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Introduction: Deep learning (DL) is a core constituent for building an object

detection system and provides a variety of algorithms to be used in a variety of

applications. In agriculture, weed management is one of the major concerns,

weed detection systems could be of great help to improve production. In this

work, we have proposed a DL-based weed detection model that can efficiently

be used for effective weed management in crops.

Methods:Our proposedmodel uses Convolutional Neural Network based object

detection system You Only Look Once (YOLO) for training and prediction. The

collected dataset contains RGB images of four different weed species named

Grass, Creeping Thistle, Bindweed, and California poppy. This dataset is

manipulated by applying LAB (Lightness A and B) and HSV (Hue, Saturation,

Value) image transformation techniques and then trained on four YOLO models

(v3, v3-tiny, v4, v4-tiny).

Results and discussion: The effects of image transformation are analyzed, and it

is deduced that the model performance is not much affected by this

transformation. Inferencing results obtained by making a comparison of

correctly predicted weeds are quite promising, among all models implemented

in this work, the YOLOv4 model has achieved the highest accuracy. It has

correctly predicted 98.88% weeds with an average loss of 1.8 and 73.1% mean

average precision value.

Future work: In the future, we plan to integrate this model in a variable rate

sprayer for precise weed management in real time.
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1 Introduction

As the world’s population is growing drastically, food deprivation is

increasing worldwide (Gilland, 2002). To cope with the deficiency in

food quantity, we need to increase crop yield. Modern agricultural

practices like precision agriculture, smart farming, food technology,

plant breeding, etc. are using smart technology (Liang and Delahaye,

2019; Garcıá et al., 2021; Hati and Singh, 2021; Mavani et al., 2021; van

Dijk et al., 2021; Zhang et al., 2021) to intensify crop production. In

smart agriculture, artificially intelligent systems are incorporated for

making smart decisions, to increase crop yield (Hague et al., 2006;

Franco et al., 2017). The major components that affect the crop yield

are diseases of plants, irrigation system, application of agrochemicals,

pest infestation, and weeds, etc. (Oerke, 2006; Mitra, 2021; Reginaldo

et al., 2021; Jastrzebska et al., 2022). Only weeds have caused an

economic loss of about 11 billion USD in 18 states of India between the

years 2003 and 2014 (Gharde et al., 2018). Automated weed control

and management systems can reduce the yield loss up to 50% and

above (Dass et al., 2017).

Automated detection and identification of weeds is the first

phase in the development of weed reduction system (Fernández-

Quintanilla et al., 2018; Munz and Reiser, 2020). DL algorithms are

better for image based classification and object identification tasks.

They are mainly built on neural networks and are well known for

pattern recognition in image (Szegedy et al., 2015; Guo et al., 2016;

Shrestha and Mahmood, 2019). These deep neural networks have

many hidden layers and each hidden layer performs some operation

on input data, which leads to the identification of the object. DL

based algorithms are widely used in all kind of research problems in

the field of medical diagnosis (Bakator and Radosav, 2018; Yoo

et al., 2020), smart traffic management (Aqib et al., 2018; Aqib et al.,

2019a; Aqib et al., 2019b), and specifically in smart crop

management practices (Balducci et al., 2018; Mohamed et al.,

2021). They are producing considerable results in pest detection

(Khalid et al., 2023), weeds detection (Khan et al., 2022) etc. using

object detection in the agricultural field.

In this paper, we present a DL-based object detection model for

weed detection in the agricultural field. For this purpose, a deep

convolutional neural network (CNN) based YOLO object detection

system is employed. To perform this experiment, the dataset was

collected in the agricultural field during different time intervals and

light conditions. A dataset of four weed species was collected by

using image sensors. This dataset was pre-processed before using it

for the training of different models of the YOLO object detection

system. The models were trained and evaluated using different

model configuration settings. An unseen data set was prepared to

validate all the trained models using performance matrices. To the

best of the author’s knowledge, we are the first to develop a

detection system for the detection of the different weed species in

a wheat field in the Pothohar region, Pakistan.

This paper’s contributions in the field of weeds management

using DL includes the following:
Fron
1. Collection and preparation of real weeds dataset, collected

from fields in Pothohar, Pakistan.
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2. After training YOLO models with different configurations,

we have provided the best weed detection model with the

best configuration settings.

3. A study of the application of image transformation

techniques on model performance.

4. An analysis of the effects of data augmentation techniques

on the prediction of objects.
The rest of the study is organized as follows: the review of

research articles related to this domain is presented in Section 2.

