- 1The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- 2Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- 3Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- 4The Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Editorial on the Research Topic
Specialized metabolites manipulating organismal behaviors and rhizospheric communications
Evolving from aqueous green algae, sessile terrestrial plants have developed diverse mechanisms to overcome challenging environments and cope with different types of stress (Weng et al., 2021). For a better survival, plants utilize chemical signals that affect and are perceived by surrounding organisms. Many of these compounds are released by roots into the soil and act as signaling molecules in the communication within the rhizosphere. Indeed, plants leak out a complex cocktail of chemical signals mediating plant-plant, plant-bacteria, and plant-fungi interactions (Massalha et al., 2017). Many of these specialized signals derive from secondary metabolic pathways. For example, Ke et al. summarized that the breakdown of carotenoids provides (i) the precursor for apocarotenoid signaling and regulatory metabolites (Dickinson et al., 2019; Jia et al., 2019; Wang et al., 2019; Votta et al., 2022; Ablazov et al.,2023), and (ii) for the plant hormones abscisic acid and strigolactones (SLs). Both hormones are important for plant growth and development, and response to biotic and abiotic stress stimuli (Al-Babili and Bouwmeester, 2015; Wang et al., 2021). Moreover, SLs are some of the best-known examples of underground signaling molecules in plant-microbe and plant-plant communication (Lanfranco et al., 2018). In their study, Wang et al. proposed that root-released SLs function as an important rhizospheric signaling cue, more specifically canonical SLs (Ito et al., 2022; Wheeldon et al., 2022; Yoneyama et al., 2022). However, they are not the only ones shaping underground communications; many other intriguing root-released metabolites, such as 6-methoxy-2-benzoxazolin, blumenols, and camalexin, are also involved in the rhizospheric interactions (Hu et al., 2018; Fiorilli et al.; Koprivova et al., 2023).
Despite the progress that has been made in the past decades, the biological role of root exudates in shaping organismal communications and interactions remained largely elusive. Research in this field has been aggravated by the very low quantities of root-secreted specialized metabolites, which hinders their identification, structural characterizations, and detailed assessment of their biological function. Therefore, researchers need to collect root exudates at large scale to get insights into their metabolite compositions (Ueno et al., 2021). Indeed, the improvement of root exudate collection and concentration techniques allowed the identification and structural characterization of new compounds such as (i) three novel canonical SLs in tomato reported by Wakabayashi et al., which might pave the way to the identification of solanacol biosynthesis, and (ii) the confirmation by Oota et al. that pectic carbohydrates released by Lotus corniculatus L. are important nematode attractants regulating (micro)organismal chemotaxis in the rhizosphere. The latter role was discovered using the super-growing root culture system, providing a promising tool for root pathogen research. Although several analytical protocols have been proposed, developed, and employed (Van Dam and Bouwmeester, 2016; Escolà Casas and Matamoros, 2021; Wang et al., 2022), Salem et al. discussed and proposed that a comprehensive analysis of rhizosphere metabolome is still challenging in chemical ecology research.
In summary, this Research Topic offers updated knowledge about allelopathic, rhizospheric secondary metabolites in plant-plant, -animal, and -microbe communications. The information presented can be helpful in future developments towards increasing crop performance and decreasing the ecological and economic loss for sustainable agriculture; for instance, several analogs/mimics of these specialized metabolites have been designed and utilized in basic research as well as in agricultural applications (Rigal et al.; Vaidya et al., 2019; Jamil et al.; Wang et al., 2020; Jamil et al., 2022; Wang et al.). Finally, our research collection also provides important perspectives on the overlooked regulatory and signaling metabolites in the rhizosphere, paving the way for future investigations.
Author contributions
All authors have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.
Funding
This work was supported by baseline funding given to SA-B from King Abdullah University of Science and Technology (KAUST).
