methionine (130 mM), riboflavin (600

μM), NBT (22.5 mM), and plant extract. Reaction was illuminated

for 15 min and absorbance was measured at 560 nm. One unit of

SOD activity was defined as 50% reduction of A560 control.

Catalase (CAT) activity was determined by measuring the

decrease in absorbance of reaction mixture containing H2O2 (100

mM), plant extract, and a potassium-phosphate buffer (125 mm, pH

7.0) at 240 nm (Kalimuthu et al., 2022). Peroxidase (POD) activity

was determined by measuring the increase in absorbance of reaction

mixture consisting of ascorbate solution (5 mM), H2O2 (100 mM),

EDTA solution (1 mM), plant extract, and a potassium-phosphate

buffer (125 mm, pH 7.0) at 290 nm (Probst et al., 2021). In addition,

malondialdehyde contents (MDA) in soybean leaves were

determined by following the method of Sheng and Zhu (2019),

which involved the homogenization of soybean leaves in the

presence of trichloroacetic acid (TCA; 10%) followed by their

centrifugation at 9000g for 20 minutes. Reaction mixture for this

assay comprised of 2 mL of aliquot, 2 mL of 0.6% thiobarbituric

acid, and heated for 20 minutes at 100°C followed by their abrupt

cooling in an ice bath. Finally, absorbance of the mixture was

checked at 532 and 450 nm for MDA determination.
2.4 Determination of N, P, K, and Mo
contents in different parts of the plant

At physiological maturity, 30 soybean and 15 maize plants were

randomly selected from each experimental unit, and were separated

into grain, straw and roots, and dried at 70°C for 72 h to determine

N, P, K, and Mo content. The N concentration was determined

using the Kjeldahl Apparatus, P concentration was estimated using

the Vanadomolybdate method (Xia et al., 2013), and K

concentration was measured using the FAAS method (Varian 250

plus). The NPK uptake was calculated by multiplying the biomass of

each organ by the N, P, and K concentrations, and presented as

kilogram per hectare (Mao et al., 2012). Similarly, for Mo analysis,

approximately 0.2 g of dried tissue was microwave-digested in 5 mL

HNO3 (4/1 v/v) at 160°C for 45 min and diluted, and Mo content
TABLE 3 Phenological stages observed for soybean in the intercropping
system at specific DAS.

DAS Soybean Growth Stages

45 V2-V3

65 V5

85 R2-R3

105 R5-R6

125 R7
FIGURE 1

The arrangement of Maize and Soybean crops in strip intercropping and sole cropping systems was varied, with different planting patterns used in each.
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was quantified using inductively coupled plasma optical emission

spectroscopy (ICP-OES) (Perkin Elmer Optima 8300,

Massachusetts, USA).
2.5 Statistical analysis

Data was analyzed for normal distribution and homogeneity of

variance. Log transformations were applied where necessary to

correct deviations from these assumptions. Analysis was

performed using Microsoft Excel 2013 (Microsoft Corp.

Washington, USA), IBM SPSS Statistics V22.0 (SPSS Inc.,

Chicago, New Mexico, USA). One-way analysis of variance

(ANOVA) was used to statistically analyze the obtained data.

Later, data was arranged in MS Excel 2013, and their relevant

means and standard errors were also computed by MS Excel 2013.
3 Results

3.1 Growth and yield attributes

Results regarding growth attributes revealed a significant

impact of Mo application in both years under both cropping

systems (Figures 2, 3). However, Mo application @ 120 g ha-1

proved to be the most significant in this regard. It was observed that

in sole soybean plantation, maximum increment in growth

attributes such as leaf area index (LAI; 436 and 393%), plant

height (16 and 12%), root length (107 and 102%), nodules per

plant (18 and 17%), stem diameter (15 and 16%), total plant

biomass (TPB; 454 and 364%), yield (19 and 18%) were observed

as compared to control treatment after 105 DAS during year 2020
Frontiers in Plant Science 05
and 2021. Similarly, in soybean-maize intercropping system, Mo

application @ 120 g ha-1 enhanced the LAI (434 and 441%), TPB

(430 and 461%), plant height (12 and 13%), root length (94 and

86%), nodules per plant (14 and 15%), stem diameter (12 and 14%),

and yield (15 and 20%) after 125 DAS during year 2020 and 2021,

respectively (Tables 4, 5). On average, more improvement in all the

plant growth and yield attributes was evident after Mo application

during 2021 as compared to the preceding year (2020).
3.2 Physiological attributes

In terms of plant physiological attributes, it was observed that

exogenous application of Mo led to a significant improvement in all

the measured physiological attributes i.e., transpiration rate,

stomatal conductance, inter-cellular CO2 concentration, and

photosynthetic rate, as well as chlorophyll content (SPAD value).