Then Section 3 discusses the process workflow, proposed

methodology, and the input dataset, its preprocessing, and other

related details. Detailed discussion on experimental Setup and

prediction results is given in Sections 4 and 5, and finally we have

concluded the study in Section 6.
2 Related work

Classification and detection of objects in agricultural fields for

recognition of weeds has been a hot area of research. In this section,

we have discussed some of the studies in which the detection and

classification of weeds are performed using AI-based techniques like

DL, computer vision, robotics etc.

In (Zhuang et al., 2022), a study is organized for the detection of

broadleaf weed seedlings in wheat fields. They have concluded that

FR-CNN, YOLOv3, VFNet, TridentNet, and CenterNet are not

suitable for detection as their recall stays equal to or less than 58%.

Whereas classification using AlexNet and VGGNet have produced

above 95% F1-scores. In this study, the authors have used a very

small image resolution of 200 × 200 px dataset for training

the models.

A system was developed in (Potena et al., 2017) study to classify

weeds using multi-spectral camera. They used BoniRob robot in the

process of data collection (Chebrolu et al., 2017). This data set

contained data collected from multiple sensors, including a 4-

channel multispectral camera, RGB-D IR sensor, GPS, terrestrial

laser scanner, and Kinect sensor. The data set consisted of data from

the emergence stage to the stage where a robot can damage the crop.

They used two models of CNN: a lightweight CNN was used for

binary image segmentation, and a deeper CNN for classification

purposes. They also proposed a clustering algorithm for making

subsets of images that more closely resembled each other.

In (Madsen et al., 2020), the classification of weed was done on a

data set consisting of 7590 images of 47 plant species. ResNet-50-v1

algorithm was used for classification and achieved an accuracy of

77.06% and recall of 96.79%. The data set was collected in a well-

illuminated environment rather than collecting it in variable light

conditions. In (Gao et al., 2020) study, they developed a detection

model based on deep CNN known as YOLO architecture. They

trained this model on 452 field images and tested with 100 images

from a total of 2271 synthetic images collected of C. sepium and

sugar beet. They compared YOLOv3 and YOLOv3-tiny and

achieved a mean precision of 76.1% and 82.9% respectively, with

an inference time of 6.48ms.
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A study was done on the detection of weeds in perennial

ryegrass with DL (Yu et al., 2019). They applied several DL

models which include VGGNet, GoogleNet, AlexNet, and

DetectNet. They had collected 33086 images of dandelion,

ground-ivy, spotted spurge, andperennial ryegrass. The data set

had 15486 negative and 17600 positive images (containing weeds).

They had trained the models individually for multi- and single-

weed species. The analysis showed that VGGNet had the highest

F1-score and recall score of 0.928 and 0.99 respectively. DetectNet

had the highest F1-score value which is above 0.98. Overall, in their

experiment VGGNet and DetectNet performed better.

Classification of weeds was done using Naïve Bayes in

(Giselsson et al., 2017) study, in which they had created a dataset

consisting of approximately 960 plants belonging to 12 species. Data

was captured in different growth stages. Images were gathered over

the course of 20 days with an interval of 2-3 days. Images were

captured from 110-115 cm above the ground. A total of 407 images

were captured with a resolution of 5184 × 3456 px. They concluded

that this classifier can only be applied to images with

similar features.

In (Le et al., 2020), they performed two image enhancement

techniques, local binary pattern and plant leaf contour mask on

weeds data set to increase performance of classifier. Two data sets

were used in that experiment, Bccr-segnet and Can-rad dataset.

They performed classification using Support Vector Machine and

achieved an accuracy of 98.63% with 4 classes. In (Hoang Trong

et al., 2020), a classification approach using the late fusion of multi-

model Deep Neural Networks (DNNs) was developed. They

experimented with the Plant Seedlings and weeds data sets with 5

DNN models named as NASNet, Resnet, Inception–Resnet,

Mobilenet, and VGG. Two data sets were used having 208477

images. The analysis showed that the methods achieved the best

accuracy of 97.31% on the plant seedlings dataset and 98.77%

accuracy on the CNU Weeds dataset.

In (dos Santos Ferreira et al., 2017), they carried out a study in

Campo Grande, Mato Grosso do Sul, Brazil to perform weed

detection in soybean crop using CNN. A data set was created

using a drone, consisting of 15000 images but after preprocessing

400 images were selected. They carried out this study in five phases.

