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Metabolomics refers to the technology for the comprehensive analysis of

metabolites and low-molecular-weight compounds in a biological system,

such as cells or tissues. Metabolites play an important role in biological

phenomena through their direct involvement in the regulation of physiological

mechanisms, such as maintaining cell homeostasis or signal transmission

through protein–protein interactions. The current review aims provide a

framework for how the integrated analysis of metabolites, their functional

actions and inherent biological information can be used to understand

biological phenomena related to the regulation of metabolites and how this

information can be applied to safety assessments of crops created using

biotechnology. Advancement in technology and analytical instrumentation

have led new ways to examine the convergence between biology and

chemistry, which has yielded a deeper understanding of complex biological

phenomena. Metabolomics can be utilized and applied to safety assessments of

biotechnology products through a systematic approach using metabolite-level

data processing algorithms, statistical techniques, and database development.

The integration of metabolomics data with sequencing data is a key step towards

improving additional phenotypical evidence to elucidate the degree of

environmental affects for variants found in genome associated with metabolic

processes. Moreover, information analysis technology such as big data, machine

learning, and IT investment must be introduced to establish a system for data

extraction, selection, and metabolomic data analysis for the interpretation of

biological implications of biotechnology innovations. This review outlines the

integrity of metabolomics assessments in determining the consequences of

genetic engineering and biotechnology in plants.
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1 Introduction

Metabolomics refers to the technology for the comprehensive

analysis of metabolites and low-molecular-weight compounds in

a biological system such as cells or tissues (Pérez-Alonso et al.,

2018). Metabolomics allows the systematic identification and

quantification of these small molecules that are involved in

biochemical interactions of organisms, thereby elucidating

complex biological interactions, responses, and functions.

The development and engineering of organisms through

biotechnology (synthetic biology) exhibit new biological

functions, as a functional expression of the genes involved is

linked to metabolomes via transcriptomes and proteomes

regulation (Moses et al., 2013). Similar to genomics, that refers to

all the genetic information of an organism, the metabolome refers to

the metabolic end products, which include hundreds to thousands

of metabolites, depending on the scale of the organism or biological

system involved. The qualitative or quantitative changes of

metabolites in living organisms can be validated through various

instrumental analyses and can be used to interpret various

physiological phenomena or mechanisms of cells or organisms

examination for comprehensive understanding of the complex

physiology and biochemistry of organisms (Sharanya et al., 2020).

Metabolites are produced and modified by the metabolism of

biological systems (such as cells, tissues, or organisms) such as

peptides, amino acids, nucleic acids, lipids, carbohydrates, organic

acids, vitamins, polyphenols, alkaloids, minerals, and chemical

compounds absorbed and synthesized by cells or organisms.

These compounds undergo changes in metabolic levels due to

different environmental stimuli (biotic and abiotic), and by

analyzing these environmental factors, the organism can be

characterized, and metabolomic responses by specific factors can

be predicted in connection with the mechanism of metabolic

pathways (Poltronieri et al., 2013). Unlike microorganisms or

animals, in plants more than 200,000 different metabolites have

been reported (Weng et al., 2021). These metabolites constitute the

substrates of enzymatic reactions and their qualitative and

quantitative changes can determine the phenotype of organisms.

Plant metabolomics aims to elucidate metabolic pathways and to

allow the mathematical formulation of the total metabolic flux in

terms of systems biology (Sharma et al., 2018). To find genes

involved in the synthesis or breakdown of certain metabolites,

quantitative trait loci (mQTL), and metabolic genome-wide

association studies (mGWAS) in plant breeding, metabolome data

can be integrated with genome and transcriptome data (Sakurai,

2022). Additionally, as the genomes of numerous plants have been

sequenced, the demand for functional genomics approaches has

encouraged the development of multi-omics-based strategies, with

metabolomics playing an increasingly significant role. Thus, one of

the most difficult fields is plant metabolomics, which has been

shown to have an impact on crop improvement, the identification

of bioactive substances, plant development, and responses to stress.