However, application of Mo @ 120 g ha-1 yielded significantly better

results as compared to other Mo levels. It was observed that during

year 2020, under sole soybean plantation and soybean-maize

intercropping, application of Mo @ 120 g ha-1 improved

transpiration rate (12 and 15%), stomatal conductance (9 and

10%), inter-cellular CO2 concentration (13 and 11%), and

photosynthetic rate (11 and 11%) respectively. However, during

2021, more promising outcomes were pragmatic in terms of

physiological attributes i.e., transpiration rate, stomatal

conductance , in ter -ce l lu lar CO2 concentra t ion , and

photosynthetic rate. Under both sole and intercropped soybean,

application of Mo @ 120 g ha-1 significantly enhanced the

physiological attributes i.e., transpiration rate (18 and 19%),

stomatal conductance (11 and 11%), inter-cellular CO2

concentration (13 and 12%), and photosynthetic rate (12 and
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FIGURE 2

Effect of different levels of Mo on leaf area index (m2) of soybean at different time intervals, (A) sole soybean during 2020, (B) sole soybean during
2021, (C) soybean intercropped during 2020 and (D) soybean intercropped during 2021. The columns sharing same letters are statistically non-
significant (Tukey’s HSD test) at p< 0.05. The error bars indicate standard deviation.
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11%) respectively as compared to control treatment (Figures 4–6). It

was obvious from the results of physiological attributes that more

promising outcomes of Mo application @ 120 g ha-1 were observed

under soybean-maize intercropping during both the years.
3.3 Antioxidant activities

Application of Mo also showed significantly positive effects on

various antioxidant activities in soybean leaves such as catalase

(CAT), peroxidase (POD), and superoxide dismutase (SOD) during

sole and intercropping with maize over two consecutive years (2020–

2021). During sole plantation in 2020-21, Mo application at a rate of

120 g ha-1 led to significant increment in antioxidant enzyme

activities CAT (14 and 15%), SOD (13 and 12%), and POD (7 and

5%) respectively, as compared to control treatment. However, in

soybean maize intercropping, Mo application @ 120 g ha-1 yielded

more significant outcomes in all the measured antioxidant activities,

including CAT (11 and 12%), POD (5 and 6%), and SOD (11 and

11%) as compared to control treatment (Figure 7). Furthermore, lipid
Frontiers in Plant Science 06
oxidation was evaluated in terms of malondialdehyde (MDA)

contents in soybean leaves. Results revealed that Mo application at

a rate of 120 g ha-1 significantly reduced MDA contents in soybean

leaves, indicating a significant decrease in lipid peroxidation. In the

sole and intercropped soybean cropping systems, Mo application at a

rate of 120 g ha -1 during 2020 led to significant reduction in MDA

contents by 30 and 31%, respectively as compared to control

treatment. However, during the subsequent year (2021), MDA

contents were further decreased by 38 and 43% respectively, in the

sole and intercropped soybean cropping systems with the application

of Mo @ 120 g ha-1 (Figure 7).
3.4 Nutritional attributes

Results in terms of nutritional attributes of soybean such as

nitrogen (N), phosphorous (P), potassium (K), and Mo contents

were significantly affected by Mo treatments. However, among

different application rates, Mo application @ 120 g ha−1 was

found to be the most efficient in both cropping systems. During
TABLE 4 Soybean yield in maize-soybean intercropping system.