Firstly, collection of data, then classifying the images using the

superpixel algorithm. Thirdly, feature extraction based on color,

shape, and texture. The fourth stage consisted of training of CNN

classifier. The last stage consisted of returning the visual

segmentation and classification results. The images were taken

from an RGB camera with a size of 4000 × 3000 px and an

altitude of 4 m. They applied ConvNets, Support Vector

Machines, AdaBoost, and Random Forests, and ConvNet

achieved the best accuracy of 98%.

In (Jiang et al., 2020), they proposed a combination of graph

convolutional network and VGG16, ResNet-101, and AlexNet for

the classification of weeds. Four data sets of corn, lettuce, radish,

and mixed were used. The mixed dataset was constructed by

combining corn, lettuce, and radish datasets. The proposed GCN

approach was favorable for multi-class crops and weeds recognition

with limited labeled data. They compared GCN-ResNet-101, GCN-

AlexNet, GCN-VGG16, and GCN-ResNet-101 approaches and
Frontiers in Plant Science 03
achieved accurac ies of 97 .80%, 99 .37%, 98.93% and

96.51% respectively.

A prototype of All Terrain Vehicle (ATV) was developed for

precise spraying in (Olsen et al., 2019). A data set was prepared

consisting of 17,509 labeled images of eight different species of

weeds as chine apple, Lantana, Parkinsonia, Parthenium, Prickly

acacia, Rubber Vine, Siam weed and Snake weed. This data set was

prepared in Australian region and is publicly available on (Olsen

et al., 2019). About a thousand images of each species were captured

with a high-resolution camera and GPS to track progress. Two DL

CNN models were used, inceprion-v3 and ResNET-50, to set a

baseline performance on the dataset. Both models were evaluated

using performance matrices like inference time, pre-processing

time, total inference time, and frame rate. They achieved an

accuracy of 95.1% and 95.7% respectively in classification. The

results achieved were good, but the prototype ATV was not

evaluated in real fields.

In (Bosilj et al., 2020) study, they examined the role of transfer

learning in different crops and weed detection, on three data sets,

Sugar beets, Carrots, and Onions. They found that the training time

was reduced up to 80% even if the data was not perfectly labeled,

and the classification result had a 2% error ratio.

Weed detection was performed using transfer learning in

(Espejo-Garcia et al., 2020). They merged DL and ML models for

weed identification. DL models include Xception, Inception-Resnet,

VGNets, Mobilenet, and Densenet. And ML models were Support

Vector Machines, XGBoost, and Logistic Regression. They collected

1268 images of two crops and two weed species. They found that

DenseNet and SVM achieved the highest F1-score measure

of 99.29%.

An FCN-8s model was trained for semantic segmentation using

synthetic hierarchical images (Skovsen et al., 2019). A data set was

collected, having 8000 synthetic images of ryegrass, red clover,

white clover, soil, and weeds. The mean intersection over union

value was calculated between ground truth images and predicted

images, and scored 55.0%. The IoU values of weed and soil classes

were below 40%.

Semantic segmentation of weeds was performed using SegNet

(convolution neural network for semantic segmentation) in

(Lameski et al., 2017). To separate the plant pixels from ground

pixels, Excess Green minus Excess Red (ExG-ExR) index was used.

It improved the detection of plants. They collected a carrot weed

data set which was comprised of 39 images of size 10 MP from

approximately 1m height. Such large-size images were converted

into smaller images using a sliding window approach. The data set

was imbalanced as images of carrots were more than weeds.

In the prior work done on the development of weed detection

systems, different ML and DL models are trained to classify, detect,

and semantically segment weeds using various data sets. A variety of

sensors and computing systems were employed to collect diverse

data sets and train the models. It can be seen in the related work that

there is a lack of implementation of image processing and image

transformation techniques applied to the dataset to get better

results. In this study, we have developed a weed detection model

to detect four weed species grown in wheat fields. For this purpose,

we have used the latest state-of-the-art object detection models,
frontiersin.org
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image processing, and image transformation techniques to achieve

better results as compared to other studies presented in this section.
3 Materials and methods

In this section, the steps involved in the whole experimental

setup are elaborated. The experiment is designed to evaluate the

capability of YOLO models and the effects of image processing for

the detection of weeds in the real field. The workflow of our

proposed methodology is illustrated in Figure 1. This figure

highl ights different phases of our proposed research

methodology, which includes data collection, data pre-

processing, model training, validation, and evaluation of

prediction results. A brief overview of these phases is given in

the following paragraphs.