Systems biology methods enable the integration of metabolomics

with other -omics data, such as genomes, transcriptomics, and

proteomics, to provide us a more comprehensive understanding of

metabolic network control and cellular processes (Pinu et al., 2019).
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The research on plant metabolites is of great value, and the

design of experimental models is instrumental in deriving highly

reliable results in metabolic profiling. When designing an

experimental model, the selection and control of variables need to

be carefully considered to ensure the integrity of the statistical

analysis. Research on the safety assessment of crop composition

needs to be divided into genetically modified organisms (GMO)

and non-GMO groups, based on the independent variable of

“genetic modification.” All other variables need to be held

unchanged as control variables (Moghissi et al., 2018). After

designing of the experimental model, the next step is to prepare

high-quality samples. In the case of mass spectrometry (MS)-based

metabolomics, the quality (such as homogeneity) of the samples is

important. In order to ensure high quality and reliability in sample

preparation, it is important to select samples representative of

different environments (regions) of plant growth and the number

of replicates needs to be considered for improved reliability in

statistical analyses. In a study by Kim et al. (Kim et al., 2018) on the

safety assessment of genetically engineered crops, a systematic

approach was used for the preparation of crop samples and for

analytical procedures. A crop composition database was developed

using a diverse range of cultivars and regions so as to enhance the

accuracy and reliability of the collected data.

There has been growing emphasis on the importance

and necessity of metabolomics in terms of ‘big data’ utilization.

Integrating big data with the metabolomic data and environmental

information data with statistics, computer science, and

bioinformatics can lead to a new approach for metabolite data

validation. Therefore, big data-based safety assessment techniques

need to be developed for organisms and plants engineered by

biotechnology so that their values can be determined with

verification of their safety. The nutritional value and safety of

food and feed from GM crops is well informed by the

quantitative, validated compositional methods for list of key

analytes defined by crop-specific OECD consensus documents.

Untargeted metabolic profiling has yet to provide data that better

informs the safety assessment of GM crops than the already

rigorous Codex-defined quantitative comparative assessment.

Through the establishment of a systematic protocol with

metabolite-level data processing algorithms, statistical techniques,

and database development, metabolomics can be utilized and

applied to products of biotechnology requiring safety assessment.
2 Metabolomics

Metabolites present in plants are low-molecular weight

compounds such as lipophilic compounds in the plant cell wall,

polar compounds from hydrophilic parts of the cell membrane,

acidic and basic ions, and stable and oxidized structures. The

metabolite levels change due to exogenous (environmental

stimuli, such as drought, high temperature, circadian etc) or

endogenous (homeostatic, diseases, growth and senescence)

changes. This is because the metabolome (metabolites), the

form of end products that determine a cell’s function, are linked

to the proteome (protein products) and the genome containing
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genetic information of metabolites (Sharma et al., 2018). Therefore,

in order to examine specific reactions in plants developed

through mutations or engineered through biotechnology,

integration of metabolomic information with genomic and

proteomic information will be useful for deriving results with

more significant implications and meanings. Additionally, it made

it possible to gain a greater understanding of food composition,

create new nutritional markers, and eventually build metabolic

engineering techniques and the use of plants as bioreactor

organisms. Plant metabolites are gaining interest in terms of

human health due to their demonstrated protective benefits

against diseases including diabetes, hypertension, and cancer,

among others. But no one analytical platform or separation

method can fully define the entire metabolome. However, calls for

the use of metabolomics for compositional analysis of GM crops are

being made due to the ongoing development of highly sensitive

analytical tools and improved bioinformatic tools, in order to

comparative assess more metabolites than those listed in the

OECD consensus documents (Authority et al., 2018).

In plant metabolomics, a phased and systematic process from

crop cultivation to analysis is needed in order to ensure meaningful

interpretation of the results as well as reliability and accuracy of the

results. In metabolomics, optimized detection of compounds can be

achieved according to the extraction methods and the method of

instrumental analysis used for identification and quantification of

the compounds. Therefore, appropriate extraction solvents and

analytical instruments need to be selected in consideration of the

properties of the samples. For the implementation of efficient and

systematic metabolomics, the necessary details of analyte extraction

methods, instrumental analysis, data processing, and statistical

analysis need to be considered and a combination of different

extraction condition and instrumentation setting may be required

to achieve broad coverage of metabolite classes.
2.1 Sample collection: field trial design

In order to perform metabolomics analysis for the safety

assessment of a biotech crop, it is necessary to cultivate the

biotech crop and a control comparator, as well as a reference of

commercial varieties, in the same region to obtain compositional

data under same environmental conditions. In addition, the test

must be designed to have sufficient statistical power to identify

significant differences between the biotech crop and the control

crop (Benevenuto et al., 2022). To assess statistical natural variation

in crop composition, environmental information (soil composition,

climate, site, year of planting) and genetic background (varieties)

should be collected so that correlation analyses can be performed as

needed. EFSA recommended using at least four replicates

throughout the entire study and cultivating at least three different

crop varieties in at least eight sites for at least one year concurrently

with a control group in order to conduct a comparative assessment

of crop components (Ramos-Peralonso, 2014).
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2.2 Sample preparation: storage and
homogenization

The methods of grinding and storing the analytic samples have

an impact on the recovery rate of the extracts. In general, a method

of drying the moisture in a sample is used to minimize loss while

preserving the properties of the constituents, which includes

heating or freeze-drying. However, since drying by heating may

alter the properties of the compound, freeze-drying is mostly used.

