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Introduction: Accurate and fast identification of wood at the species level is

critical for protecting and conserving tree species resources. The current

identification methods are inefficient, costly, and complex

Methods: A wood species identification model based on wood anatomy and

using the Cyclobalanopsis genus wood cell geometric dataset was proposed.

The model was enhanced by the CTGAN deep learning algorithm and used a

simulated cell geometric feature dataset. The machine learning models BPNN

and SVM were trained respectively for recognition of three Cyclobalanopsis

species with simulated vessel cells and simulated wood fiber cells.

Results: The SVM model and BPNN model achieved recognition accuracy of

96.4% and 99.6%, respectively, on the real dataset, using the CTGAN-generated

vessel dataset. The BPNN model and SVM model achieved recognition accuracy

of 75.5% and 77.9% on real dataset, respectively, using the CTGAN-generated

wood fiber dataset.

Discussion: The machine learning model trained based on the enhanced cell

geometric feature data by CTGAN achieved good recognition of

Cyclobalanopsis, with the SVM model having a higher prediction accuracy than

BPNN. The machine learning models were interpreted based on LIME to explore

how they identify tree species based on wood cell geometric features. This

proposed model can be used for efficient and cost-effective identification of

wood species in industrial applications.
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1 Introduction

Wood classification is a fundamental and essential task in wood

science and technology. It enables the identification of various wood

species and ensures their sustainable utilization. Wood can be

classified into different levels: kingdom, division, class, order,

family, genus, and species (Wheeler and Baas, 1998; Martins

et al., 2013). In wood classification, identifying wood at the

ßpecies” level is often regarded as the most arduous task. ßpecies”

is the primary classification unit that refers to individuals of the

same species with the same morphological characteristics, chemical

composition, and tissue structure (Wheeler et al., 1989; Mai et al.,

2022). The classification of wood at the ßpecies” level demands an

in-depth comprehension of the differences among individuals of the

same species, necessitating researchers to possess high levels of

expertise and skills. According to the recent report “State of the

World’s Trees” by the Botanic Gardens Conservation International

(BGCI), nearly 30% of tree species globally were in danger of

extinction, with 27% under threat from the expanding wood

trade. Consequently, wood regulation has become a significant

challenge in safeguarding tree species. In this context, wood

identification plays a crucial role. Therefore, research on wood

classification at the ßpecies” level has tremendous importance in

conserving forest resources and promoting the wood trade, thereby

providing the wood industry with enhanced quality control and

management (Gasson et al., 2010; Koch et al., 2015; Wiedenhoeft

et al., 2019).

Wood identification is a complicated process. Experts use

traditional wood identification techniques based on macroscopic

and microscopic wood anatomy (Kuroda, 1987; Coday et al., 1997;

Romagnolj et al., 2007). These techniques can identify tree species

from raw wood, sawn wood, and finished products. Macroscopic

identification serves as a supplemental reference to microscopic

identification. The latter compares the morphological

characteristics of tissues and cells in three sections of wood

samples with accurately named wood specimens, enabling more

precise identification (Jansen et al., 1998; Carlquist, 2013; Zhang

et al., 2014). To attain accurate wood identification, experts and

scholars have conducted research using quantitative identification

methods for cell features. Experts use quantitative data to study

patterns of cellular structural characteristic variation between tree

species and subtle structural differences (Gasson et al., 2010).

Nevertheless, manually identifying microscopic features is time-

consuming, and some wood species have substantial inter-species

variation. Personnel assigned with identification may encounter

difficulty in mastering the variation rules of all wood species and

struggle to discern nuanced structural differences between them

without the help of a microscope. These factors add to the

challenges of identifying wood at the species level, necessitating

significant effort from researchers (Richter et al., 2004; Wheeler,

2011; Angyalossy et al., 2016).

In recent years, numerous methods have been developed and

studied for wood identification, including molecular markers,

spectral chemical analysis, stable isotopes, and other techniques

(Ohyama et al., 2001; Grabner et al., 2009; Finkeldey et al., 2010;

Kobayashi et al., 2019a; Sharma et al., 2020).While these methods
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have enabled identification at the ßpecies” level, significant

investments in workforce and financial resources are required to

build corresponding classification feature databases. However,

advances in artificial intelligence (AI) technology have led to the

emergence of new ideas to facilitate rapid and accurate

identification at the ßpecies” level (Tou et al., 2007; Yuliastuti

et al., 2013; Mohan et al., 2014). Machine learning forms the core

of AI, withdeep learning constituting a large-scale machine learning

approach often employing multilayer convolutional neural

networks and deep, fully connected neural networks to construct

models (Yadav et al., 2015a; Hwang and Sugiyama, 2021). These

models rely on vast amounts of input data and significant

computing power to gain a deeper understanding of knowledge.

However, as the complexity of AI models continues to increase, the

models themselves are becoming increasingly opaque, with input

and output processing often complicated to comprehend (Sun et al.,

2021). Within the field of wood identification, deep learning based

on computer vision has been utilized for building models to classify

wood species successfully (Hafemann et al., 2014). Researchers aim

to capture the microscopic structural characteristics of wood by

using a microscope, with image-based data being leveraged as input

for the computer vision classification models. The characteristics of

these models include complex calculations, large amounts of data,

slow training, and relatively poor interpretability. To better facilitate

rapid and accurate tree species recognition modeling, rigorous

research in feature extraction, data preprocessing and

enhancement, model selection, and evaluation is necessary.

The Fagaceae family comprises over 900 species distributed

worldwide in Eurasia’s temperate and subtropical forests. In China,

seven Fagaceae genera are identified: Castanopsis, Quercus,

Cyc loba lanops i s , L i thocarpus , Fagus , Cas tanea , and

Trigonobalanus, with more than 300 species. The Cyclobalanopsis

genus is the most prevalent, with approximately 80 species

predominantly found in the Qinling Mountains and south of the

Yangtze River. One Fagaceae species is listed under Appendix II of

the Convention on International Trade in Endangered Species of

Wild Fauna and Flora (CITES). Six species are listed as Class II

National Key Protected Wild Plants in China. Developing a precise

and prompt identification method at the level of “species” is crucial

to safeguard and sustainably use tree species resources (Lions, 2011;

Bergesen et al., 2018). Therefore, this research aims to create a high-

quality species identification model based on wood samples,

focusing on the Cyclobalanopsisgenus of Fagaceae.

In wood identification, research in artificial intelligence models

has two main directions: popular deep learning models based on

image e data (Kwon et al., 2017; Ravindran et al., 2018) and

machine learning models based on specific quantitative values

(Sugiarto et al., 2017; He et al., 2019; Lens et al., 2020; Liu et al.,

2022). While both are valid methodologies, the latter commonly

uses traditional machine learning models with relatively simple

structures, making them faster to train and easier to comprehend.