Treatments
2020 2021

Sole Soybean Soybean Intercropped Sole Soybean Soybean Intercropped

Mo1 906.7 c 521.6 c 1014.8 d 631.1 c

Mo2 1008.2 bc 558.5 bc 1079.7 c 653.1 bc

Mo3 1122.4 a 626.0 a 1192.9 a 725.3 a

Mo4 1065.1 ab 592.4 ab 1136.2 b 688.6 b

P value (0.05) 0 0 0.0001 0
Different lowercase letters, in a single column, show significant differences among concentration means at p< 0.05.
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FIGURE 3

Effect of different levels of Mo on total plant biomass (g) at different time intervals, (A) sole soybean during 2020, (B) sole soybean during 2021,
(C) soybean intercropped during 2020 and (D) soybean intercropped during 2021. The columns sharing same letters are statistically non-significant
(Tukey’s HSD test) at p< 0.05. Error bars indicate standard deviation.
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FIGURE 4

Effect of different levels of Mo on gaseous exchange attributes of soybean leaves at different Mo application levels for sole spybean,
(A) Photosynthetic rate (Pn; µmol CO2 m−2 s−1), (B) Transpiration rate (Tr; mmol H2O m−2 s−1), (C) Stomatal conductance (Gs; mol H2O m−2 s−1)
and (D) inter-cellular CO2 concentration (Ci; µmol CO2 m−2 s−1). The columns sharing same letters are statistically non-significant (Tukey’s HSD
test) at p< 0.05. Error bars indicate standard deviation.
TABLE 5 Morphological properties of soybean under sole and intercropping with maize in different (plant−1) during 2020 and 2021.

Sole Soybean

2020 2021

T PH RL NoP SDIM IL PH RL NoP SDIM IL

Mo1
55.5 ± 0.81

d
81.4 ± 2.18

d
23.9 ± 0.46

d
5.3 ± 0.22

c
5.4 ± 0.10

b
57.6 ± 1.71

c
88.2 ± 1.32 d

24.7 ± 0.42
d

5.5 ± 0.14
c

5.6 ± 0.21
b

Mo2
58.4 ± 0.83

c
104.3 ± 1.36

c
25.3 ± 0.57

c
5.6 ± 0.28

bc
5.3 ± 0.09

ab
60.7 ± 1.98

b
112.4 ± 1.41

c
26.2 ± 0.52

c
5.8 ± 0.19

bc
5.5 ± 0.26

ab

Mo3
64.4 ± 0.94

a
168.5 ± 2.35

a
27.9 ± 0.78

a
6.1 ± 0.41

a
5.0 ± 0.12

a
65.9 ± 1.14

a
178.3 ± 8.23

a
29.0 ± 0.71

a
6.4 ± 0.33

a
5.2 ± 0.34

a

Mo4
61.6 ± 1.19

b
136.2 ± 1.14

b
26.7 ± 0.66

b
5.9 ± 0.29

ab
5.1 ± 0.07

ab
65.1 ± 1.65

a
139.7 ± 1.22

b
27.7 ± 0.62

b
6.1 ± 0.20

ab
5.3 ± 0.30

a

P value
(0.05)

0 0.0345 0 0.0037 0.1015 0.0001 0.0135 0 0.0024 0.0476

Soybean intercropping

Mo1
77.1 ± 2.20

d
96.2 ± 1.17

34.7 ± 1.03
d

7.4 ± 0.49
c

4.1 ± 0.18
d

80.3 ± 2.17
d

105.03 ± 2.34
d

36.0 ± 0.61
d

7.6 ± 0.43
c

4.3 ± 0.23
c

Mo2
80.9 ± 2.32

c
129 ± 1.62

36.4 ± 1.09
c

7.8 ± 0.39
bc

4.2 ± 0.14
c

84.3 ± 2.29
c

138.23 ± 1.42
c

37.8 ± 0.64
c

8.0 ± 0.31
bc

4.4 ± 0.28
b

Mo3
86.6 ± 2.66

a
186.2 ± 1.24

39.5 ± 1.15
a

8.3 ± 0.34
a

4.5 ± 0.16
a

90.4 ± 2.13
a

195.11 ± 2.32
a

41.2 ± 0.70
a

8.7 ± 0.25
a

4.6 ± 0.29
a

Mo4
83.8 ± 3.03

b
155.6 ± 1.01

38.1 ± 1.15
b

8.1 ± 0.53
ab

4.4 ± 0.14
b

87.4 ± 1.44
b

164.45 ± 1.41
b

39.7 ± 0.68
b

8.4 ± 0.46
ab

4.5 ± 0.30
ab

P value
(0.05)