Samples after drying can be stored in a freezer at -80°C or in liquid

nitrogen. The methods of quenching and freeze-drying with liquid

nitrogen are sometimes used to stop the metabolic process of

organisms during the sample extraction process, (Mushtaq et al.,

2014). The sample size needed for the analysis varies depending

on the concentration of the target metabolites, pretreatment

techniques, and analytical techniques, but it commonly falls

between 10 and 100 mg fresh weight. Controls for consistent

sampling in a short period of time are necessary for large-scale

sampling, such as that required for mGWAS investigations, because

the metabolome is sensitive to environmental influences (Gemmer

et al., 2021; Yao et al., 2021). To prevent chemical changes caused by

enzymatic and chemical reactions, a quenching method such liquid

nitrogen freezing and extraction with organic solvents should be

carried out right away.

Moreover, the homogenization of the sample is important for

accurate quantification of the target extract. Use of a grinder, mill or

a homogenizer can break down the matrix of the sample to increase

extractability of small molecules and ensure homogeneity (Lin et al.,

2007). If necessary, the extraction rate can be increased by using

ultrasound-assisted extraction with the grinding method. In this

approach, ultrasound is used to increase the solvent permeability

while grinding to improve the extraction of the compounds.

Ultrasound-assisted extraction is becoming a a common grinding

method, and has been reported to be effective in extracting a variety

of types of metabolites (Weng et al., 2021). Due to shortcomings in

one or more study design elements, the results from these studies

are challenging to interpret. These limitations include (1) not using

validated and/or appropriately replicated test materials (e.g.,

samples from single, non-replicated growing conditions), (2)

using test samples that are not relevant to the intended area of

investigation (e.g., food/feed safety inquiries that examine non-

consumed plant tissues), and/or (3) lacking data to characterize

natural variability of the components that were analyzed. That

additionally, the bialoaphos resistance gene (bar), which confers

resistance to the broad-spectrum herbicide glufosinate, causes two

plant endogenous metabolites, aminoadipate and tryptophan, to be

acetylated in GM plants. (Christ et al., 2017).
2.3 Extraction methods and conditions

Solvent-based extraction of plant metabolites uses organic

solvents with varying polarities, such as methanol, ethanol, and
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water for polar metabolites; and chloroform for lipophilic

metabolites (Figure 1). The water solvent extracts salts, ions,

carbohydrates, amino acids, and organic acids, and the extracted

compounds can be analyzed using a variety of methods such as

capillary electrophoresis (CE)–MS, high-performance liquid

chromatography (HPLC)–photodiode array detector (PDA)–MS

and gas chromatography (GC)–MS. In the case of methanol

extraction, phenolic, flavonoid, saponin, and polar organic

compounds can be extracted and can be analyzed using HPLC–

PDA–MS or GC–MS. Lipids and terpenes extracted with

chloroform can be analyzed using GC–MS (Figure 1). Depending

on the characteristics of the analytical instrument used, the method

of sample preprocessing for extraction may vary. In the case of

analysis using GC–MS, there must be a derivatization process that

converts non-volatile metabolites into volatile ones to improve the

detection of compound by the GC-MS instrument. Attaching a

trimethylsilyl (TMS) group to polar compounds containing

functional groups such as OH, -COOH, -NH, and SH is a

common derivatization to increase volatility. The reagents used

for this method include N-methyl-N-(tr imethyls i ly l )

trifluoroacetamide (MSTFA), Bis(trimethylsilyl) acetamide (BSA),

and N, O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA) (Zeki

et al., 2020a), while MSTFA is most commonly used for plant

metabolite profiling and quantification of sugars (Putri et al., 2022).

Perchloric acid extraction yields a protein-free extract after the

denaturation of proteins, and is extensively used, owing to the

advantage of immediately quenching enzymatic reactions. This

extraction method is also commonly used for the extraction of

polar, hydrophilic, or ionic metabolites from plant or animal tissues.
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Metabolites with different polarities can be extracted with mixtures

of two or more solvents. For example, a solvent system of water/

methanol/chloroform is used for the simultaneous extraction

of polar and hydrophilic metabolites as well as non-polar

metabolites (Table 1). These extraction methods with a mixture

of solvents are widely used in analysis with high-performance

analytical instruments such as liquid chromatography-tandem

mass spectrometry, nuclear magnetic resonance (NMR)