Acknowledgments
We sincerely thank all the peer reviewers who took time to review for this Research Topic.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Ablazov, A., Votta, C., Fiorilli, V., Wang, J. Y., Aljedaani, F., Jamil, M., et al. (2023). ZAXINONE SYNTHASE 2 regulates growth and arbuscular mycorrhizal symbiosis in rice. Plant Physiol. 191 (1), 382–399. doi: 10.1093/plphys/kiac472
Al-Babili, S., Bouwmeester, H. J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66, 161–186. doi: 10.1146/annurev-arplant-043014-114759
Dickinson, A. J., Lehner, K., Mi, J., Jia, K. P., Mijar, M., Dinneny, J., et al. (2019). Beta-cyclocitral is a conserved root growth regulator. Proc. Natl. Acad. Sci. U.S.A. 116, 10563–10567. doi: 10.1073/pnas.1821445116
Escolà Casas, M., Matamoros, V. (2021). Analytical challenges and solutions for performing metabolomic analysis of root exudates. Trends Environ. Analytical Chem. 31, e00130. doi: 10.1016/j.teac.2021.e00130
Hu, L., Robert, C. A. M., Cadot, S., Zhang, X., Ye, M., Li, B., et al. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9(1), 2738. doi: 10.1038/s41467-018-05122-7
Ito, S., Braguy, J., Wang, J. Y., Yoda, A., Fiorilli, V., Takahashi, I., et al. (2022). Canonical strigolactones are not the major determinant of tillering but important rhizospheric signals in rice. Sci. Adv. 8, eadd1278. doi: 10.1126/sciadv.add1278
Jamil, M., Wang, J. Y., Yonli, D., Ota, T., Berqdar, L., Traore, H., et al. (2022). Striga hermonthica suicidal germination activity of potent strigolactone analogs: evaluation from laboratory bioassays to field trials. Plants 11, 1045. doi: 10.3390/plants11081045
Jia, K.-P., Dickinson, A. J., Mi, J., Cui, G., Xiao, T. T., Kharbatia, N. M., et al. (2019). Anchorene is a carotenoid-derived regulatory metabolite required for anchor root formation in arabidopsis. Sci. Adv. 5, eaaw6787. doi: 10.1126/sciadv.aaw6787
Koprivova, A., Schwier, M., Volz, V., Kopriva, S. (2023). Shoot-root interaction in control of camalexin exudation in arabidopsis. J. Exp. Bot., erad031. doi: 10.1093/jxb/erad031
Lanfranco, L., Fiorilli, V., Venice, F., Bonfante, P. (2018). Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J. Exp. Bot. 69, 2175–2188. doi: 10.1093/jxb/erx432
Massalha, H., Korenblum, E., Tholl, D., Aharoni, A. (2017). Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J. 90, 788–807. doi: 10.1111/tpj.13543
Ueno, K., Wakabayashi, T., Sugimoto, Y. (2021). “Isolation and identification of naturally occurring strigolactones,” in Strigolactones. methods in molecular biology, Eds. Prandi, C., Cardinale, F. (New York, NY: Humana). vol. 2309. doi: 10.1007/978-1-0716-1429-7_2
Vaidya, A. S., Helander, J. D. M., Peterson, F. C., Elzinga, D., Dejonghe, W., Kaundal, A., et al. (2019). Dynamic control of plant water use using designed ABA receptor agonists. Science 366 (6464), eaaw8848. doi: 10.1126/science.aaw8848
Van Dam, N. M., Bouwmeester, H. J. (2016). Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci. 21, 256–265. doi: 10.1016/j.tplants.2016.01.008
Votta, C., Fiorilli, V., Haider, I., Wang, J. Y., Balestrini, R., Petřík, I., et al. (2022). Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice. Plant J. 111, 1688–1700. doi: 10.1111/tpj.15917
Wang, J. Y., Chen, G.-T. E., Jamil, M., Braguy, J., Sioud, S., Liew, K. X., et al. (2022). Protocol for characterizing strigolactones released by plant roots. STAR Protoc. 3 (2), 101352. doi: 10.1016/j.xpro.2022.101352
Wang, J. Y., Haider, I., Jamil, M., Fiorilli, V., Saito, Y., Mi, J., et al. (2019). The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat. Commun. 10, 810. doi: 10.1038/s41467-019-08461-1
Wang, J. Y., Jamil, M., Lin, P.-Y., Ota, T., Fiorilli, V., Novero, M., et al. (2020). Efficient mimics for elucidating zaxinone biology and promoting agricultural applications. Mol. Plant 13, 1654–1661. doi: 10.1016/j.molp.2020.08.009
Wang, J. Y., Lin, P.-Y., Al-Babili, S. (2021). On the biosynthesis and evolution of apocarotenoid plant growth regulators. Semin. Cell. Dev. Biol. 109, 3–11. doi: 10.1016/j.semcdb.2020.07.007
Weng, J. K., Lynch, J. H., Matos, J. O., Dudareva, N. (2021). Adaptive mechanisms of plant specialized metabolism connecting chemistry to function. Nat. Chem. Bio 17, 1037–1045. doi: 10.1038/s41589-021-00822-6
Wheeldon, C. D., Hamon-Josse, M., Lund, H., Yoneyama, K., Bennett, T. (2022). Environmental strigolactone drives early growth responses to neighboring plants and soil volume in pea. Curr. Bio 32, 3593–3600. doi: 10.1016/j.cub.2022.06.063
Keywords: root exudates, plant secondary metabolites, plant-plant interaction, plant microbe communication, phytohormones, rhizospheric communication
Citation: Wang JY, Fiorilli V, Lanfranco L, Asami T and Al-Babili S (2023) Editorial: Specialized metabolites manipulating organismal behaviors and rhizospheric communications. Front. Plant Sci. 14:1197058. doi: 10.3389/fpls.2023.1197058
Received: 30 March 2023; Accepted: 06 April 2023;
Published: 20 April 2023.
Edited and Reviewed by:
Anna N Stepanova, North Carolina State University, United StatesCopyright © 2023 Wang, Fiorilli, Lanfranco, Asami and Al-Babili. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Salim Al-Babili, c2FsaW0uYmFiaWxpQGthdXN0LmVkdS5zYQ==