Consequently, such models have significant potential for

application within the field of wood identification. Regarding data

types, there are four types of data in wood identification models:

microscopic images, stereograms images, CT images, and

macroscopic images (Hwang and Sugiyama, 2021). Traditional
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wood science suggests that microscopic images have the highest

identification accuracy, with other images often used as auxiliary

means of wood identification. Therefore, training a wood

identification model based on microscopic images is the best

choice. In the past decade, research on computer tree species

recognition based on microscopic images has indicated that

feature selection for microscopic image recognition models can

generally be divided into image features and tabular numerical

features (Table 1). Convolutional networks based on image features

often extract convolutional features through convolutional layers,

which are difficult to understand and confusing for wood science

researchers. In contrast, machine learning models based on tabular

numerical features are relatively easy to understand. However, the

feature extraction method used in previous research was based on

computer graphics rather than wood anatomy, which still needs to

be more user-friendly for wood science researchers. As a result, we

are approaching this problem from a wood anatomy perspective,

and it is feasible to establish a wood identification model based on

the geometric features of the wood anatomy dataset. Therefore, we

extracted the geometric features of Cyclobalanopsis wood vessel cells

and wood fiber cells as training features in this study. By comparing

models trained on the geometric feature dataset of the two cell

types, it could effectively study the specific impact of each cell type

regarding the inter-species identification of Cyclobalanopsis wood.

However, due to the complexity of the internal structure of wood

cells, collecting geometric feature data requires a substantial amount

of time and labor (Von Arx et al., 2016; von Arx et al., 2021).

Researchers must further explore data preprocessing and

enhancement techniques. Using a deep learning network for

feature modeling is a viable solution based on the similarity of

geometric feature data within the same wood species. In a related

study, Xu et al. (2019) proposed the conditional tabular generative

adversarial network(CTGAN), which synthesized tabular dataset.

CTGAN was compared with Bayesian and other deep learning

methods on seven simulated and eight real dataset. Results revealed

that CTGAN outperforms the alternative methods on most datasets,
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demonstrating a more extraordinary data generation ability that

aligns closely with actual data distribution (Assefa et al., 2020;

Bourou et al., 2021; Torfi et al., 2022). The robust data generation

capabilities of CTGAN have earned the trust of many researchers. As

a reliable generation model, CTGAN can help researchers generate

data that would otherwise be costly. CTGAN has been applied in

various fields, such as electroencephalogram, power system data

generation, privacy medical data generation, mobile sensor data

generation, and financial asset configuration data generation (Lee

and Lee, 2021; Han et al., 2022; Fang et al., 2022; DeOliveira et al.,

2022; Peña et al., 2023; Cifuentes et al., 2023). However, the

application of generation models in the field of wood science is

scarce, and the workload and cost of collecting data for training wood

identification models or wood property prediction models are

enormous. As a result, in this study, the CTGAN model was used

to augment the geometric feature dataset of Cyclobalanopsis wood,

effectively expanding the scale of the data and improving its diversity

and reliability.

General wood identification models often face complex input

data and network structure challenges. Typically, evaluations of

these models often lack explanations of the models themselves, only

providing accuracy on validation sets or confusion matrices as

indicators of model quality (Ribeiro et al., 2016). While models

perform well in wood identification, they may provide an

overestimated recognition effect as real-world data differ

significantly from simple validation sets. Therefore, model

interpretability is necessary to provide insights into wood science

and anatomy development. Expressly, model interpretability

permits the analysis of the impact of different component factors

on wood identification to create improved identification based on

feature impact data (Vellido et al., 2012; Milli et al., 2019).

Additionally, interpretable models provide essential explanations

to non-data science professionals and the general public,

establishing trust in the artificial intelligence model in wood

science and the wood industry to enable people to make more

informed decisions based on prior knowledge of wood science. For
TABLE 1 Research on CV-based microscopic image identification of wood in the last 10 years.

References Model Feature Feature num The best classification rate(%)

Ravindran and Wiedenhoeft (2020) Deep learning Convolution features 96.10%

Lens et al. (2020) Deep learning Convolution features 95.60%

Hwang et al. (2020) Machine learning SIFT 128 99.40%

Kobayashi et al. (2019b) Machine learning SIFT+Connected component labelling 17 + 17 95.30%

Rosa da Silva et al. (2017) Machine learning LPQ+LBP 256 + 4116 90.00%

Hwang et al. (2018) Machine learning SIFT 128 96.30%

Yadav et al. (2015b) Machine learning LBP 325 97.87%

Yadav et al. (2014) Machine learning Coiflet Discrete Wavelet Transform 48 92.20%

Hafemann et al. (2014) Deep learning Convolution features 97.32%

Martins et al. (2013) Machine learning Image Structural Features+GLCM+LBP 5 + 24 + 59 98.60%

Yadav et al. (2013) Machine learning GLCM 44 92.00%
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these reasons, evaluations of the model should also include scientific

explanations of the model in addition to traditional measures of

accuracy and confusion matrix. From the observation of Table 1,

machine learning models have an advantage over deep learning

models when explaining wood species identification models based

on microscopic images. Deep learning models require images as

input, yielding convolutional features that are challenging to

explain. On the other hand, machine learning models can

establish tabular feature datasets based on wood anatomy, with a

more intuitive feature selection range, making it easier for wood

science researchers to understand the model. As a preliminary study

of wood identification model interpretability, this paper will use

Local Interpretable Model-Agnostic Explanations (Ribeiro et al.,

2016) on machine learning models to interpret the wood

identification model, and a simple linear model will approximate

the prediction field of interest. The weight coefficients of geometric

features will explain how the model identifies the wood species

(Mishra et al., 2017; Peltola, 2018).

This study utilized the CTGAN-enhanced simulated

Cyclobalanopsis wood cell geometric feature dataset to establish

two machine learning models (SVM, BPNN) for wood

identification. The models were tested and evaluated on an actual

Cyclobalanopsis wood cell geometric feature dataset, and the

interpretability of the wood recognition model was demonstrated

using Local Interpretable Model-Agnostic Explanations (LIME).

Thus, this study provides the following contributions:
Fron
• It proposed a novel wood recognition model based on

microscopic images that leveraged wood anatomy

principles and cell geometrical feature data to enhance

accuracy. Compared with previous wood identification

models based on microscopic images, the current work

differs in that it extracts a small amount of anatomical

feature data and combines it with prior knowledge of wood

anatomy instead of extracting complex convolution

features and local point-line-face features. The proposed

model integrates more with previous knowledge of wood

anatomy through artificial feature extraction and model

training. Based on artificial neural network analysis, the

study found that cell geometrical features, particularly those
tiers in Plant Science 04
determined by vessels, significantly impacted wood

identification accuracy more than features based on wood

fibers.

• The CTGAN model was utilized based on deep learning to

augment the wood’s quantitative cell geometrical feature

data, representing the first time such an approach has been

used. The feasibility of this method was evaluated using a

real wood cellgeometry dataset. CTGAN model

dramatically reduces the cost of manually collecting

anatomical features, enabling wood scientists to train

their species identification models relatively quickly based

on the wood anatomical features.