0 0.0125 0 0.015 0 0.0001 0.015 0 0.012 0.0015
F
rontiers in Plant Science 07
 fr
T, Treatments; PH, Plant height; RL, Root length; NoP, number of nodules plant−1; SDIM, steam diameter (mm); IL, internode length (inch). Different lowercase letters, in a single column, show
significant differences among concentration means at p< 0.05.
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year 2020, Mo application at 120 g ha-1 significantly increased the

N, P, K and Mo contents in roots (10, 13, 13 and 15%), straw (7, 13,

10 and 17%), and grains (10, 10, 10 and 20%) of soybean grown

solely (Table 6). Whereas, in the same year during intercropping

with maize, NPK and Mo contents in roots (13, 13, 17 and 16%),

straw (9, 10, 17 and 16%) and grains (11, 12, 26 and 18%) of

soybean were also significantly increased under Mo application rate

of 120 g ha-1 (Table 6). Furthermore, during year 2021, relatively

more significant outcomes in terms of nutrient uptake were

pragmatic, where nutrient uptake in different parts of sole and

intercropped soybean were significantly increased after the

application of Mo @ 120 g ha-1 i.e., NPK and Mo contents in

roots (15, 13, 12 and 15% as well as 19, 17, 24 and 17%), straw (12,

13, 14 and 18% as well as 17, 12, 18 and 17%) and grains (12, 14, 14
Frontiers in Plant Science 08
and 21% as well as 15, 14, 18 and 19%) were increased respectively

in sole grown and intercropped soybean crop as compared to

control treatment during year 2021 (Table 6).
4 Discussion

Effect of Mo application on soybean growth and yield

characteristics has been studied extensively in recent years

(Bittner, 2014; Qin et al., 2017; Mahilane and Singh, 2018;

Quddus et al., 2020; Rana et al., 2020; Ali et al., 2021; Oliveira

et al., 2022; Nasar et al., 2022a). In present study, application of Mo

at different levels were tested in sole and intercropping with maize.

Observations revealed a positive correlation between Mo
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application and LAI, consistent with the findings of (Nasar et al.,

2022a; Oliveira et al., 2022), and may be attributed to Mo mediated

improvement of photosynthetic efficiency (Gao et al., 2010).

Increased total plant biomass as observed in current study is also

consistent with the findings of previous researchers (Raza et al.,

2020b; Hussain et al., 2021), which might be attributed to the role of

Mo in N metabolism, enhancing N-use efficiency and promoting

plant growth (Probst et al., 2021). Additionally, higher biomass

values in intercropping compared to sole cropping systems may be

due to the efficient utilization of resources, such as light, water, and

nutrients as suggested by (Gao et al., 2010). Similarly, positive

correlation between Mo application and various morphological

plant attributes are in agreement with the previously reported

studies (Qin et al., 2017; Heshmat et al., 2021; Nasar et al.,

2022a), which might be correlated with the enhanced application

and subsequent role of Mo in various enzymatic processes related to

plant growth and development (Bittner, 2014; Probst et al., 2021).

Moreover, improvement in these traits in intercropping system

suggests that Mo application can enhance the compatibility of

soybean in intercropping systems, ensuring better growth and

yield (Ren et al., 2017).

In current study, Mo application also improved soybean yield in

both sole and intercropping system, which is also consistent with

the outcomes of previous researchers (Qin et al., 2017; Mahilane

and Singh, 2018; Rana et al., 2020; Ali et al., 2021; Nasar et al.,

2022b). However, lower yields were observed during intercropping

than in sole soybean cultivation, which might be related to

provision of competition between maize and soybean for

resources (Ren et al., 2017; Raza et al., 2020b). However,

increased grain yield with increasing Mo levels in intercropping
Frontiers in Plant Science 09
treatments suggests that Mo can mitigate the adverse effects of

intercropping on soybean yield (Oliveira et al., 2022). Additionally,

higher aggregate outputs observed in intercropping treatments with

higher Mo levels align with previous studies, indicating the potential

for increased yield in intercropping systems (Ren et al., 2017; Raza

et al., 2019; Raza et al., 2020b). In addition to that, improved

soybean physiology after Mo application in both years under sole

and intercropping systems was due to the role of Mo as an essential

component of the enzyme nitrogenase which is involved in N-

fixation (Zuber and Kang, 1978), which contributed to the

improvement in the efficiency of photosynthetic apparatus as well

as stomatal conductance (Wu et al., 2017). Similar results were

previously reported by (Kaiser et al., 2005; Kadlag et al., 2006).

