
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Shengli Jing,
Xinyang Normal University, China

REVIEWED BY

Qingjun Wu,
Chinese Academy of Agricultural Sciences,
China
Ting Chen,
Guangdong Academy of Agricultural
Sciences, China
Hai-jian Huang,
Ningbo University, China

*CORRESPONDENCE

Li-Long Pan

panlilong@zju.edu.cn

†These authors share first authorship

RECEIVED 01 June 2023

ACCEPTED 14 August 2023

PUBLISHED 30 August 2023

CITATION

Li D, Li H-Y, Zhang J-R, Wu Y-J, Zhao S-X,
Liu S-S and Pan L-L (2023) Plant resistance
against whitefly and its engineering.
Front. Plant Sci. 14:1232735.
doi: 10.3389/fpls.2023.1232735

COPYRIGHT

© 2023 Li, Li, Zhang, Wu, Zhao, Liu and Pan.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 30 August 2023

DOI 10.3389/fpls.2023.1232735
Plant resistance against whitefly
and its engineering

Di Li1†, Heng-Yu Li1†, Jing-Ru Zhang1, Yi-Jie Wu1,
Shi-Xing Zhao1, Shu-Sheng Liu1 and Li-Long Pan1,2*

1Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key
Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect
Sciences, Zhejiang University, Hangzhou, China, 2The Rural Development Academy, Zhejiang
University, Hangzhou, China
Plants face constant threats from insect herbivores, which limit plant distribution

and abundance in nature and crop productivity in agricultural ecosystems. In

recent decades, the whitefly Bemisia tabaci, a group of phloem-feeding insects,

has emerged as pests of global significance. In this article, we summarize current

knowledge on plant defenses against whitefly and approaches to engineer plant

resistance to whitefly. Physically, plants deploy trichome and acylsugar-based

strategies to restrain nutrient extraction by whitefly. Chemically, toxic secondary

metabolites such as terpenoids confer resistance against whitefly in plants.

Moreover, the jasmonate (JA) signaling pathway seems to be the major

regulator of whitefly resistance in many plants. We next review advances in

interfering with whitefly-plant interface by engineering of plant resistance using

conventional and biotechnology-based breeding. These breeding programs

have yielded many plant lines with high resistance against whitefly, which hold

promises for whitefly control in the field. Finally, we conclude with an outlook on

several issues of particular relevance to the nature and engineering of plant

resistance against whitefly.

KEYWORDS
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resistance breeding
1 Introduction

Plants, whether wild or cultivated, are constantly confronted with many biotic and

abiotic threats (Wilkinson et al., 2019). The biotic threats encompass pathogens such as

viruses, bacteria and fungi, as well as herbivores including insects and large animals.

Among these biotic factors, insect herbivores are particularly significant due to their

remarkable diversity and abundance (Savary et al., 2019; Wilkinson et al., 2019). Extensive

research in recent decades has revealed general principles underlying the intimate

interactions between insect herbivores and their plant hosts (Erb and Reymond, 2019;

Snoeck et al., 2022). Insect herbivores employ a range of behavioral and molecular

strategies to facilitate nutrient extraction (Dussourd, 2017; Stahl et al., 2018), while

plants deploy various defense responses to deter insect herbivores (Erb and Reymond,
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2019; Snoeck et al., 2022). The long-lasting and ongoing arms race

between plants and insect herbivores has shaped the ecology and

evolution of both groups of organisms in nature (Bergelson et al.,

2001; Zust et al., 2012). In agricultural practices, insect herbivores,

alongside other pests, pose serious threats to global food security

(Savary et al., 2019). Therefore, an improved understanding of

plant-insect herbivore interactions is crucial, from both scientific

and applied perspectives.

Many insect herbivores such as the whitefly, have specialized in

feeding on plant phloem and thus are referred to as phloem-feeding

insects. Despite their small size (around 1.0 mm in length for

adults), whiteflies are highly prolific, with females each capable of

producing dozens to hundreds of eggs depending on environmental

conditions (Byrne and Bellows, 1991). Whiteflies cause significant

losses to crop through direct sap feeding, inducing plant

physiological disorders and promoting the growth of sooty mold

(Oliveira et al., 2001; Farina et al., 2022). Moreover, whiteflies can

indirectly harm plants by transmitting plant viruses, particularly

begomoviruses and criniviruses, resulting in severe viral disease

epidemics (Gilbertson et al., 2015; Fiallo-Olivé et al., 2020; Wang

and Blanc, 2021). For example, whiteflies are known to vector over

400 viruses belonging to the genus Begomovirus through a

persistent circulative manner, leading to the occurrence of

numerous viral diseases (Gilbertson et al., 2015; Fiallo-Olivé et al.,

2020; Wang and Blanc, 2021; Fiallo-Olivé and Navas-

Castillo, 2023).