• Furthermore, interpretation of wood identification models

was researched by examining the impact of various wood

cell geometrical features of Cyclobalanopsis on models. This

study presented the first of its kind. The findings of our

study offered a quantitative and qualitative understanding

of interpretable models for wood anatomy and also

provided valuable insights for improving feature

engineering of future artificial intelligence-based wood

identification systems, thereby advancing the field of

wood science.
2 Experiments and methods

2.1 Sample collection

Sample trees were collected from the middle subtropical region

of Fujian province, China. The discs near ground with 5.0 cm

thickness and logs above ground 1.3 m (breast height) with 2.0 m

length were got from the straight and healthy average stem in the

stand. Then discs and logs as wood samples were placed in a shaded

and well-ventilated indoor environment until air drying. The

general information of the tree samples was shown in Table 2.

Using a continuous zoom stereomicroscope (MZS0745, Guilin

Mete Optical Instrument Co., Ltd.), stereograms of three types of

Cyclobalanopsis wood were captured at 10X magnification, as

shown in Figure 1. The macroscopic features of Cyclobalanopsis
TABLE 2 Tree species and collecting locations.

Latin name Tree
Age/
year

Genus Name Collecting
locations

Material colour Scents

Cyclobalanopsis gilva (Blume) Oerst 35 Cyclobalanopsis
(Endl.) Oerst

Jian’ou, Fujian Sapwood is yellow-brown and the heartwood is
red-brown to shades of red-brown

No
distinct
odor

Cyclobalanopsis chungii (Metc.) Y. C. Hsu
et H. W. Jen ex Q. F. Zheng

33 Cyclobalanopsis
(Endl.) Oerst

Minqing, Fujian heartwood is red-brown and the sapwood is
yellow-brown

No
distinct
odor

Cyclobalanopsis glauca(Thunb.) Oerst. 33 Cyclobalanopsis
(Endl.) Oerst

Pingnan, Fujian Heartwood color was similar to sapwood color
with yellow-brown

No
distinct
odor
fro
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gilva wood were shown in Figures 1A–C.Heartwood color was distinct

from sapwood color, with the sapwood being yellow-brown and the

heartwood being red-brown to shades of red-brown. There was no

special odor. The growth ring boundaries were indistinct with a

uniform width. The macroscopic features of Cyclobalanopsis chungii

woodwere shown in Figures 1D–F. Heartwood color was distinct from

sapwood color, with the heartwood being red-brown and the sapwood

being yellow-brown. There was no special odor. The growth ring

boundaries were indistinct, which width was not uniform with an

average value of 3.03mm.Themacroscopic features of Cyclobalanopsis

glaucawoodwere shown in Figures 1G–I. Heartwood color was similar

to sapwood color with yellow-brown. There was no special odor. The

growth ring boundaries were distinct with a uniform width.
Frontiers in Plant Science 05
2.2 Wood microstructure production

The air-dried wood was intercepted into a standard three-cut

small test block (10mm×10mm×10mm), and to ensure that the

cross-section had at least one complete annual ring. The blocks

were boiled in distilled water for 8h, and then soaked in distilled

water at 26°C for 12h until the specimen were soft. After that, using

a sliding microtome (REM-710, Daiwa Optical Machinery Co., Ltd.,

Japan), sections with a thickness between 10 and 20 were prepared

from the wood specimens. All sections were stained with 1%

safranin for 3.5 h and subsequently dehydrated using a series of

alcohol concentrations (30%, 50%, 75%, 85%, 95%, 100%) for 5 min

each. The fully dehydrated sections were placed in 100% xylene for
B C

D E F

G H I

A

FIGURE 1

Images of the three species of Cyclobalanopsis under a stereomicroscope. (A, D, G) is cross section; (B, E, H) is radial section; (C, F, I) is tangential section.
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clear treatment for 10 min and repeated once. Permanent slides

were produced by sealing the slices with neutral resin. Slices were

placed under a biological digital microscope (Leica DM2500, Leica

Microsystems, Germany) to observe the microscopic characters of

the wood. The Leica Application Suite software was used to extract

data on microscopic features such as tangential diameter of vessel

and vessel lumina, wall thickness of vessel, area of vessel and vessel

lumina, perimeter of vessel and vessel lumina, substantive rate of

vessel and fiber, area of fiber and fiber lumina.
2.3 Model building

2.3.1 Conditional tabular generative
adversarial network

CTGAN is a deep learning model that employs conditional

generative adversarial networks (Mirza and Osindero, 2014) to

model the probability distribution of tabular data rows and

synthesize data with features closely related to the input data. The

model accomplishes this through a game between two neural

networks: the generator and the discriminator. The generator

learns the probability distribution of accurate data and generates

high-quality synthetic data. The discriminator constantly judges the

generated data and gives feedback to optimize the weight of the

neural network. The generator network comprises three fully

connected layers that employ batch normalization and

LeakyReLU activation functions (Maas et al., 2013). In

comparison, the discriminator network has three fully connected

layers that use batch normalization, LeakyReLU activation

functions, and the final layer with the sigmoid activation

function. During the training phase, the generator and

discriminator work together to ensure that the synthetic data

generated by the generator are indistinguishable from the actual

data. The input to the model consists of a noise vector and a

conditional vector, while the output is the synthesized data.

The objective function of the Generative Adversarial Network is

shown in Equation 1.
Frontiers in Plant Science 06
min
G

max
D

V(D,G)

= Ex∼Pdata (X)½log  (D(x))� + Ex∼Pz (z)½log  (1 − D(G(z)))� (1)

In the equation, G represents the generator, and D represents

the discriminator. The generator and discriminator are trained

iteratively until the discriminator cannot distinguish the

authenticity of the generated data. Once this occurs, the

Generative Adversarial Network (GAN) model is optimized (224

Courville and Bengio, 2014). Figure 2 shows the machine learning

model based on CTGAN established in this study. The generator

takes the Cyclobalanopsis wood cell geometrical feature data as a

conditional input, adds random noise, and sends it to the

discriminator for evaluation. The feedback from the discriminator

is then used to adjust the network weights of the generator, which

gradually optimizes the generated data features to mirror that of the

actual dataset. CTGAN can significantly reduce the cost of

collecting cell features, enabling this experiment to train a robust

and reliable model with only a tiny amount of geometrical features

collected from wood cells.

2.3.2 Backward propagation neural network
Artificial Neural Network (ANN) is a commonly used machine

learning technique in various fields, including classification,

prediction, optimization, and other tasks (Ingre and Yadav, 2015).

The Back Propagation-Artificial Neural Network (BPNN)

algorithm is widely used for quantitatively modeling numerical

features. It is a simple multi-layer neural network with multiple

layers of neurons trained using the backpropagation algorithm

(Rumelhart et al., 1986). The BPNN’s basic structure includes

inputs, outputs, and multiple hidden layers of neurons. Each

neuron’s output is connected to the neurons in the previous layer,

forming a multi-layer feedforward neural network structure

(Agatonovic-Kustrin and Beresford, 2000).