In the data collection phase, data is collected from agricultural

fields using cameras in different time stamps, environmental

conditions, and lightning conditions. This data is prepared to be

used in further processes like training, testing, and validation of

models, etc. This phase is divided into three sub-phases,

normalization, augmentation, and annotation. In normalization,

data is regularized and checked for removal of irrelevant, uniform,

and duplicated images, etc. In the augmentation phase, the shape

and size of data are altered to produce better results in further

processing. In annotation, a label is assigned to each entity in data

that serves as a piece of initial training information for models.

Model training process is carried out by applying the following

YOLO deep neural network architectures.
Fron
1. YOLOv3

2. YOLOv4

3. YOLOv3-tiny

4. YOLOv4-tiny
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These models are trained on the pre-processed data and hyper

parameter tuning was performed on each model to get the best

configuration. The trained models are validated on unseen data and

the predicted outputs of the model are evaluated by using different

performance matrices. They include precision, recall, mean average

precision, and average loss. These matrices can help in analyzing

results produced by the model on the validation set.
3.1 Dataset

The process of data collection is done in the winter season in the

Potohar region, Pakistan. The data set collected consists of RGB

images of different weed species grown in Triticum (wheat) field.

These weeds are divided into four major classes which include

Lolium perenne, Dactylis glomerata, Chloris cucullata (grass),

Cirsium arvense (creeping thistle), Convolvulus arvensis

(bindweed) and Eschscholzia californica (california poppy). The

collected data set contains 1065 images collected using a Logitech

HD 920c webcam pro camera with a resolution of 1 MP and

dimensions of 1280 × 720. The data set is available at GitHub

https://github.com/Aqib-Soft-Solutions/Wheat-Crop-Weeds-

Dataset.git and a sample of it is illustrated in Figure 2.

After dataset collection, to make it ready for training, it needed

to be normalized, augmented, and annotated first. To get better

results on this data, we have performed certain cycles of training

and changing data accordingly. The sub-processes of data pre-

processing are described below. After analyzing data image by

image, it was identified that it contains some issues that are

needed to be resolved first. These issues are made by images that

are blurred, uniform, camera distorted, etc. We have cleared such

images that can potentially restrain our training process. The

process of normalization is divided into sub-processes that are

illustrated in Figure 3.
FIGURE 1

Process workflow of our weed detection system.
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We have applied different masking techniques to extract plants

from the image. Image is converted from RGB to LAB and HSV

color schemes, shown in Figures 4, 5 respectively. After converting

in LAB, only the ‘b’ channel is preserved. Otsu’s binarization and

binary invert thresholding are applied, in which the threshold is set

to 105 and the max value to 255. Whereas, after converting the

image in HSV, pixels in a range are extracted, where low and high

values are set to (30, 25, 0) and (80, 255, 255) respectively.

After applying thresholding, the mask obtained has some

missing portions of the main plant (object). To fill out these

missing parts we have applied morphology on the mask and

applied bitwise AND operation on that mask and original image

to get the final resultant image.

The final image obtained after using the LAB color scheme has

less noise than the image obtained after applying the HSV

color scheme.

In the process of data augmentation, we performed

augmentation on partial images of the dataset. Firstly, images are

rotated at three different angles, 45, 90, and 180 degrees. Secondly,

data is also altered with a saturation value of 1.5, exposure value of

1.5, and hue value of 0.1 during training.
Frontiers in Plant Science 05
In data annotation, a rectangular box is drawn around each

object in the image and a label is assigned to it. To do this, we have

used the YOLO mark. It produces a text file that contains

information about each annotation in the image.
4 Results and evaluation

This experiment is organized to evaluate: (i) the performance of

YOLO object detection systems to detect weeds; (ii) the results

under different configurations of YOLO models; (iii) the effects of

data augmentation on inferencing; (iv) effect of image masking on

model performance. The whole process is carried out in multiple

different scenarios as described below.
4.1 Performance matrices

In this section, we have described the evaluation matrices used

to evaluate the results of YOLOv3, v3-tiny, v4, and v4-tiny models.

The parameters used to evaluate results are described as follows,
B

A

FIGURE 2

Illustration of (A) classes and (B) annotations.
FIGURE 3

The process of data normalization.
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4.1.1 Precision
Precision is calculated for a particular class by dividing true

positives by all positive predictions. We have used equation (1) to

calculate the accuracy of trained model.