As a group of piercing-sucking insects, the feeding behavior of

whitefly differs significantly from that of insects with chewing

mouthparts. Correspondingly, the responses of plants to whitefly

infestation differ significantly from those mounted against chewing

insects (Kaloshian and Walling, 2005; Kempema et al., 2007; Zarate

et al., 2007; Walling, 2008; Wang et al., 2017). Additionally, when

compared to some other closely-related piercing-sucking insects

including aphids, whiteflies are unique in many ways with regard to

interactions with plants due to their distinctive size, feeding habits

and life history (Walling, 2008; Wang et al., 2017). Therefore,

explorations of plant resistance against whitefly may add to our

knowledge of insect-plant interactions. More importantly, the

distinctiveness of whitefly-plant interactions urges more efforts in

resistance engineering as plant cultivars obtained from breeding

programs against other groups of insect herbivores may fail to

control whitefly. Under this scenario, innovations to specifically

augment plant resistance against whitefly are required and will be

invaluable in sustaining the product ion of whitefly-

susceptible crops.

The continuous research efforts and rapid development of novel

research tools such as omics, have promoted the dissection of plant

resistance against whitefly (Zogli et al., 2020). Additionally, in

recent years, significant advances have been made in interfering

with the whitefly-plant interface through the engineering of plant

resistance. In this article, we aim to summarize and review these

recent advances. First, we will describe current understanding of

plant traits that confer resistance to whitefly. Next, we will

summarize the progress made in engineering plant resistance to

whitefly using conventional and biotechnology-based breeding.
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Finally, we will highlight several issues related to the investigation

and engineering of plant resistance against whitefly.
2 Plant physical traits that confer
resistance to whitefly

Physical traits of resistance impact insect herbivores physically,

such as restricting their movement or hindering their feeding.

When whiteflies feed on plants (Figure 1A), trichomes and

acylsugars serve as major physical traits that confer resistance to

whitefly (Figure 1B).
2.1 Trichomes

Trichomes are specialized hairs on the surface of plants that can

be epidermal protuberances of different sizes, shapes and

arrangements. They can be classified as glandular and non-

glandular based on their ability to synthesize, secrete and store

substances (Tissier, 2012). The role of trichomes in whitefly-plant

interactions has been intensively studied in wild relatives of

cultivated tomato, in which trichomes were categorized into seven

types with four of them being glandular (types I, IV, VI, and VII)

and three being non-glandular (types II, III, and V) (Simmons and

Gurr, 2005). Glandular trichomes and their exudates play an

important role in plant defense against whitefly (Figure 1B). The

entrapment of whitefly on tomato leaves was first reported by Kisha

(1981). Further exploration revealed a key role of glandular type IV

and VI trichomes in reducing whitefly adult survival and

oviposition rate (Channarayappa et al., 1992; Snyder et al., 1998).

Detailed profiling of whitefly feeding activities revealed that type IV

glandular trichomes disrupted whitefly probing behavior (Narita

et al., 2023).

Compounds in the exudates of these trichomes such as

acylsugars were identified to be vital in conferring resistance to

whitefly in plants including tomato and Nicotiana benthamiana.

High resistance against whitefly was mechanically transferable by

applying the trichome exudates from resistant S. pennellii

accessions (LA716, LA1340, LA1674 and LA2560) onto the leaves

of susceptible tomato plants (Liedl et al., 1995; Muigai et al., 2002).

Significant, positive correlations were found between acylsugar

content and whitefly resistance when analyzing tomato genotypes

with varying acylsugar contents (Dias et al., 2016; Marchant et al.,

2020; Dias et al., 2021; de Lima Filho et al., 2022). Furthermore,

acylsugar compositions from several S. pennellii accessions with

high whitefly resistance were characterized, revealing synergistic

interactions between different kinds of acylsugars (Leckie et al.,

2016). In N. benthamiana plants, CRISPR/Cas9 mutagenesis of

acylsugar acyltransferase genes significantly decreased acylsugar

contents and resistance against whitefly while maintaining the

structure and abundance of trichomes on the leaf surface (Feng

et al., 2022).

The role of trichomes in other plants has also been explored.

Many studies analyzed the correlation between whitefly resistance
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and overall trichome density without classifying trichomes into

specific types such as glandular or non-glandular. Results have

shown that the role of trichomes varies depending on the plant

species, highlighting intrinsic variation between plant species. For

example, in tobacco and cassava, negative correlation was observed

between whitefly resistance and overall trichome density (Li et al.,

2014; Pastório et al., 2023), whereas in black gram a positive

correlation was found (Taggar and Gill, 2012). On the other

hand, no significant correlation was identified between whitefly

resistance and trichome density in cucumber (Novaes et al., 2020).

In some cases, the correlation may vary among cultivars of the same

plant species. Field trials on cotton cultivars, for example, showed

higher whitefly population density on cotton plants with higher

trichome density, indicating a negative correlation between

trichome density and whitefly resistance (Zia et al., 2011; Prado

et al., 2016; Siddiqui et al., 2021; Suthar et al., 2022). However,

positive correlations between overall trichome density and whitefly

resistance in cotton have also been reported (Thomas et al., 2014;

Zhu et al., 2018). Similar variations have been observed in studies
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on soybean (McAuslane, 1996; Baldin et al., 2017). Furthermore, the

contribution of trichome length to plant defenses against whitefly

has been investigated, revealing negative correlation between

trichome length and plant defenses against whitefly in eggplant

and black gram plants (Taggar and Gill, 2012; Hasanuzzaman

et al., 2016).