As illustrated in Figure 2, the BP artificial neural network

comprises three layers of neurons: the input layer, hidden layer,

and output layer. The hidden layer consists of two layers and 20
FIGURE 2

Machine learning model workflow based on CTGAN, wood cell geometry features figures and LIME.
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nodes. The Cyclobalanopsis wood cell geometrical feature data was

collected through software, enhanced by CTGAN, and standardized

before passing through the input layer to the second layer, i.e., the

hidden layer, where weight transfer occurs. In the hidden layer, each

neuron was activated by weight W, threshold b, and the Relu

activation function and transmitted to the output layer. The

output layer generated the predicted value of the neural network

and compared it with the expected value. Any errors detected were

back propagated from the output layer, and the weights and

thresholds were adjusted. The repeated training and adjustment

process continued until the output error reached an acceptable level.

The specific model calculation was shown below.

The model was propagated in the forward direction to generate

the predicted output ŷ i. The cross-entropy loss function was first

used to evaluate the error between the predicted value ŷ i and true

value yi. The cross-entropy loss function determined the better

prediction model by the maximum likelihood estimate of the

correct prediction for each set of data. The smaller cross-entropy

could get the lower model prediction error (2).

loss = −o
n

i=1
yi log ŷ i (2)

In the first backpropagation step, the gradient value ∂ loss 
∂wo

of

the backpropagation process with respect to the output layer weight

wo was obtained by taking the derivative of error with respect to the

weight wo. y represented the true value and ŷ represented the

predicted value which was operated by the Softmax activation

function in the output layer(3).

∂ loss
∂wo

=
∂ loss
∂ y

∂ ŷ
∂wo

(3)

The input values of the Softmax activation function were a set of

vectors of tree species prediction scores, and the output consisted of

a prediction vector of identification probabilities for the

corresponding tree species(4).

fj(z) =
ezj

oke
zk

(4)

In the second backpropagation step, the gradient value ∂ loss 
∂wh

in the backpropagation process with respect to the hidden layer

weight wh was obtained by taking the derivative of the error with

respect to the weight wh. h represented the Sigmoid activation

function in the hidden layer(5).

∂ loss
∂wh

=
∂ loss
∂ y

∂ ŷ
∂ h

∂ h
∂wh

(5)

The activation function h for the j node in the hidden layer

could be formulated as equation 6:

h = f (xj) =
1

1 + exp   ( − xj)
(6)

4. Finally, the weights of output and hidden layers were updated

by gradient descent(7).
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wupdate  = wold  − h
∂ loss 
∂wold 

(7)

Where wupdate  represented the weights of hidden and output

layers after updating, wold  represented the weights of hidden and

output layers before updating, h represented the model learning

rate, and ∂ xtloss
∂wold 

was the gradient of corresponding weights.

5. The updated weights were substituted into the forward

propagation for a new prediction, and the error was made to

reach an acceptable range by repeating the above steps

continuously. Finally, the predicted value was output.

The standard BP neural network algorithm’s gradient descent

algorithm (Ruder, 2016) adjusts the network weights and thresholds

along the negative gradient direction of a network error. This

eventually causes the error to reach a minimum value.

2.3.3 Support vector machine
Support Vector Machine (SVM) is a machine learning

algorithm based on statistical VC dimension theory and structural

risk minimization (Joachims, 1998). Initially applied to binary

classification, it can also solve multi-classification problems and

effectively address small sample, non-linear, high-dimensional, and

local minimum problems. The core of SVM lies in finding the

maximum hyperplane in high-dimensional space to separate

sample data, making the classification reach the maximum

interval, given a point x on the hyperplane, and w as a vector

perpendicular to the hyperplane as displacement interval, and b as

the shift interval, the maximum interval can be represented as

equation 8. If 2
‖w ‖ is maximized, it is equivalent to minimizing ‖

w ‖2. Equation 8 can be transformed into equation 9, the basic

mathematical model of SVM.

max
w ,b

2
wk k

yi(w · xi ± b) ≥ 1, i = 1, 2,⋯,m

8<
: (8)

min
w ,b

1
2
‖w ‖2

yi(w · xi ± b) ≥ 1, i = 1, 2,⋯, m

8<
: (9)

y =o
m

i=0
wT
i · xi ± b (10)

In this research, the SVM classifier would be based on the

Gaussian kernel function with a kernel scale of 3. The computation

process of the SVM classifier was as follows: firstly, the geometric

feature dataset of Cyclobalanopsis wood cells would be passed to the

initial calculation module to obtain m-dimensional coefficients ‖
w ‖T and a threshold value b. Then, equation 10 would multiply and

sum the Cyclobalanopsis species wood cell geometric feature values

x corresponding to each block with ‖w ‖T . Finally, by comparing

the relationship between the classification calculation result and the

threshold value b, the classification result of Cyclobalanopsis species

wood cell geometric feature data could be obtained (Chang et al.,

2005; Friedrichs and Igel, 2005; Xiao et al., 2014).
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2.4 Model evaluation

In machine learning, a model’s classification capability is a

crucial performance metric for evaluation purposes (McAvaney

et al., 2001). During the process of evaluating model performance,

various performance indicators are applied to obtain a

comprehensive understanding of the model’s performance.

Generally, accuracy and confusion matrix are the two most

commonly used evaluation indicators.

Accuracy, represented by formula 11, is defined as the

proportion of samples correctly classified to the total number of

samples. TP denotes the count of correctly identified positive

samples, and TN represents the count of correctly identified

negative samples by the classifier(11).

ACC =
TP + TN

 TOTAL 
(11)

Despite being a widely used evaluation metric, accuracy needs

to be improved for assessing the performance of classifiers in multi-

class classification problems. Hence, the confusion matrix is a more

suitable evaluation metric for comprehensively evaluating the

model performance. The confusion matrix tabulates the

misclassification frequency of each tree type by comparing the

predicted and actual categories (Gauch et al., 2003; Raschka,

2018). The confusion matrix illustrates the predicted and true

categories in columns and rows. Consequently, the matrix enables

the identification of misclassified classes and their respective

frequencies for each tree species.
2.5 Model interpretability

Interpretability refers to the degree to which humans can

comprehend artificial intelligence algorithms, often called “black

boxes,” since their knowledge representation is often

counterintuitive, making it complicated to understand their

behavior. Interpretability techniques facilitate revealing the

rationale behind predictions generated by black box machine

learning models(Zhang and Zhu, 2018; Poursabzi-Sangdeh et al.,

2021) By identifying how features affect, or do not affect,

predictions, interpretability techniques assess whether the model

utilizes appropriate professional knowledge, thereby detecting any

biases that might arise during training.

Machine learning methods are substantially employed in

identifying wood species. However, these models’ complexity

requires interpretable methods to unveil their decision-making

procedures. This study suggested that LIME explain the model to

address this issue. LIME is a technique for interpreting models,

initially proposed in 2016 by Marco Ribeiro and colleagues, that

assists in explaining the decision-making process of complex black-

box models. LIME can enlighten us about the weight of variables,

their contribution to specific predictions, or similar factors. In

studies on identifying tree species based on wood geometry

parameters, LIME can reveal the identification procedure of

machine learning models based on distinct input cell features.