Furthermore, increase in chlorophyll content as observed in this

study could be linked to the role of Mo in the formation of Mo-

cofactor, which is involved in the synthesis of chlorophyll and other

essential biomolecules (Mendel, 2013; Probst et al., 2021), as

suggested by Li et al. (2018). Moreover, positive influence of Mo

on antioxidant activities in soybean was also pragmatic in current

study, which has been earlier reported by (Tiwari et al., 2018;

Oliveira et al., 2022). In contrast, while the application of Mo led to

a decline in lipid peroxidation through potential enhancement of

antioxidant enzyme activities in soybean plants, facilitating ROS

scavenging and protection against oxidative stress, plants can also

mobilize intrinsic defense mechanisms to counteract ROS,

including the activation of antioxidant enzymes and the synthesis

of osmotic adjustment compounds, as highlighted by (Lv et al.,

2019; Jia et al., 2021; Wang et al., 2023) in their respective studies.

Positive interaction between Mo application and nutritional

uptake by plants was observed, as previously reported by (Raza
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Effect of different levels of Mo on antioxidant activities (A) Catalase, (B) Peroxidase, (C) Superoxide dismutase and (D) malondialdehyde contents in
soybean leaves during year 2020–2021. The columns sharing different letters are statistically non-significant (Tukey’s HSD test) at p< 0.05. Error bars
indicate standard deviation.
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et al., 2019). Mo is an essential micronutrient for plants and plays a

crucial role in N metabolism (Walkley and Black, 1934). It has been

reported that Mo application enhances N accumulation, seed yield,

and seed protein content in soybean (Campo et al., 2009) as was

observed in current study. Previous research are supported by our

results, which show an increase in plant nutrient profile quality

under both the solo and intercropping systems. (Raut et al., 2004;

Weisany et al., 2015; Zhao et al., 2022). Moreover, Mo has been

reported to exert positive effects on photosynthesis (Probst et al.,

2021), which may further contribute to enhanced nutrient uptake as

observed in this study. These improvements in the soybean growth,

yield, morphology, physiology, and antioxidant activities after Mo

application have significant implications for agricultural

productivity, particularly in maize-soybean intercropping systems.

Improved photosynthetic performance and stomatal conductance

can contribute to increased biomass and grain yields (Wolff and

Coltman, 1990; Raza et al., 2021; Mirriam et al., 2022). Moreover,

enhanced antioxidant activities can help improve the stress

tolerance of soybean plants under the shaded conditions

commonly encountered in intercropping systems (Zuber and

Kang, 1978; Li et al., 2014; Wu et al., 2017). As a result, Mo

application can potentially enhance the overall productivity and
Frontiers in Plant Science 10
sustainability of maize-soybean intercropping systems (Gao et al.,

2010; Liu et al., 2015; Raza et al., 2020b).
5 Conclusions

Intercropping of soybean and maize has numerous benefits but

shading stress on soybean due to maize canopy can negatively impact

its growth and yield. Exogenous application of Mo has shown

considerable potential in mitigating the negative effects of shading

stress and improving soybean growth and yield. Molybdenum (Mo) is

directly involved in photosynthetic process of plants and it also

stimulates the assimilatory enzyme activities under stressed

conditions, and in this way, help the plant to sustain shading stress.

In a field trial, different levels of Mo were applied and evaluated for

their effects on growth and yield parameters. Results showed that all the

tested levels of Mo significantly improved soybean growth and yield,

with the most efficient level being 120 g ha-1. These findings have

significant implications for the development of sustainable

intercropping practices in agriculture, which can promote optimal

land utilization and enhance crop productivity, contributing to food

security and environmental sustainability. Application of Mo proved to
TABLE 6 Total nitrogen, phosphorus, potassium, and molybdenum uptake under soybean grown as sole crop in different parts of the soybean
(plant−1) during 2020 and 2021.