So far, studies conducted on tomato indicate that trichomes

exhibiting defenses against whitefly have been observed only in wild

relatives of cultivated tomato and tomato cultivars obtained from

breeding programs involving wild relatives of tomato. For other

plant species, studies have been mostly focused on crop cultivars,

and the results generally suggest a lack of contribution of trichomes

to plant defense. To clarify the role of trichomes in plant defenses

against whitefly in plant species beyond tomato, it is necessary to

investigate the trichomes of wild relatives of these crop species.

Furthermore, in studies involving non-tomato plants, the

correlation between whitefly resistance and overall trichome

density is often analyzed. However, this approach may mask the

function of specific trichome types, such as glandular trichomes,
B

C

D

A

FIGURE 1

Plant resistance against whitefly Schematic representation of whitefly feeding a plant (A), and plant resistance against whitefly at physical (B), chemical (C)
and signaling (D) level. Physically, plants may use trichome and acylsugar to constrain whitefly feeding. Chemically, plants may synthase a repertoire of
secondary metabolites such as terpenoids, glucosinolates, phenolic compounds and lignin, and defense proteins such as glucosidase, glucanase and
chitinase to inhibit whitefly herbivory. Plants may also synthase and release volatile organic chemicals (VOCs) such as ocimene, myrcene, methyl salicylate
and tetradecane, to attract natural enemies of whitefly. At signaling level, jasmonates (JA) controls the expression of defense genes to inhibit the ingestion of
plant nutrients by whitefly.
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which play a significant role in whitefly resistance. Therefore,

further empirical studies are needed to gain a better

understanding on the role of trichomes in plant defense

against whitefly.
2.2 Other physical traits

In addition to trichomes, other physical traits such as leaf shape,

color and lamina thickness have been investigated for their potential

contribution to plant defenses against whitefly. For example, cotton

varieties with okra-shaped leaves exhibited higher whitefly

resistance compared to broad-leaved varieties (Chu et al., 2002).

Narrow and thinner leaves were associated with increased whitefly

resistance in tomato breeding lines (Pal et al., 2021). Leaf color also

plays a role, as eggplant varieties with leaves reflecting more green

light and exhibiting higher overall brightness displayed higher

whitefly resistance (Hasanuzzaman et al., 2016). Conversely, in

common bean, luminosity and the intensity of green and yellow

colors were negatively correlated with whitefly resistance (Santos

et al., 2020). Regarding leaf lamina thickness, field tests involving

green gram, cotton, cucumber and eggplant, consistently reported

higher whitefly populations on varieties with thicker leaf lamina,

indicating a negative correlation between leaf lamina thickness and

whitefly resistance (Butter and Vir, 1989; Shibuya et al., 2009; Jindal

and Dhaliwal, 2011; Hasanuzzaman et al., 2016). Although these

morphological traits have been implicated in contributing to

resistance in many studies, their precise roles in whitefly-plant

interactions have yet to be determined. Further detailed

investigations are necessary to dissect the specific functions of

these traits, categorize them and consider them in resistance

breeding programs.
3 Plant chemical traits that confer
resistance to whitefly

In plant resistance against insect herbivores, plant chemicals

play a significant role either directly or indirectly by attracting

natural enemies of the herbivores, thereby providing protection to

the plants (Yactayo-Chang et al., 2020). In the context of whitefly-

plant interactions, several chemicals that contribute to direct or

indirect defenses against whitefly have been identified (Figure 1C).
3.1 Direct chemical defense

3.1.1 Secondary metabolites
Secondary metabolites play a major role in plant defense against

insect herbivores (Luo et al., 2023), yet only a few have been

examined for their contribution to resistance against whitefly.

Luan et al. (2013) found that whitefly feeding increased the

contents of several terpenoids including cedinene in tobacco

plants, and manipulation of cedinene contents through gene

silencing or over-expression of 5-epi-aristolochene synthase
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indicated that cedinene positively regulated resistance against

whitefly. As revealed by metabolites profiling and feeding assays,

many phenolic glycosides from tomato plants were identified to

contribute to plant defenses against whitefly (Xia et al., 2021).

Glucosinolates are a major group of secondary metabolites in

crucifers, and are shown to contribute to resistance against

whitefly when they accumulated to unnaturally high levels, but

not under natural conditions. Elbaz et al. (2012) found that the

survival and developmental rate of whitefly nymphs significantly

decreased with the accumulation of aliphatic glucosinolate through

AtMYB29 overexpression. Whitefly oviposition preference for

Arabidopsis thaliana plants was significantly reduced when the

contents of aliphatic and total glucosinolates were increased to

unnaturally high levels through AtMYB28 and AtMYB51 over-

expression (Markovich et al., 2013). Using Brassica crops that

vary in glucosinolate profile and Arabidopsis mutants defective in

glucosinolate biosynthesis or hydrolysis, Li et al. (2021) revealed

that the performance of invasive MEAM1 whiteflies and indigenous

Asia II 3 whiteflies was unaffected by glucosinolates when these

chemicals were maintained at natural levels in these plants.