Specifically, the LIME technique utilizes a local linear model to
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approximate a model’s prediction on specific data. This method is

simpler to comprehend since it only focuses on specific data on local

linear structures (Swirszcz et al., 2009; Lozano et al., 2011; Ribeiro

et al., 2016). As shown in Figure 2, machine learning models often

have very complex and convoluted boundaries that are difficult to

understand. Using the LIME technique, a simple linear model is

locally fitted to the data for the boundary, and the interpretability of

the model is achieved through the weight coefficients of the

linear model.

The parameters of the local model in the LIME technique are

calculated by the following formula(12).

f(x) = argmin
g∈G

L(f , g, px) +W(g) (12)

Among them, f is the original model, G is the hypothesis space

of the locally interpretable model, px is the distribution of data

points similar to instance x, L is the loss function, and W(g) is the

regularization term. By minimizing this formula, the optimal local

model f can be obtained, thus explaining the output of the original

model on a specific instance.

Using the LIME technique, the explanation results of specific

instances could be obtained, including the weight of each feature,

the contribution to the prediction result, and so on. For the BP

neural network model and SVM support vector machine based on

wood geometry features for tree species identification, the

predictions for each wood species based on different models and

cell data would be explained by LIME. These explanation results

could help us better understand the working mode and importance

of the features of the model, thus improving the interpretability and

reliability of the model.
3 Results and analysis

3.1 Microstructure of three species
of wood

Vessels in cross section of Cyclobalanopsis gilva were solitary in

radial pattern (Figures 3A, B). The tangential diameter of vessel

lumina was in the range 74.19 through 314.56 with a mean value of

198.20. Vessels/mm2 was 3.12. Perforation plates were simple

(Figures 3C, G). Helical thickenings were unpresented. Tyloses

presented in some vessel lumina. Intervessel pits were alternate

with the shape of rounded or angular (Figures 3D, E). Vessel-ray

pits were with much reduced borders to apparently simple: pits

vertical mostly (Figure 3E). Vasicentric tracheids presented. Axial

parenchyma presented diffuse-in-aggregates numerously, in narrow

bands or lines up to six cells wide commonly and diffuse rarely

(Figure 3A). Wood rays were exclusively uniseriate with an average

number of 10.6/mm. Rays were homocellular with all ray cells

procumbent. Two types of wood rays presented: (1) uniseriate and

2-seriate rays with a height of 2 22 ray cells (Figures 3F, H); (2)

aggregate rays with a breadth >11 ray cells (Figure 3G).

Vessels in cross section of Cyclobalanopsis chungii were solitary

in a radial or diagonal pattern (Figure 3I). The tangential diameter

of vessel lumina was in the range 39.86 through 202.77 with an
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average value of 139.27. Vessels/mm2 was 3.91. Perforation plates

were simple. Helical thickenings were unpresented. Tyloses

presented in some vessel lumina. Intervessel pits were alternate

with the shape of rounded or oval (Figure 3O). Vessel-ray pits were

with much reduced borders to apparently simple: pits rounded

mostly (Figures 3L, M). Vasicentric tracheids presented. Fibers with

simple pits were infrequent (Figure 3P). Axial parenchyma

presented in narrow bands of 1 3 cells wide (Figure 3I). Wood

rays were homocellular with all ray cells procumbent. Two types of

wood rays presented: (1) uniseriate and 2-seriate rays with a height

of 3 21 ray cells (Figures 3O, P); (2) aggregate rays with a breadth

>11 ray cells (Figure 3N).
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Vessels in cross section of Cyclobalanopsis glauca were solitary

in a radial or dendritic pattern (Figures 3Q, R). The tangential

diameter of vessel lumina was in the range 44.33 through 184.50

with an average value of 116.62. Vessels/mm2 was 3.4. Perforation

plates were simple (Figures 3S, U). Helical thickenings were

unpresented. Tyloses presented in some vessel lumina. Intervessel

pits were alternate with the shape of rounded or oval. Vessel-ray pits

were with much reduced borders to apparently simple: pits rounded

mostly. Vasicentric tracheids presented. Axial parenchyma

presented in narrow bands of 1 5 cells wide (Figure 3Q). A

majority of crystals presented in aggregate rays (Figure 3T).

Wood rays were exclusively uniseriate with an average number of
B C D

E F G H

I J K L

M N O P

Q

A

R S T

U V W X

FIGURE 3

Microstructure Images of the three species of Cyclobalanopsis under a biological digital microscope. (A–H) is Cyclobalanopsis gliva; (I–P) is
Cyclobalanopsis chungii; (Q–X) is Cyclobalanopsis glauca.
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7.38/mm. Wood rays were homocellular with all ray cells

procumbent. Two types of wood rays presented: (1) uniseriate

and 2-seriate rays with a height of 3 20 ray cells (Figure 3X); (2)

aggregate rays with a breadth >11 ray cells (Figure 3W).
3.2 Microstructural data of three species
of wood

54 sets of microscopic features data from vessel elements and 96

sets of microscopic features data from wood fibers were collected for

Cyclobalanopsis gilva, while 60 sets of data from vessel elements and

106 sets of data from wood fibers were gathered for Cyclobalanopsis

chungii. For Cyclobalanopsis glauca, 49 sets of data from vessel

elements and 92 sets of data from wood fibers were acquired (Table 3).

In the genus Cyclobalanopsis, the anatomy of vessel cells is

highly variable and can aid in species differentiation. As shown in

Table 3, we compared the vessel elements and wood fiber

characteristics of three Cyclobalanopsisspecies : Cyclobalanopsis

gilva,Cyclobalanopsis chungii, and Cyclobalanopsis glauca.

The thickness of the vessel wall was significantly greater in

Cyclobalanopsis gilva compared to the other two species. The

tangential diameter and area of the vessel were also significantly

more prominent in Cyclobalanopsis gilva. These features and the

vessel’s circumference could be used to distinguish Cyclobalanopsis
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gilva from the other two species. The luminal size of

Cyclobalanopsis gilva vessels was also more extensive, but this

difference was not as significant as the other features. The ratio of

wall to lumina was higher in Cyclobalanopsis chungii than in the

other two species. While this feature is less significant than the

vessel diameter, it could still contribute to species identification. The

substantial rate of the vessels, which measures their compactness,

was significantly higher in Cyclobalanopsis chungii. This feature

alone may not be sufficient to differentiate the species, but it may

contribute to the overall analysis.

The area of the wood fibers was significantly larger in

Cyclobalanopsis gilva —however, more than this feature is

required to differentiate among the species. The size of the fiber

lumina was larger in Cyclobalanopsis chungii, but this difference was

not as significant as in the vessel lumina. The substantial rate of the

fibers was significantly higher in Cyclobalanopsis chungii, which

could be combined with other features to differentiate species.