spectroscopy, and capillary electrophoresis (CE).
2.4 Instrumental analysis

For quantitative and qualitative profiling of plant metabolites,

analytical separation techniques, such as chromatography are

required for the detection of analytes within a given range of

wavelength, mass, or chemical properties. In metabolomics,

metabolite profiling is conducted using spectral peaks detected

based on mass spectrometry. MS-based identification and

quantification are techniques of analytical chemistry used for

determining the type and quantity of a compound present in a

sample by measuring the mass of a molecule (or fragments

constituting the molecule) based on the mass-to-charge ratio

(m/z) and the abundance of gas-phase ions. The mass

spectrometer instrument provides an excellent analytical platform

for metabolomics with its high sensitivity, reproducibility, and

versatility (Zhao and Li, 2020). To perform MS, all samples

need to be in gas phase, and the method of vaporizing the sample

may vary depending on the state or properties of the sample.
FIGURE 1

Selection of extraction solvents and instrumentation according to the properties of chemical compounds and analytical methods.
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The metabolomic data can be obtained with maximized analytical

throughput by direct injection in the GC–MS, LC–MS, and CE–MS.

In most cases of metabolomic analysis, MS or NMR are used for

quantification, and the most commonly used methods of MS are

GC–MS, LC–MS, and CE–MS (Zeki et al., 2020; Wishart

et al., 2022).

To achieve comprehensive profiling of the complete set of

metabolites thereby increasing the qualitative detection

performance for all classes of metabolites, two types of analytical

instruments may be used in tandem to complement each type of

instrument. For detection of secondary metabolites of plants, LC–

MS is mainly used, since the instrument offers a broad spectral

range for detection of a wide range of plant metabolites. GC–MS is

considered to be more efficient for the detection of fatty acid-based

compounds for which LC–MS shows limitations. GC–MS analysis

is performed following a derivatization process, enabling analysis of

non-volatile compounds, as well as high reproducibility and

stability of data compared to that of HPLC. However, the

chemical derivatization process may modify the chemical and

structural properties of the raw material, and only the fragments
Frontiers in Plant Science 05
formed by derivatization may be detected without detecting the

other compounds that were not derivatized, resulting in limitations

to achieving comprehensive profiling of the metabolites.

Analytical instruments for spectroscopy include NMR (Nuclear

Magnetic Resonance) and FT–IR (Fourier transform infrared),

which are used for metabolic profiling. The NMR is one of the

significant tools for metabolite analysis directly from plant material,

thereby minimized the loss sample and metabolite identification

during the extraction process and the method also provides detailed

information on the structure of metabolites; thus, the technique is

used for identification of unknown compounds (Deborde et al.,

2017). Of the common NMR techniques, 1H-NMR (proton NMR or

hydrogen-1 NMR) is capable of compound identification and

quantification a wild range of metabolites; the method has the

advantage of simple and fast sample preprocessing, by oven dry the

sample and then diluted with CD3OD and KH2PO4 buffer along

with TMSP as an internal standard, however it also has limitations

in low sensitivity and fewer number of detectable metabolites

compared to GC–MS and LC–MS (Li et al., 2019b; Zeki et al.,

2020b). Thus, 1H-NMR is mainly used for targeted metabolomics,
TABLE 1 Polarity and physical properties of extraction solvents.

Solvent Polarity Index BP (°C) Solvent PolarityIndex BP (°C)

cyclohexane 0 80.7 ethyl acetate 4.3 77.1

Heptane 0 propanol, 1- 4.3 97.2

n-hexane 0 68.9 propanol, 2- 4.3 82.4-117.7

n-decane 0.3 174.1 methyl acetate 4.4 56.3

i-octane 0.4 99.2 cyclohexanone 4.5 155.7

octane 0.4 99.2 methyl ethyl ketone (MEK) 4.5 80

butyl ether 1.7 142.2 nitrobenzene 4.5 210.8

carbon tetrachloride 1.7 76.5 benzonitrile 4.6 191.1

triethyl amine 1.8 89.5 dioxane, 1,4- 4.8 101

i-propyl ether 2.2 68.3 dioxane, p 4.8 101.3

toluene 2.3 101.6 ethanol 5.2 78.3

xylene, p- 2.4 138 nitroethane 5.3 114

t-butyl methyl ether 2.9 55.2 pyridine 5.3 115.3

benzene 3 80.1 acetone 5.4 56.3

benzyl ether 3.3 288.3 benzyl alcohol 5.5 205.5

dichloromethane 3.4 40 methoxyethanol, 2- 5.7 124.6

methylene chloride 3.4 39.8 acetic acid 6.2 117.9

chloroform 3.4-4.4 61.2 acetonitrile 6.2 81.6

dichloroethane 3.7 83.4 dimethyl formamide, N,N- 6.4 153

ethylene dichloride 3.7 83.5 dimethyl sulfoxide 6.5 189

butanol, 1- 3.9 117.2 methanol 6.6 64.7

i-butyl alcohol 3.9 117.7 formamide 7.3 210.5

tetrahydrofuran 4.2 66 water 9 100
fro
The Polarity index and physical properties such as boiling point (BP) of different solvent used for the simultaneous extraction of polar and hydrophilic metabolites as well as non-polar metabolites.
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which requires the quantification of specific metabolites (Riekeberg