Additionally, other secondary metabolites have been implicated

in plant defense against whitefly. Studies have reported a positive

correlation between the total content of phenolic components and

whitefly resistance in eggplant and tomato (Hasanuzzaman et al.,

2016; Pal et al., 2021). In tobacco plants, it was observed that certain

phenolic compounds, such as chlorogenic acid, catechin, cafeic acid,

p-coumaric acid, rutin and ferulic acid, increased in response to

whitefly infestations, suggesting their potential role in resistance

(Zhang et al., 2017). Similarly, in soybean and cassava, rutin and

lignin (along with its derivatives) showed positive association with

whitefly resistance (Vieira et al., 2016; Perez-Fons et al., 2019).

Furthermore, whitefly infestation has been found to induce callose

deposition, which may contribute to plant defense by plugging sieve

pores (Kempema et al., 2007; Li et al., 2017).

Many plant secondary metabolites have been shown empirically

to contribute to plant defense against insects with chewing

mouthparts (Yactayo-Chang et al., 2020; Luo et al., 2023).

However, research on the contribution of secondary metabolites

to plant defense against whitefly has been limited. There are still

many unanswered questions regarding the induction and

mechanisms of action of secondary metabolites in whitefly

defense. To address these gaps, it would be valuable to draw upon

the abundant information available from studies on chewing insects

(Yactayo-Chang et al., 2020; Luo et al., 2023). A better

understanding of how plant secondary metabolites function in

whitefly resistance could have practical implications for the

development of novel pesticides.

3.1.2 Defense proteins
Upon infestation by insect herbivores, plants can activate the

expression of defense proteins, which can disrupt the normal

physiological processes of the insects, including digestion and

absorption of nutrients (Howe and Jander, 2008). The role of

defense proteins in resistance against whitefly has been

extensively studied, particularly focusing on CYS6, a protease
frontiersin.org
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inhibitor in tobacco plants. Genetic manipulation of CYS6 and

feeding assays using purified CYS6 have demonstrated its direct

contribution to plant defense against whitefly (Du et al., 2022).

Additionally, whitefly infestation has been found to induce the

expression of various plant defense proteins. For example, increased

local expression of b-glucosidase was found in squash plants

infested by whitefly (van de Ven et al., 2000). Tomato and

cassava plants, when infested by whitefly, showed significant

increases in the expression of b-1,3-glucanase, chitinase and

peroxidase (Mayer et al., 1996; Antony and Palaniswami, 2006).

Furthermore, whitefly infestation led to increased activity of

polyphenoloxidase in cucumber and pepper plants, as well as

superoxide dismutase, peroxidase and polyphenoloxidase in

tomato and soybean plants (Zhang et al., 2008; Latournerie-

Moreno et al., 2015; de Lima Toledo et al., 2021; Harish et al.,

2023). Additionally, the expression of several pathogenesis-related

proteins in tomato was also found to be upregulated in response to

whitefly infestation (Puthoff et al., 2010).

The accumulation of defense proteins in response to whitefly

infestation is widely acknowledged, but their precious role in plant

defenses against whitefly remains largely unknown. To address this

knowledge gap, additional case studies, similar to the work of Du

et al. (2022) are necessary. Assays involving genetic manipulation of

plant genes that encode whitefly infestation-inducible defense

proteins and feeding experiment with purified proteins would

provide valuable insights into the genuine contribution of these

defense proteins to resistance against whitefly.
3.2 Indirect defenses

In addition to direct defense, whitefly feeding can induce the

release of plant volatile organic compounds (VOCs) in plants,

which attract the natural enemies of whitefly and help protect the

plants (Figure 1C). In terms of predators, Nomikou et al. (2005)

found that two predatory mites Typhlodromips swirskii and Euseius

scutalis showed a significant preference for whitefly-infested

cucumber plants compared to non-infested plants, and this

preference was mediated by the volatiles emitted by plants. Silva

et al. (2018) showed that the predatory mirid Macrolophus

basicornis was attracted to tomato plants infested by a mixture of

whitefly eggs, nymphs and adults. As for parasitoids, Zhang et al.

(2013) demonstrated that whitefly infestation in Arabidopsis plants

led to the accumulation of ocimene/myrcene, which effectively

attracted the whitefly parasitoid Encarsia formosa. In response to

whitefly herbivory, melon plants released methyl salicylate and

tetradecane, which facilitated the attraction of the whitefly

parasitoid E. desantisi (Silveira et al., 2018). Similarly, whitefly

infestation of tomato plants resulted in the emission of b-
myrcene and b-caryophyllene, which mediated host location of

the parasitic wasp E. formosa (Chen et al., 2020).