Precision =
True   positives

True   positives   +   False   positives
(1)
4.1.2 Recall
Recall of a class is calculated by dividing true positives and the

sum of true positives and false negatives. We have used equation (2)
Frontiers in Plant Science 06
to calculate the accuracy of trained model.

Recall =
True   positives

True   positives   +   False   negatives
(2)
4.1.3 F1-score
The F1-score is a measure of a model’s accuracy in classification

tasks, especially when dealing with unbalanced data sets. It

combines precision and recall into a single measure to provide a

balanced assessment of model performance. We have used equation

(3) to calculate the F1-score of the trained model.
FIGURE 5

Applied masking using HSV color scheme.
FIGURE 4

Applied masking using LAB color scheme.
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F1 – score =
2 · (Precision · Recall)
Pr ecision + Recall

(3)
4.1.4 Mean average precision
The mean average precision (mAP) is calculated by taking the

mean of the average precision of every class. The average precision

(AP) is a measure of the area under the precision-recall curve,

calculated by using the formula in equation (4).

AP   =  
Z 1

0
p(r)dx (4)

Where p(r) is precision as a function of r. AP calculates average

of p(r) over the interval of 0 ≤ r ≥ 1 (Zhu, 2004). To calculate the

mAP, we have used the formula in equation (5).

mAP   =  
1
no

n

k=1

AP(k) (5)

Where n is the total number of classes.

4.1.5 Average loss
The average loss (AL) function of YOLO is the sum of

classification loss, localization loss, and confidence loss which are

calculated using equation (6) of Residual Sum of Squares (RSS)

(Archdeacon, 1994). It is the deviation of predicted values from the

actual ground truth values.

RSS =o
n

i=1
(yi − f (xi))

2 (6)

Where, RSS = Residual Sum of Squares, yi = ith value of the

variable to be predicted, f (xi) is the predicted value of yi and n is

upper limit of summation.
4.2 YOLOv3 implementation

YOLOv3 is a well-known object detection system. We have

evaluated its performance in the detection of weeds in different

setups. Data is divided into three sets, train, test, and validation with

a ratio of 7, 2, and 1 respectively. To train the YOLOv3 model, we

have tuned its parameters like subdivision, dimensions (width and

height), max batches, and filters. Max batches and filters are
Frontiers in Plant Science 07
updated according to formulae (7) and (8). Both parameters are

highly dependent on the number of classes (ncl) in the dataset.

Max   Batches = ncl � 2000 (7)

Filters = (5 + ncl)� 3 (8)

The performance of the YOLOv3 version is evaluated with

several configuration settings for different cases. In each case, filters

and max batches are kept the same with values of 27 and 8000

respectively. Hyper-parameters used for tuning the model are

shown in Table 1.

In case 1st and 6th, the dataset used was not masked. Whereas, in

case 2 nd and 5 th, LAB transformation is used. In case 3 rd and 7 th

HSV transformation is used. It can be seen in the results that there is

a slight variation in the mAP values but overall performance

remains the same. In Figure 6, training results of all models other

than the best models are presented.

In case 5th and 6th, both models have achieved the best score among

all implementations. In both cases, Models are configured with the same

subdivisions of 32 but different dimensions of 384 × 384 and 512 × 512

respectively. Their results during training are shown in Figure 7.

YOLOv3, 5thmodel has providedmAP of 52.0%, best mAP of 57%,

and AL of 0.4076. Whereas 6thmodel has gained anmAP of 53.2%, the

best mAP of 57%, and AL of 0.3394. Trained models are validated

using the same test data. Inference results are shown in Figure 8, where

YOLOv3’s 5th model has detected more objects than the 6th model.

For the evaluation of YOLOv3, we have prepared an unseen

dataset, that dataset was not used for model training. In Table 2, the

inference results obtained by evaluating the best model on the

validation dataset are shown.

Models trained in case 3rd and 4th have detected more objects of

Grass and Creeping Thistle. In case 7th, the model trained has

detected the highest number of objects of Bindweed and California

poppy. On average, models trained in case 3rd and 4th have detected

more objects of every class as compared to other cases. In Table 3,

mAP and AL values for each case are shown.
4.3 YOLOv3-tiny implementation

In the implementation of YOLOv3-tiny, we evaluated its

performance in different configuration settings. In the
TABLE 1 Hyper-parameters used for training of YOLOv3.