In conclusion, the vessel elements and wood fiber characteristics

of Cyclobalanopsis spp. can be helpful in species differentiation. The

significant differences observed in vessel wall thickness, tangential

diameter, area, circumference, and wood fiber substantial rate can

aid in identifying Cyclobalanopsis gilva, Cyclobalanopsis chungii,

and Cyclobalanopsis glauca. In the following work, the CTGAN

model based on the anatomical characteristics of Cyclobalanopsis

wood was trained to produce reliable simulated anatomical feature
TABLE 3 Extracted data of microscopic features from three species.

Microscopic
features

Cyclobalanopsis gilva Cyclobalanopsis chungii Cyclobalanopsis glauca

Mean
value

standard
deviation

Coefficient
of variation

Mean
value

standard
deviation

Coefficient
of variation

Mean
value

standard
deviation

Coefficient
of variation

Vessel
elements

Wall thickness/
μm

12.136 2.998 0.143 5.720 1.268 0.222 4.129 1.284 0.311

Tangential
diameter/μm

198.199 59.125 0.298 139.272 35.051 0.252 113.654 37.029 0.326

Tangential
diameter of
lumina/μm

186.024 58.061 0.312 127.832 33.894 0.265 105.436 35.309 0.335

ratio of wall to
lumina

0.071 0.025 0.348 0.097 0.041 0.422 0.087 0.042 0.490

Area/μm2 38603 21929 0.568 18529 8148 0.440 12481 6041 0.484

Area of lumina/
μm2

34613 20380 0.589 15894 7240 0.456 10848 5444. 0.502

Substantial rate 0.118 0.040 0.340 0.156 0.046 0.293 0.138 0.041 0.297

Circumference/
μm

668.663 211.527 0.316 471.070 117.040 0.248 377.391 119.029 0.315

Circumference of
lumina/μm

630.738 207.618 0.329 435.361 113.410 0.260 351.415 112.736 0.321

Wood
fibers

Area/μm2 206.634 53.536 0.259 143.274 41.509 0.290 106.891 40.613 0.380

Area of lumina/
μm2

89.580 39.339 0.439 18.198 12.782 0.702 21.006 12.838 0.611

Substantial rate 0.568 0.143 0.251 0.919 0.036 0.039 0.805 0.080 0.100
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data for training a tree species identification model. Finally, the

LIME model’s explanation technique was used, compared, and

discussed with the prior knowledge of the Cyclobalanopsis

identification learned above.
3.3 Dataset construction and enhancement

Based on the geometric characteristics of real Cyclobalanopsis

wood cells, we customized a Cyclobalanopsis cell simulation

geometric data generation model using the CTGAN model

through the application of Python’s SDV library, and the model

was reliably evaluated by Python’s SDMetrics library. We used 163

sets of vessel cell data and 294 sets of wood fiber cell data to train the

cell simulation geometric data generation model. Due to the

relatively small amount of data in the training set, we used a

relatively small batch size and a very long training period to

improve the model’s generalization and feature extraction

abilities. In order to avoid the problem of model overfitting

caused by small batch sizes and long training periods, we used

relatively small neural network dimensions and relatively small

learning rates. We used the Adam optimizer for optimization. After

multiple rounds of parameter adjustment, our final model training

parameters are shown in Table 4, and the model training loss is

shown in Figure 4. The generator loss of the Vessel-CTGAN model

gradually stabilizes after 6000 rounds, and the discriminator loss

also slowly converges. Meanwhile, the WoodFiber-CTGANmodel’s

generator loss stabilized at around -1.2 after 3000 rounds, and the

discriminator also showed a stable trend, thus completing the

model’s training.

Synthetic data was generated using the CTGANmodel based on

a real geometric feature dataset of Cyclobalanopsis. The model

learns from the Cyclobalanopsis wood cell geometrical feature

dataset to generate synthetic data corresponding to actual

Cyclobalanopsis wood geometric features’ statistical regularities.

This expansion of the dataset was one of the benefits of this

approach. The training dataset for wood geometrical features

consisted of 163 groups of tracheal geometric data from

Cyc loba lanops i s g i l va , Cyc loba lanops i s chung i i , and

Cyclobalanopsis glauca, as well as 294 groups of wood fiber

geometric data, trained for 5000 rounds.

In addition, the KS test was used to compare the differences in

probability distribution between actual wood geometric feature data

and generated wood geometric feature data. The KS test could be

used to compare the difference between two probability

distributions, and its core was to calculate the empirical

cumulative distribution function (ECDF) of the two distributions.

The KS statistic D represented the maximum difference between the

two ECDFs. The larger the D value, the more significant the

difference between the two distributions. The Ks complement was

a supplementary index of the KS test, and its value equalled 1-D.

Therefore, the larger the D value, the smaller the Ks complement

value. The range of Ks complement was between 0 and 1. When the

Ks complement value was closer to 1, it indicated that the two

probability distributions were more similar; conversely, when the

Ks complement value was closer to 0, it indicated that the two
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probability distributions were less similar. When Cifuentes et al.

(2023) studied optimizing asset allocation data generation using

CTGAN, the Ks complement indicator reached 0.87. Alqarni and

El-Alfy (2022) studied generating network traffic intrusion

detection data, and the Ks complement score ranged from 0.77 to

0.82. Peng et al. (2021) studied on generating credit rating data, the

Ks complement indicator reached 0.88.

In order to ensure accuracy and richness in data sampling, we

divided the original real cell data into ten equal parts for each tree

species. Then we carried out a single sampling of each of the equal

parts to generate simulated data. For each equal part, we generated

100 simulation cell data samples, resulting in 1000 simulation cell

data samples per tree species. The new data generated by CTGAN

achieved good indicators on Ks complement (Figure 5). The average

Ks complement of the vessel reached0.9, 0.88 and 0.87

corresponded to Cyclobalanopsis gilva, Cyclobalanopsis chungii

and Cyclobalanopsis glauca in turn. The average Ks complement

of the wood fibers reached 0.86, 0.89 and 0.92 corresponded to

Cyclobalanopsis gilva, Cyclobalanopsis chungii and Cyclobalanopsis

glauca in turn. Therefore, using the CTGAN model, 1000 groups of

geometric data each for vessels and wood fibers were obtained,

which could simulate the numerical distribution of natural wood

geometric features of Cyclobalanopsis gilva, Cyclobalanopsis chungii,

and Cyclobalanopsis glauca, respectively. SVM and BP neural

networks would be trained based on 3000 groups of geometric

feature data each for Cyclobalanopsisvessels and wood fibers.
3.4 Wood identification results