Due to the differences in feeding behavior, the quantity and

quality of VOCs produced by whitefly-infested plants are expected

to vary compared to plants attacked by other insects. For example,

whitefly may interfere with the indirect plant defense mounted

against spider mites in Lima bean (Zhang et al., 2009). It should be
Frontiers in Plant Science 05
noted, however, whitefly-induced VOCs have been identified only

in a few case studies (see above). In addition to VOCs, other plant

traits such as architecture and glandular trichomes also contribute

to indirect defenses against insect herbivores (Pearse et al., 2020).

Therefore, further research is required to fully explore the potential

of indirect defenses in whitefly control, by investigating plant

characterist ics that faci l i tate natural enemy-mediated

plant protection.
4 Plant signaling pathway
against whitefly

The jasmonate (JA) signaling pathway, as a conserved core

pathway regulating plant response to insect herbivory (Erb and

Reymond, 2019), plays a major role in plant defense against whitefly

(Figure 1D). Studies using Arabidopsis mutants with varying levels

of JA defense have demonstrated the control of basal defense

against whitefly by JA signaling pathway (Zarate et al., 2007).

Manipulation of JA signaling pathways in tobacco plants through

virus-induced gene silencing or genetic mutation of MYC2 resulted

in increased whitefly survival and fecundity (Zhang et al., 2012; Li

et al., 2014). In tomato, when compared to control, whitefly survival

and fecundity increased on JA-deficient spr2 mutant plants and

decreased on JA-overexpression 35S-prosystemin transgenic plants

(Sun et al., 2017). Exogenous application of JA on tomato plants

significantly reduced whitefly survival and fecundity (Shi et al.,

2017). Additionally, several downstream defense genes involved in

JA signaling pathway against whitefly have been identified,

including terpenoid synthesis genes, the expression of which is

positively modulated by JA treatment (Li et al., 2014).
5 Engineering of plant
resistance to whitefly

Both conventional and biotechnology-based breeding

approaches have been employed in the engineering of plant

resistance against whitefly. These research endeavors have

resulted in the development of numerous genetic resources that

can be utilized to enhance plant resistance against whitefly.
5.1 Naturally occurring resistances and
their utilization in resistance breeding

Whiteflies exhibit variability in their host plant range, with

different species showing variations in survival and fecundity on

different plant species, as well as cultivars or ecotypes of the same

plant species (Zang et al., 2006; Xu et al., 2011). Wild relatives of

cultivated crops often exhibit higher resistance to insect pests

compared to crop cultivars (Li et al., 2018; Ferrero et al., 2020).

The naturally occurring resistance found in these plants, including

genes or quantitative trait loci (QTLs) associated with resistance,

can be directly utilized in resistance breeding (Broekgaarden et al.,

2011). Consequently, significant research efforts have been
frontiersin.org
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dedicated to the identification of plant resistance genes or QTLs and

their application in breeding initiatives.

5.1.1 Plant resistance genes or QTLs conferring
resistance to whitefly

Tomato has been extensively studied in the context of resistance

genes or QTLs due to the significance of whitefly in tomato

production. Several whitefly resistance genes or QTLs have been

identified in tomato, providing valuable genetic resources for

breeding. Among these genes, Mi-1 has been the focus of

extensive research (Nombela and Muñiz, 2010). Mi-1, a member

of nucleotide-binding, leucine-rich repeat family of resistance

genes, was initially identified for conferring resistance to root-

knot nematodes (Roberts and Thomason, 1986). It was later

found to also impart resistance to phloem-feeding insects like

aphids and whiteflies (Rossi et al., 1998; Nombela et al., 2003).

Subsequent analysis revealed a series of plant factors that may affect

whitefly resistance conferred by Mi-1, such as Hsp90, salicylic acid

and plant age and size (Rodrıǵuez-Álvarez et al., 2015; Rodrıǵuez-

Álvarez et al., 2017; Pascual et al., 2023). Additionally, functional

characterization of Mi-1.2-like orthologs in cotton demonstrated

their potential contribution to plant resistance against whitefly,

highlighting the potential ofMi-1.2-like genes in whitefly control in

cotton plants (Aslam et al., 2023). Furthermore, several other genes

or QTLs that may confer whitefly resistance, such as Wf-1 and Wf-

2, have been identified in S. pennellii, S. galapagense and S.

habrochaites (Leckie et al., 2012; Firdaus et al., 2013; Lucatti et al.,

2014; Santegoets et al., 2021). Notably, a major QTL that controls

the density of type IV trichomes, a major contributor to whitefly

resistance, was identified in S. pimpinellifolium (Mata-Nicolás

et al., 2021).

In contrast, in other crops and their wild relatives, the

identification of QTLs related to whitefly resistance is limited,

indicating the need for further research. For example, in melon,

only two additive QTLs affecting whitefly fecundity, namely BtB-

VII.1 and BtB-IX.1, have been identified (Boissot et al., 2010). In

soybean, whitefly resistance was found to be controlled by two

major genes as well as polygenes, with the major genes showing an

inheritability of over 85% (Xu et al., 2010).