2020 2021

Nutrients Treatments Root Straw Grain Root Straw Grain

Nitrogen

Mo1 0.31 ± 0.03 b 0.48 ± 0.03 b 0.85 ± 0.05 bc 0.34 ± 0.03 c 0.58 ± 0.04 c 0.89 ± 0.04 c

Mo2 0.35 ± 0.03 ab 0.51 ± 0.03 b 0.88 ± 0.06 b 0.40 ± 0.03 b 0.62 ± 0.04 b 0.93 ± 0.06 b

Mo3 0.41 ± 0.02 a 0.62 ± 0.03 a 0.96 ± 0.05 a 0.47 ± 0.03 a 0.68 ± 0.03 a 1.01 ± 0.05 a

Mo4 0.38 ± 0.03 ab 0.57 ± 0.03 ab 0.91 ± 0.05 ab 0.42 ± 0.03 ab 0.65 ± 0.03 ab 0.97 ± 0.05 ab

P value (0.05) 0.009 0.0025 0.0017 0.0055 0.0025 0.0006

Phosphorus

Mo1 0.03062 ± 0.00 b 0.0447 ± 0.00 c 0.0967 ± 0.02 bc 0.0322 ± 0.00 b 0.0560 ± 0.00 b 0.1443 ± 0.02 c

Mo2 0.03412 ± 0.00 ab 0.0561 ± 0.00 b 0.1112 ± 0.02 b 0.0369 ± 0.00 ab 0.0589 ± 0.00 b 0.1504 ± 0.02 b

Mo3 0.03811 ± 0.00 a 0.0618 ± 0.00 a 0.1521 ± 0.02 a 0.0399 ± 0.00 a 0.0632 ± 0.00 a 0.1633 ± 0.02 a

Mo4 0.03510 ± 0.00 ab 0.0582 ± 0.00 ab 0.1361 ± 0.02 ab 0.0384 ± 0.00 ab 0.0611 ± 0.00 ab 0.1568 ± 0.02 ab

P value (0.05) 0.4547 0.0701 0.0079 0.4547 0.0701 0.0029

Potassium

Mo1 0.0420 ± 0.00 ab 0.5441 ± 0.07 b 0.2891 ± 0.02 b 0.0438 ± 0.00 b 0.5558 ± 0.06 c 0.2997 ± 0.01 c

Mo2 0.0432 ± 0.00 ab 0.5585 ± 0.07 ab 0.2969 ± 0.02 b 0.0459 ± 0.00 ab 0.5865 ± 0.07 b 0.3156 ± 0.02 b

Mo3 0.0479 ± 0.00 a 0.5994 ± 0.07 a 0.3177 ± 0.02 a 0.0492 ± 0.00 a 0.6362 ± 0.08 a 0.3419 ± 0.03 a

Mo4 0.0450 ± 0.00 ab 0.5753 ± 0.07 ab 0.3054 ± 0.02 ab 0.0477 ± 0.00 ab 0.6112 ± 0.08 ab 0.3292 ± 0.02 ab

P value (0.05) 0.4547 0.0003 0.0219 0 0.0049 0.0219

Molybdenum

Mo1 16.40 ± 0.26 d 22.47 ± 0.18 d 46.84 ± 0.36 d 18.09 ± 0.27 d 23.30 ± 0.13 d 48.96 ± 0.49 d

Mo2 17.35 ± 0.20 c 23.14 ± 0.18 c 49.93 ± 0.40 c 19.14 ± 0.22 c 24.69 ± 0.10 c 52.36 ± 0.55 c

Mo3 20.62 ± 0.03 a 26.19 ± 0.24 a 56.19 ± 0.43 a 22.16 ± 0.04 a 28.41 ± 0.14 a 60.10 ± 0.61 a

Mo4 19.32 ± 0.14 b 24.06 ± 0.18 b 53.22 ± 0.42 b 20.28 ± 0.15 b 26.17 ± 0.10 b 55.92 ± 0.58 b

P value (0.05) 0 0 0 0 0 0
Different lowercase letters, in a single column, show significant differences among concentration means at p< 0.05.
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be a suitable alternative in improving the shade tolerance in soybean

under soybean maize intercropping system. Following schematic

diagram shows the mechanism of induced shade tolerance in

soybean after Mo application.

Soybean-maize intercropping improved photosynthesis

and enzyme activities shade tolerance improved

plant growth and physiology.
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