Using MATLAB, based on the hyperparameters configuration

in Table 4, machine learning algorithm models were established to

identify three species of Cyclobalanopsis by vessel and wood fiber

geometry data through BP neural network and SVM support vector

machine methods. The training of machine learning models is

based on CTGAN-enhanced synthetic cell datasets. In order to

verify the recognition effect of the model trained on CTGAN-

enhanced data on real cell images, two machine learning models

based on different synthetic cells were tested on both synthetic cell

test sets and real cell datasets. The recognition results are shown in
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the Table 5, and the model trained on synthetic data can also

achieve excellent recognition on real microscope features. The

machine learning model based on Vessel-CTGAN-BPNN

achieved high recognition rates of 99.2% in the test set and 96.4%

in the real dataset, while 99.4% in the test set and maintained in the

real dataset based on the Vessel-CTGAN-SVM. However, the

recognition rates of the machine learning model based on the

WoodFiber-CTGAN-BPNN was 76.6% in the test set and 75.7%

in the real dataset, while 74.1% in the test set and 77.9% in the real

dataset based on WoodFiber-CTGAN-SVM. These results

indicated that both BPNN and SVM algorithms based on vessel

geometry data could achieve high recognition levels, while the SVM

algorithm performs better. However, machine learning models

based on wood fiber geometry data could not achieve satisfactory

recognition results. However, compared with the BPNN and SVM

models without CTGAN-enhanced data, the recognition rates of

the models have still improved. Compared with the Vessel-BPNN

and Vessel-SVMmodels, the recognition rates have increased by 6.6

and 15.7 percentage points, respectively, after using the CTGAN

data enhancement method. Compared with the WoodFiber-BPNN

and WoodFiber-SVM models, the recognition rates have increased

by 9.6 and 4.0 percentage points, respectively, after using the

CTGAN data enhancement method.

The confusion matrices based on the CTGAN simulated vessel

and wood fiber cell geometry data were plotted (Figure 6). Two

machine learning models, BPNN and SVM, were trained based on

CTGAN simulated anatomical data of two types of cells. The BPNN

model trained on the CTGAN simulated anatomical data of vessel

cells achieved high accuracy in the test set, with only three prediction

errors in the identification of 299 Cyclobalanopsis chungii tree

species, four errors in the identification of301 Cyclobalanopsis gilva

tree species and no errors in the identification of Cyclobalanopsis

glauca. Similarly, the SVM model trained on the CTGAN simulated

anatomical data of vessel cells also achieved high accuracy in the test

set, with only 2 and 3 prediction errors in the identification of 299

Cyclobalanopsis chungii and 301 Cyclobalanopsis gilva tree species,

respectively, and no errors in the identification of Cyclobalanopsis

glauca. It is worth noting that Vessel-CTGAN-BPNN and Vessel-

CTGAN-SVM also achieved high recognition accuracy on the real

cell dataset. In the real Cyclobalanopsis chungii cell dataset, Vessel-
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CTGAN-BPNN misclassified only 4 out of 65 wood cell data; in the

real Cyclobalanopsisgilva cell dataset, Vessel-CTGAN-BPNN

misclassified only 1 out of 51 wood cell data, and in the real

Cyclobalanopsis glauca cell dataset, Vessel-CTGAN-BPNN

misclassified only 1 out of 50 wood cell data. Similarly, Vessel-

CTGAN-SVM achieved 100% accuracy in the real Cyclobalanopsis

chungii cell dataset, misclassified only 1 out of 55 wood cell data in

the real Cyclobalanopsis gilva tree species cell dataset, and achieved
Frontiers in Plant Science 13
100% accuracy in the real Cyclobalanopsis glauca tree species cell

dataset. Except for vessel cells, the performance of the SVM and

BPNN models trained on CTGAN-simulated anatomical data of

wood fiber cells is relatively worse. Nevertheless, the performance of

these models is very close in both the test set and the real dataset,

which is enough to illustrate that CTGAN-simulated anatomical

data of cells can train good wood identification models for

real datasets.
FIGURE 5

The KS complement metrics of the real and synthetic Cyclobalanopsis wood cell geometry datasets are presented, with the following letter symbols
representing: vessel’s wall thickness (VEWT), vessel’s tangential diameter (VETD), vessel’s tangential diameter of lumina (VETDOL), vessel’s ratio of
wall to lumina (VEROWTL), vessel’s area (VEA), vessel’s area of lumina (VEAOL), vessel’s substantial rate (VESR), vessel’s circumference (VEC), vessel’s
circumference of lumina(VECOF),fiber’s area (CA), fiber’s substantial rate(SR), and fiber’s area of lumina (AOL).
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3.5 Model interpretability

3.5.1 Selection of local data for LIME
A LIME linear model was established using Matlab software to

fit the identification of BPNN and SVMmodels on specific data and

to demonstrate how the two machine-learning models identify

specific wood species. The LIME modeling was conducted on

vessel and wood fiber cells of three Cyclobalanopsis species. Six

samples of two types of cells from the three species were randomly

selected for model interpretation and analysis, as presented in

Table 6. Here, the 10th, 89th, and 150th vessel cell data and the

14th, 114th, and 230th wood fiber cell data were analyzed.

Considering that recognition rate of model was unrelated to

model interpretation, BPNN model was randomly selected for

model interpretation based on vessel features and SVM model

was chosen for model interpretation based on wood fiber features.

Observing the vessel cell data interpreted by the LIME model

through random selection, it can be seen that the difference in wall

thickness feature is the greatest among the three tree species.

Among other features, there are always two tree species with

similar values. Theoretically, we hope that the LIME model’s

explanation technique is in line with our prior knowledge and

that tree species identification is based on the wall thickness feature.

Observing the wood fiber cell data that the LIME model interprets

through random selection, none of the three features make

sufficient decisions. Theoretically, we hope that the LIME model’s

explanation technique can integrate multiple types of information

to make decisions.

3.5.2 Model interpretation based on
vessel features

In order to explore how the BPNN model identifies wood

species based on the geometric features of vessel cells, a simple

linear model would be used as a local model to fit the BPNN model.

Specifically, we
Frontiers in Plant Science 14
Replaced the activation function of each hidden unit with a

ReLU function to achieve this transformation. Then, the linear

model’s output was calculated using the following formula(13).

y =o
n

i=1
wixi + b (13)

Among them, n was the number of features, wi was the weight

of the i-th feature, xi was the value of the i-th feature, and b was the

bias term. This relatively simple linear model had good

interpretability, which could obtain the interpretation results of

the model for predicting specific conduit data. As shown in Figure 7,

the geometric features of the conduit cells had a specific impact on

the model identification when the BPNN model identified 3 pieces

of wood conduit data in Table 6 (Swirszcz et al., 2009; Lozano

et al., 2011).