Cases Subdivisions Width Height Max Batches filters

Case 1 16 416 416 8000 27

Case 2 16 416 416 8000 27

Case 3 16 416 416 8000 27

Case 4 16 384 384 8000 27

Case 5 32 384 384 8000 27

Case 6 32 512 512 8000 27

Case 7 32 384 384 8000 27
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configuration, parameters like maximum batches and filters,

calculated by equation (7) and (8), are kept the same in each

implementation as they depend on the number of classes in the

dataset. In each case, filters and max batches are set to 27 and
Frontiers in Plant Science 08
8000 respectively. Change in other parameters is given

in Table 4.

In case 1st and 3rdthe dataset used was not masked. Whereas, in

case 2nd and 4th, LAB transformation is used. In case 5th and 7th
B

A

FIGURE 6

Illustration of training 1st, 2nd, 3rd,4th and 7th models for YOLOv3 in (A) and (B).
FIGURE 7

AL and mAP graphs for YOLOv3 models with 5th and 6th configuration setups.
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HSV transformation is used. It can be seen in the results that there is

a slight variation in the mAP values but overall performance

remains the same.

In 5th case, the model is configured with subdivisions of 32 and

dimensions of 512 × 512. Training of this model is illustrated in

Figure 9. The model has an mAP of 48.7%, the best mAP of 55%

and an AL is 1.5265. In the above figure, we can see that 5thmodel is

able to detect quite a number of objects with a high confidence score

while evaluating the test dataset.

To evaluate YOLOv3-tiny in each case, we have validated

models on an unseen dataset and calculated the correctly

predicted objects. Inferencing results for the best case is shown in

Table 5. Models trained in 1st and 2nd cases can detect more objects

than the rest. Objects detected in 4th, 5th and 6th cases are the lowest

in Grass, Bindweed, and California poppy.

In Table 6, mAP and AL values for each case are shown.
4.4 YOLOv4 implementation

In the implementation of YOLOv4, we evaluated its

performance in different configuration settings. We have tuned

each model with parameters max batches, filters, subdivisions, and

dimensions. Max batches and filters are calculated by using

equations (7) and (8), whereas subdivisions and dimensions are

different for each case as shown in Table 7.

In 1st and 2nd case, models are configured with subdivision of

16, 384 × 384 width and height, max batches of 8000, and filters 27.

Maximum batches and filters are the same for each case, as they

depend on the number of classes the dataset has. In case 1st, the

model has an mAP of 53.6%, best mAP of 60%, and AL of 2.1259. In
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case 2nd, the model has an mAP of 53.1%, best mAP of 63%, and AL

of 2.3958.

In the case of 1st and 2nd models are trained on LAB and HSV

datasets. We have analyzed that 1stmodel can detect more objects in

the image than the 2nd. The mean average precision of both models

is quite similar. Table 8 shows the results of YOLOv4’s best model.

In Table 9, mAP and AL values for each case are shown. We can

see that although the best mAP values of case 1 and 2 are relatively

high the mAP values of both cases is about the same. The AL of both

cases is also the same. In the 3rd case, although we have got less mAP

as compared to other cases the AL is also the lowest among

these experiments.

In case 4th, during training the performance of the trained

model was best compared to all, as shown in Figure 10. The AL of

this case is also among the lowest end. The average mAP remains

above 70% which is the best so far. In the inference, the model has

also outperformed others in the detection of objects.
4.5 YOLOv4-tiny implementation

YOLOmodel version four tiny is a small DL-based architecture.

The rate at which it can detect objects is faster than the YOLOv4

version. But it has a drawback of detecting objects with lower

accuracy. The model produced after its training is of very small size,

which is mainly required for machines having lower

computational power.
FIGURE 8

Inferencing results of 5th and 6th models of YOLOv3.
TABLE 3 Shows AL, mAP, and Best AP of each model while training.

Cases AL mAP Best AP

Case 1 0.1888 31.70% 52.00%

Case 2 0.3677 52.19% 54.00%

Case 3 0.4033 49.00% 52.00%

Case 4 0.3726 50.95% 55.00%

Case 5 0.4074 52.00% 57.00%

Case 6 0.3394 53.20% 57.00%

Case 7 0.4107 51.50% 56.00%
fro
TABLE 2 Shows performance of best YOLOv3 model on test dataset.