5.1.2 Conventional resistance breeding
Conventional breeding for plant resistance involves

incorporating resistance traits from highly resistant plant

accessions into target crop cultivars. So far, conventional

resistance breeding has been reported only in tomato. In the first

attempt, a tomato cultivar carrying the Mi-1 gene, Motelle, was

obtained from the crossing between S. lycopersicum Moneymaker

and S. peruvianum; detailed mapping revealed that Motelle differed

from Moneymaker only in the presence of a 650 kb region

containing the Mi-1 gene from S. peruvianum (Ho et al., 1992).

While Motelle was initially obtained for nematode control,

subsequent studies revealed that plants of this cultivar displayed

significantly lower susceptibility to whitefly than Moneymaker

(Nombela et al., 2000; Jiang et al., 2001). Since then, several more

studies have been reported using wild relatives of cultivated tomato
Frontiers in Plant Science 06
as donor of whitefly resistance. For example, plant traits associated

with whitefly resistance from the wild tomato S. pimpinellifolium

accession TO-937 were introgressed into Moneymaker, resulting in

lines with increased whitefly resistance (Rodrıǵuez-López et al.,

2011; Escobar-Bravo et al., 2016). Several mini tomato lines that

displayed high whitefly resistance were obtained through

interspecific crossing between S. lycopersicum mini tomato

cultivars and S. pennellii LA-716 (Maciel et al., 2017). Tomato

lines obtained from the above attempts were further used in

resistance breeding. For example, Gouveia et al. (2018) used two

tomato lines that carry the Mi gene and differ in acyl-sugar content

in a crossing experiment and obtained several tomato lines with

high whitefly resistance.

It is important to note that tomato cultivars obtained through

conventional resistance breeding, using wild Solanum species as

donors of whitefly resistance, exhibit only partial resistance against

whitefly. This may be attributed to the fact that whiteflies are

capable of surviving and reproducing on wild relatives of crops,

albeit with reduced performance compared to that on cultivated

crops. Moreover, conventional resistance breeding is characterized

by its unpredictable nature and time-consuming processes,

underscoring the need for biotechnology-based approaches in

whitefly resistance breeding.
5.2 Biotechnology-based
resistance breeding

Biotechnology-based breeding, which entails targeted

manipulation or introduction of genetic materials in crops,

represents a promising alternative for crop breeding as it is more

targeted and efficient (Barrows et al., 2014). In biotechnology-based

resistance breeding against whitefly, plant-mediated RNA

interference (RNAi) of whitefly genes and ectopic expression of

insecticidal proteins or foreign genes that manipulate the

production of insecticidal chemicals in plants, have been explored.
5.2.1 Plant-mediated RNA interference
of whitefly genes

RNAi, a specific post-transcriptional gene silencing mechanism

triggered by double-stranded RNA (dsRNA) or small interfering

RNA (siRNA), has been harnessed in resistance breeding for

whitefly management (Table 1). Ghanim et al. (2007)

demonstrated that injection of dsRNA into whitefly hemolymph

activated RNAi and downregulated of the transcription of target

genes, confirming the presence and functionality of the RNAi

machinery. Subsequently, the efficacy of orally-delivered dsRNAs/

siRNAs was compared, showing that targeting the V-ATPase A led

to efficient downregulation of the target gene and high whitefly

mortality (Upadhyay et al., 2011). Based on these findings,

transgenic tobacco plants were generated to produce long dsRNA

precursor that would produce siRNAs targeting whitefly V-ATPase

A mRNA. Bioassay revealed that expressing the dsRNA precursor

significantly downregulated V-ATPase A transcription, increased

whitefly mortality, and protected tobacco plants from heavy
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whitefly infestation (Thakur et al., 2014). Similarly, the expression

of dsRNA in lettuce or siRNA in common beans and tomato

targeting a whitefly V-ATPase gene, significantly increased

resistance to whitefly (Ibrahim et al., 2017; Ferreira et al., 2022;

Pizetta et al., 2022). Additional studies have employed RNAi to

downregulate whitefly genes, highlighting the promising potential

of this approach in whitefly management (Malik et al., 2016;

Eakteiman et al., 2018). The expression of dsRNA targeting

whitefly acetylcholinesterase, ecdysone receptor and two trehalose-

6-phosphate synthase genes in tobacco plants conferred resistance

against whitefly (Malik et al., 2016; Gong et al., 2022).

Notably, phloem-specific expression of dsRNA that was achieved

through the use of phloem-specific promoters, has shown high

effectiveness in combating whiteflies. In tobacco plants, phloem-

specific expression of dsRNA targeting two genes responsible for

whitefly osmotic pressure maintenance led to a significant increase

in whitefly mortality (Raza et al., 2016). Similarly, in A. thaliana,

phloem-specific expression of dsRNA targetingwhitefly detoxification

genes extended the developmental period of whitefly nymphs

(Eakteiman et al., 2018).