The BPNN model relies mainly on the characteristics of vessel’s

area of lumina (VEAOL) and vessel’s area(VEA) for identifying

three types of Cyclobalanopsis wood species. VEAOL plays a vital

role in identifying Cyclobalanopsis gilva and Cyclobalanopsis glauca,

while VEA plays a significant role in identifying Cyclobalanopsis

chungii (Figure 7). By analyzing the vessel’s substantial rate (VESR)

feature values in combination with the prior knowledge from

Tables 3, 6, the average value of Cyclobalanopsis gilva is 0.118,

and the sample value for model interpretation is 0.1428; the average

value of Cyclobalanopsis chungii is 0.156, and the sample value for

model interpretation is 0.1427; the average value of Cyclobalanopsis

glauca is 0.138, and the sample value for model interpretation is

0.0949. From Figure 7A, the model considers that a value between

0.14 and 0.15 has a negative effect on identifying the cell data as

Cyclobalanopsis gilva; from Figure 7B, the model considers that a

value between 0.14 and 0.15 has a positive effect on identifying the

cell data as Cyclobalanopsis chungii; from Figure 7C, the model

considers that a value between 0.09 and 0.11 has a negative effect on

identifying the cell data as Cyclobalanopsis glauca. Therefore, the

model conforms well to our prior knowledge in judging the VESR

feature point.
3.5.3 Model interpretation based on wood
fiber features

In order to explore how the SVM model identified tree species

based on the geometric features of wood fiber cells, a simple linear

model would be used as a local model to fit the SVM. For the SVM

support vector machine model, the interpretation method of LIME

technology was as follows: first, we calculated the weight of each

support vector in a specific instance. It could be calculated by the

following formula (14).

wi = aiyiK(xi, x) (14)

Among them, ai was the Lagrange multiplier of the i-th support

vector, yi was the class label corresponding to the i-th support

vector, K(xi, x) was the value of the kernel function, xi was the

feature vector of the i-th support vector, and x was the feature

vector of the specific instance.
TABLE 5 Recognition rates of models based on different cell geometry
features and different machine algorithms.

Recognition
algorithms

Recognition rate of
test set

Recognition rate of
real data

Vessel-BPNN 89.8%

Vessel-SVM 83.7%

WoodFiber-BPNN 65.9%

WoodFiber-SVM 73.9%

Vessel-CTGAN-
BPNN

99.2% 96.4%

Vessel-CTGAN-SVM 99.4% 99.4%

WoodFiber-CTGAN-
BPNN

76.6% 75.5%

WoodFiber-CTGAN-
SVM

74.1% 77.9%
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Next, the weights of all support vectors were added up to obtain

the explanation result for a specific instance (15).

y =o
m

i=1
wi (15)

Among them, m was the number of support vectors (Swirszcz

et al., 2009; Lozano et al., 2011).

Using this method, It could be obtained the weight of each

feature in the SVM model for a specific instance and how these

weights contribute to the model’s prediction results (Figure 7).
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The SVM model mainly relies on the features of fiber’s area of

lumina (AOL) and fiber’s area (CA) to identify three types of

Cyclobalanopsis wood species, with AOL having the most

significant weight and CA coming second (Figure 7). Analyzing

the AOL feature value more specifically, the SVM model believes

that Cyclobalanopsis gilva should have the largest AOL, followed by

Cyclobalanopsis glauca, and finally Cyclobalanopsis chungii. By

observing Table 2 and extracting prior knowledge, it can be seen

that the average value of Cyclobalanopsis gilva is 89.580,

Cyclobalanopsis glauca is 21.006, and Cyclobalanopsis chungii is
FIGURE 6

Identification results based on vessel cell and wood fiber cell geometry data for three tree species, Note: A, B and C in the diagram represent
Cyclobalanopsis chungii, Cyclobalanopsis gilva and Cyclobalanopsis glauca respectively.
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18.198. Therefore, the SVM model conforms to our prior

knowledge in analyzing the AOL feature value.
4 Conclusion
In this study, two machine learning models, the BP neural

network and SVM models, were established based on quantitative

geometric characteristics data of vessels and wood fibers to identify

the three specie s of Cyclobalanopsis, and explained those models

with LIME-based model interpretation.
Fron
1. The machine learning model constructed based on the

geometric characteristics data of vessel elements could

effectively identify the three species. Additionally, SVM
tiers in Plant Science 16
model was of higher prediction accuracy than BPNN

model.

2. The CTGAN model could be effectively applied to enhance

geometric characteristic dataset of wood species. The

machine learning models trained on the dataset enhanced

by the CTGAN model had a high recognition rate for the

geometric characteristics of actual microscopic features.

3. The use of LIME model interpretation techniques can

effectively verify whether the decision and analysis of the

wood identification model conforms to human knowledge.

In the field of wood science, model interpretation

techniques should be supplemented and further discussed

and researched as a model evaluation direction beyond the

traditional recognition rate index.
TABLE 6 Data on specific cell characteristics of three tree species used for LIME model interpretation.

species Cyclobalanopsis gilva Cyclobalanopsis chungii Cyclobalanopsis glauca

Vessel elements

Wall thickness/ 11.5074 5.66473 0.05444

Tangential diameter/ 114.326 157.148 165.83

Tangential diameter of lumina/ 102.818 145.819 157.268

ratio of wall to lumina 0.11192 0.0777 4.28088

Area/μm2 10858.1 22712.4 22385.7

Area of lumina/μm2 9306.97 19471.3 20260.5

Substantial rate 0.14285 0.1427 0.09494

Circumference/μm2 369.944 536.544 531.726

Circumference of lumina/μm2 342.762 497.819 505.881

Wood fibers

Area/μm2 196.275 194.301 63.3392

Area of lumina/μm2 59.5437 12.484 19.016

Substantial rate 0.69663 0.93575 0.69977
B C

D E F

A

FIGURE 7

LIME Model Interpretation: How Machine Learning Identifies Tree Species Based on Geometric Features of Vessel Cells (A–C) and Wood Fiber Cells
(D–F), with the Following Letter Symbols Representing: Vessel Wall Thickness (VEWT), Vessel Tangential Diameter (VETD), Vessel Tangential
Diameter of Lumina (VETDOL), Vessel Ratio of Wall to Lumina (VEROWTL), Vessel Area (VEA), Vessel Area of Lumina (VEAOL), Vessel Substantial Rate
(VESR), Vessel Circumference (VEC), Vessel Circumference of Lumina (VECOF), Fiber Area (CA), Fiber Substantial Rate (SR), and Fiber Area of Lumina
(AOL).
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The CTGAN and LIME technologies have been preliminarily

verified in our work, but there are still some limitations. Firstly, this

research work deserves a deeper replication on a larger

microstructure data set of wood, which will further demonstrate

the significance of our work on a larger scale. Secondly, the LIME

model explanation technology can not only build modeling analysis

based on numerical features such as micro features but also has a

place in image analysis, although it is not perfect, it is worthy of

exploration. Finally, LIME is just one of the many artificial

intelligence model explanation technologies, and more model

explanation technologies should be introduced to the tree species

identification field to find the optimal explanation model (Lundberg

and Lee, 2017; Shrikumar et al., 2017).

In terms of future research, we offer the following suggestions.

Firstly, we recommend replicating and validating the methods on a

larger data set. Secondly, models, including YOLO, SegNet, UNet,

and the SAM model (Redmon et al., 2016; Badrinarayanan et al.,

2017; Huang et al., 2020; Kirillov et al., 2023), which has recently

gained popularity, have the potential for introducing wood cell

structure analysis and feature extraction. This potential could lead

to a significant decrease in the cost of manually collecting features

(Yang et al., 2022a; Yang et al., 2022b). Lastly, to create true,

industrialized, and intelligent forestry applications, it would be

beneficial to further combine model interpretation technology

with traditional wood anatomy and wood recognition models.
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