Classes Precision Recall F1-score

Grass 1.00 1.00 1.00

Creeping thistle 0.96 0.99 0.97

Bindweed 0.96 0.86 0.90

California poppy 0.97 1.00 0.99
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In the implementation of YOLOv4-tiny, we evaluated its

performance in different configuration settings. In each setting,

parameters like filters, max batches, dimensions, etc. are modified.

Filters and max-batches are calculated by using equations (7) and

(8) respectively, while values of other parameters are variable in

every case as given in Table 10.

During the training of YOLOv4-tiny in case 3rd and 4th, models

are configured with 32 subdivisions and dimensions of 384 × 384

and 416 × 416 respectively. In case 3rd, the model has an mAP of
Frontiers in Plant Science 10
56.5%, best mAP of 59%, and AL of 0.8718. While in case 4th, the

model has an mAP of 54.9%, best mAP of 57%, and AL of 0.8083.

AL and mAP graphs of both cases are shown in Figure 11.

Inferencing results of case 3rd and 4th are illustrated in

Figure 12, where both models are quite efficient in predicting
TABLE 4 Hyper-parameters used for training of YOLOv3-tiny.

Cases Subdivisions Width Height Max Batches filters

Case 1 16 416 416 8000 27

Case 2 16 384 384 8000 27

Case 3 32 384 384 8000 27

Case 4 32 416 416 8000 27

Case 5 32 512 512 8000 27

Case 6 32 384 384 8000 27

Case 7 16 608 608 8000 27
fronti
FIGURE 9

Training graphs and inferencing results of YOLOv3-tiny’s 5th model trained.
TABLE 5 Shows performance of best model of YOLOv3-tiny on
test dataset.

Classes Precision Recall F1-score

Grass 0.98 1.00 0.99

Creeping thistle 0.94 0.99 0.97

Bindweed 0.97 0.74 0.83

California poppy 0.96 0.97 0.97
TABLE 6 Shows AL, mAP and Best AP of each model trained in
different cases.

Cases AL mAP Best AP

Case 1 1.5944 31.70% 52.00%

Case 2 1.6950 52.19% 54.00%

Case 3 1.5103 49.00% 52.00%

Case 4 1.6289 50.95% 55.00%

Case 5 1.5265 52.00% 57.00%

Case 6 1.2477 53.20% 57.00%

Case 7 1.3618 51.50% 56.00%
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objects with a high confidence score. Both models have provided an

average confidence score of 90% while evaluating them on

unseen images.

Every model in YOLOv4-tiny’s implementation has performed

outstandingly while predicting the object in the image. In Table 11,

the results of the best model of YOLOv4-tiny are shown. The

model’s performance in 5th case is the weakest as it has detected the

least number of objects in the validation dataset. In Table 12, mAP

and AL values for each case are shown.
5 Discussion

In this section, we have done an analysis of the performance of

four YOLO variants (v3, v3-tiny, v4, and v4-tiny). Firstly, the results

obtained in the training phase are analyzed. Secondly, the

performance of each model while inferencing is discussed, and

then we examined the impact of data augmentation and image

processing on training and evaluation. Lastly, we have done a

comparative analysis of the performance of our model with

related work.

In the training phase, each YOLO variant is trained on the same

system to have a neutral performance comparison. We have

analyzed the difference in training performance by changing

configuration parameters. In each case of implementation, models

are configured with a combination of dimensions (384, 416, 512,

608) and sub-divisions (16, 32). It is observed that between all

combinations there is a slight performance difference in mAP

values, but a major difference in GPU’s memory usage.

Decreasing subdivisions and increasing width and height can

consume a lot of GPU memory. Among all YOLO variants,
TABLE 8 Shows performance of best YOLOv4 model on test dataset.

Classes Precision Recall F1-score

Grass 1.00 1.00 1.00

Creeping thistle 0.99 1.00 1.00

Bindweed 1.00 0.98 0.99

California poppy 0.96 1.00 0.98
TABLE 7 Hyper-parameters used for training of YOLOv4.

Cases Subdivisions Width Height Max
Batches

filters

Case 1 16 384 384 8000 27

Case 2 16 384 384 8000 27

Case 3 16 608 608 8000 27

Case 4 32 416 416 8000 27
TABLE 9 Shows AL, mAP, and Best AP of each model trained in different
cases.

Cases AL mAP Best AP

Case 1 2.1295 53.60% 60.00%

Case 2 2.3956 53.10% 63.00%

Case 3 1.7749 48.50% 57.00%

Case 4 1.85 73.10% 74.00%
FIGURE 10

AL and mAP graph for the best YOLOv4 model with 4th configuration setups.
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YOLOv4 has provided the best mAP and AL values. It has managed

to identify all objects correctly, out of 102 total objects, with an

average confidence score of 88.67%.