Manipulation of the expression of intrinsic or artificial micro

RNAs (miRNAs) that target whitefly genes in plantswas also shown to

confer plants with whitefly resistance. Using in silico prediction, a

cottonmiRNAghr-miR166bwas found to target severalwhitefly genes

involved in mitochondrial ATP synthase. Overexpression of ghr-

miR166b in cotton plants significantly increased whitefly mortality

and protected plants from whitefly infestation (Wamiq and Khan,

2018). Overexpression of an engineered artificial miRNA targeting

three whitefly genes including sex lethal, acetylcholinesterase and
Frontiers in Plant Science 07
orcokinin conferred high resistance against whitefly in tobacco plants

(Zubair et al., 2020).

Furthermore, different strategies to generate transgenic plants

that express dsRNA have been explored and compared. Currently,

there are two main approaches for transforming, namely nuclear

transformation and transplastomics (Zhang et al., 2017). Dong et al.

(2020) found that transgenic tobacco plants derived from nuclear

transformation were more effective for whitefly management than

those derived from transplastomics. Further analysis revealed that

the lower effectiveness of transplastomic plants could be attributed

to the inability of whitefly to ingest dsRNA from plastids. This study

not only highlights the difference between whitefly and insects with

chewing mouthparts, but also provides reference information for

optimizing RNAi-based resistance breeding against whitefly.
5.2.2 Ectopic expression of foreign genes
The commonly-used Bt toxins are ineffective against

hemipteran insects like whitefly due to their mode of action

(Palma et al., 2014). Therefore, in resistance breeding against

whitefly, insecticidal proteins other than Bt have been identified

from various sources and utilized for ectopic expression. For

example, ectopic expression of the Aspergillus niger b-glucosidase
gene in tobacco plants markedly increased resistance against

whitefly (Wei et al., 2007). In tobacco plants, expression of

Pinellia ternate agglutinin, a protein with lectin and insecticidal

activity against whitefly, resulted in a reduction of over 90% in

whitefly nymphal survival and population size (Jin et al., 2012).

Another study screened proteins from ferns, a group of plants
TABLE 1 Resistance engineering in plants that targets whitefly genes using RNA interference.

Target genes in whitefly
Methods of
targeting

Test plant Effects on whitefly Reference

v-ATPase A Expression of dsRNA Nicotiana
tabacum

Decreased adult survival Thakur et al., 2014

Acetylcholinesterase and ecdysone
receptor

Expression of dsRNA N. tabacum Decreased adult survival Malik et al., 2016

v-ATPase Expression of dsRNA Lactuca sativa Decreased adult survival and fecundity Ibrahim et al.,
2017

F1F0 ATP synthases Expression of miRNA Gossypium
hirsutum

Decreased adult survival Wamiq and Khan,
2018

Sex lethal, acetylcholinesterase and
orcokinin

Expression of artificial
miRNA

N. tabacum Retarded nymph development, decreased population
growth

Zubair et al., 2020

v-ATPase Expression of siRNA Phaseolus
vulgaris

Decreased adult survival Ferreira et al.,
2022

Trehalose-6-phosphate synthase 1
and 2

Expression of dsRNA N. tabacum Retarded nymph development, decreased adult
survival and fecundity

Gong et al., 2022

v-ATPase A Expression of siRNA Solanum
lycopersicum

Decreased adult survival and fecundity Pizetta et al., 2022

Aquaporin and alpha glucosidase Phloem-specific expression of
dsRNA

N. tabacum Decreased adult survival Raza et al., 2016

Glutathione S-transferase 5 Phloem-specific expression of
dsRNA

Arabidopsis
thaliana

Prolonged nymph development Eakteiman et al.,
2018
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known for their intrinsic resistance towhitefly, and identifiedTma12, a

protein with chitin-binding and chitinase activity from Tectaria

macrodonta. Expression of Tma12 in cotton plants resulted in a

reduction of over 90% in whitefly population, decreased the

incidence of whitefly-borne cotton leaf curl viral diseases, and

disrupted whitefly life cycles (Shukla et al., 2016). Additionally,

tissue-specific expression of insecticidal proteins has been explored.

Phloem-specific expression of a neurotoxin and an onion leaf lectin in

tobacco plants resulted in nearly 100%whiteflymortality (Javaid et al.,

2016). Moreover, effective resistance against both whitefly and cotton

bollworm were achieved in cotton plants by expressing both Bt and

Allium sativum lectin genes (Din et al., 2021). These studies

demonstrate that while classical Bt toxins are not effective against

whitefly, other insecticidal proteins from diverse sources may hold

significant potential in managing whitefly and can be used in

conjunction with Bt toxins to control multiple insect pests.