In the evaluation of trained models, YOLOv4-tiny can identify

more objects in overall every scenario. Behind it, YOLOv4 has

achieved second best predictions rate, while YOLOv3 and YOLOv3-

tiny have provided about the same results in most of the cases. In

Figure 13, the number of objects detected by each model is given in
Frontiers in Plant Science 12
(A) and the mean confidence score of the best models trained is

illustrated in (B). It is observed that among all the implemented

YOLO versions, YOLOv4 has provided us with the best confidence

score while predicting.

It is evaluated that by data augmentation the confidence score

and the number of objects correctly detected of two classes,

Bindweed, and California poppy, has been increased. The

augmentation outcome is illustrated in Figure 14.
TABLE 10 Hyper-parameters used for training of YOLOv4-tiny.

Cases Subdivisions Width Height Max Batches filters

Case 1 16 384 384 8000 27

Case 2 16 512 512 8000 27

Case 3 32 384 384 8000 27

Case 4 32 416 416 8000 27

Case 5 32 384 384 8000 27

Case 6 16 608 608 8000 27
fronti
FIGURE 11

AL and mAP graphs for YOLOv4-tiny models with 3rd and 4th configuration setups.
FIGURE 12

Inferencing results of 3rd and 4th models of YOLOv4-tiny.
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TABLE 11 Shows performance of YOLOv4-tiny on test dataset.

Classes Precision Recall F1-score

Grass 1.00 1.00 1.00

Creeping thistle 0.96 1.00 0.98

Bindweed 1.00 0.91 0.95

California poppy 0.95 0.99 0.97
F
rontiers in Plant Science
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TABLE 12 Shows AL, mAP and Best AP of each model trained in
different cases.

Cases AL mAP Best AP

Case 1 0.8089 54.00% 57.00%

Case 2 0.7774 55.00% 56.00%

Case 3 0.8718 57.00% 59.00%

Case 4 0.8083 55.00% 57.00%

Case 5 0.6552 54.00% 55.00%

Case 6 0.8441 53.00% 56.00%
fro
BA

FIGURE 13

(A) Illustration of the number of objects detected by each model in different cases, (B) Mean confidence score of the best model of each YOLO variant.
FIGURE 14

Change in each model’s results by the application of data augmentation.
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In the above figure, an increase in confidence score can be seen

after augmentation. A major increment for the Bindweed class is

produced by YOLOv3-tiny. While the difference in California

poppy’s results is very subtle. While application of LAB and HSV

transformation to mask plants do not have a major impact on

performance (in terms of mAP) and also it can potentially increase

the processing cost, time, and resources. The YOLOv4 has detected

objects with high confidence scores in the prediction process

regardless of the data provided. So, we can deduce that YOLOv4

has the capability of detecting objects efficiently despite of

insufficient quantity of data. We can see a comparative analysis of

the performance of our model with the related work in the Table 13.
6 Conclusion

The use of DL has greatly soared the performance of object

detection systems. Detection of objects like weeds in the real field

has been a challenging task because of the highly variable

environment. In this study, we have proposed a DL-based weed

detection model for the identification of weeds in real time. For this

purpose, a real field dataset was collected and various data

preprocessing techniques were applied to it, before using it as an

input for training. Four YOLO versions (v3, v3-tiny, v4, v4-tiny) are

implemented using different configuration settings to provide a

comparative analysis of their inference results on unseen data.

We concluded that models configured with subdivisions of 16

and dimensions of 416 × 416 can generalize better on unseen data,

predict more objects, and gives more accuracy and mAP as

compared to other configurations. Data augmentation has also

impacted greatly the performance. The model trained on

augmented data has detected twice the number of objects as

compared to other models. Meanwhile, the difference in

performance upon implementation of LAB and HSV image

transformation for masking plants is low.

We have analyzed that the best training results are provided by

YOLOv4 architecture with anmAP of 73.1% and an average loss rate of

1.8. This model has achieved an accuracy of 98.88% by calculating the

number of correctly predicted weeds in the unseen dataset. This model

has the capability of being deployed in a real field to detect weeds.
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In the future, we plan to build a variable rate spraying system for

real-time weed management using the proposed model. In addition

to this, we will add a variety of weed data and will also use other

latest DL models to improve detection accuracy.
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