Another strategy for resistance breeding against whitefly involves

manipulating the production of plant chemicals that display

insecticidal properties. Some chemicals derived from plants have

been found to be highly toxic to whitefly. Manipulating the

production of these chemicals in plants can be achieved through the

ectopic expression of foreign genes. For example, the over-expression

of the pectin methylesterase gene from A. thaliana and A. niger in

transgenic tobacco plants substantially increased methanol

production, resulting in reduction of the whitefly population (Dixit

et al., 2013). Ectopic expression of the 7-epizingiberene synthase andZ-

Z-farnesyl-diphosphate synthase genes from S. habrochaites in the

glandular trichomes of S. lycopersicum plants led to the production

of 7-epizingiberene, a chemical with toxic and repellent properties

against whitefly (Bleeker et al., 2012).
6 Future perspectives

In the study and engineering of plant resistance against whitefly,

significant progress has been made, but there are still important issues

that require further exploration. One such question is the identification

of whitefly-derived factors that trigger plant defense responses during

whitefly herbivory. Another key area is the improvement of

identification and utilization of plant resistance genes, thereby

developing more effective breeding strategies. Additionally, the

potential use of whitefly horizontally transferred genes (HTGs) as

targets for RNAi in resistance breeding is worth investigating.

Utilizing HTGs as RNAi targets could potentially enhance the efficacy

and specificity of resistance breeding. These areas of research hold great

promises in advancing our understanding of plant resistance to whitefly

and developing innovative approaches for whitefly management.
6.1 Whitefly-derived elicitors
of plant defenses

While physical traits of plant resistances are often expressed

constitutively, chemical traits are often induced by whitefly

herbivory. In the research to unravel the induction of chemical

defense, mechanical damage and elicitors from saliva and eggs were
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found to mediate the perception of chewing insects by plants

(Bonaventure, 2012). For phloem-feeders, a cysteine protease

Cathepsin B3 from the saliva of aphids and a salivary protein

NlG14 from the rice brown planthopper were shown to serve as

elicitors of plant defense responses (Guo et al., 2020; Gao et al.,

2022). Whiteflies exhibit distinct behavior and physiology

compared to chewing insects and other phloem-feeding insects

(Kempema et al., 2007; Walling, 2008). Consequently, the

perception of whitefly feeding by plants may differ from that of

the other insect herbivores. So far only one case study reported the

activation of plant defenses by factors from whitefly. Whitefly may

glycosylate salicylic acid ingested from plants and the secretion of

honeydew containing salicylic acid glycoside may induce the

accumulation of endogenous free salicylic acid and the expression of

downstream genes in the salicylic acid signaling pathway (VanDoorn

et al., 2015). Therefore, further investigations are necessary to identify

whitefly-derived factors that mediate plant perception of whitefly

herbivory. These factors could be metabolites or proteins that come

into contact with plants during whitefly feeding, oviposition or

honeydew secretion. Additionally, whitefly-derived nucleotides, such

as small RNAs, have been shown to be transferred into plants during

feeding, and may serve as potential elicitors of plants defenses (van

Kleeff et al., 2016). Future studies in this area can draw upon research

on the other groups of insect herbivores and harness sophisticated

techniques including transgenes and RNAi.
6.2 Identification of genetic resources for
resistance breeding

Few resistance genes from crops or their close wild relatives

have been identified as possible genetic resources in resistance

breeding against whitefly, and many of these genes have shown

limited effectiveness (as mentioned earlier). Therefore, further

efforts are needed to explore genetic resources from these plants.

Additionally, it is worth considering alternative sources of genetic

resistance. Resistance genes have already been discovered in

unexpected sources. For example, Tma12 identified from fern

exhibits high resistance to insect herbivores, including whitefly

(Shukla et al., 2016). This suggests that resistance genes may be

obtained from non-hosts or poor hosts of whitefly. Identification of

these plants is relatively straightforward, and various strategies such

as mass spectrum identification of insecticidal proteins, distant

hybridization and genome-wide association studies can be utilized

to identify key genomic loci associated with resistance. By exploring

these diverse genetic resources, we can potentially uncover novel

resistance genes for effective whitefly management.
6.3 Horizontally transferred genes as RNAi
targets in resistance breeding

HTGs are acquired by organisms from other organisms through

means other than reproduction. In whiteflies, dozens of HTGs have

been discovered since their initial report in 2020 (Lapadula et al.,

2020; Xia et al., 2021; Gilbert and Maumus, 2022; Li et al., 2022).
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Many of these HTGs appear to play important roles in the life

history of whiteflies. For example, the HTG BtPMaT1 from plants

enables whiteflies to neutralize phenolic glucosides and feed on

toxic plants (Xia et al., 2021). HTGs have unique biological

importance in whiteflies and the presumably low prevalence of

whitefly HTGs in other groups of insects make them ideal targets

for RNAi. Recently, two studies targeting whitefly HGTs revealed

that they can be used as targets in whitefly control without adverse

effects on non-target organisms (Xia et al., 2021; Feng et al., 2023).

This progress highlights the need for further exploration of HTGs as

RNAi targets in resistance breeding. Additionally, the utilization of

phloem-specific promoters can enhance the efficacy and specificity

of RNAi technology. By harnessing HTGs and incorporating

phloem-specific promoters, researchers can develop more effective

and targeted approaches to combat whitefly infestation.
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