and Powers, 2017). Furthermore, using FT–ICR–MS (Fourier

transform–ion cyclotron resonance–MS, also referred to as FT-

MS) for metabolomics, offers a high resolution and mass accuracy,

and is capable to provide simultaneous determination of hundreds

to thousands of metabolites isotopologue species in a short time.

The CE–MS instrument is based on a principle of separating

compounds according to the differential migration of metabolite

ions in an applied electric field, and it has the advantage in the

analysis of hydrophilic ionic compounds and is useful for detecting

phosphorylated compounds (Ren et al., 2018). However, it is

difficult to achieve reproducibility of results since the operation of

the instrument requires experience and skill.
3 Data collection and analysis

3.1 Data processing

Using the results derived from the instrumental analyses,

structures are compared with reference standards to enable

identification and quantification is performed based on

comparison of peak areas. In the case of targeted metabolomics,

the peak signals from the chromatography detected from the given

wavelength range are compared with those of reference standards

for each analytical instrument to perform identification and

quantification. In the case of MS-based analysis, there may be

cases of compounds that are not detected due to poor ionization

because of interference or low sensitivity (Eicher et al., 2020).

Therefore, to deal with the poor ionization a compatibility with

analytical instruments should be taken into account when choosing

solvents, to prevent metabolite degradation or alteration brought on

by extraction conditions or enzymatic activities in tissue samples,

sample preparation in SLE must be adjusted. Similarly, an SPE

might be an effective way to extract the material and get rid of

impediments (such salts or plentiful metabolites, for example). It

has been found that a useful enrichment technique is to keep low

abundant chemicals on the solid phase of SPE. In this regards, the

three most popular chromatographic separation modes are normal

phase, reverse phase, and ion-exchange are all covered by a variety

of solid phase sorbents, including silica, alkylated silica (C-18),

carbon-based sorbents, ion-exchange materials, polymer materials,

and RAM (restricted access materials). Furthermore, the use of an

internal standard allows correction for the loss of analyte during

sample preprocessing. In order to improve the quality of the peak

signals and reduce the bias present in the spectra, metabolomic data

is subject to multiple preprocessing steps. Thereby, of spectra

obtained from NMR and MS-based analysis, low-intensity peaks

and noise peaks from the solvents or instruments used in the

experiments are filtered using baseline correction; the optimal

peak signal from only the sample analyte needs to be determined.

Since it is believed that “omics” analysis provides a more thorough

assessment of the GM variety for unintended changes than is

possible by targeted analyses, it is suggested that a tiered
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approach could lessen the need for animal feeding trials with

whole foods, which are currently required as part of the risk

assessment process in Europe (Mesnage et al., 2016; Kok

et al., 2019).

Peak overlapping occurs in the NMR or MS-based analyses,

which can be resolved by spectral deconvolution. However, this

method has limitations in untargeted metabolomics because we

need to know the information of metabolites corresponding to the

peak to be detected in the spectral range (Emwas et al., 2019;

Wishart et al., 2022). Input conditions for data analysis can be set

according to the analytical instrument and the method of spectrum

processing used in the experiment. Of the types of metabolomics,

targeted metabolomics allows measurement of primary changes

caused by biotic/abiotic factors through quantification of a

compound specific to the target trait in a biological system (Zhu

et al., 2016; Weed, 2019). The spectral deconvolution method is

suitable for direct quantification of the specific metabolite or related

compound changed by external factors; detailed characterization of

the molecular properties of the metabolite is performed. In targeted

metabolomics, reliability of overall results is ensured by correction

through normalization of measured values and maintaining data

quality (Razzaq et al., 2019). Therefore, for analysis of a targeted

metabolite, it is important to use a standardized method and,

validated process of the analytical procedure to derive

reproducible results. Profiling of targeted metabolites related to

specific metabolic pathways can be performed by quantifying the

metabolites that are changed by the mechanism of the related

enzyme(s).

In the case of untargeted metabolomics, analytical instruments

with high-performance/resolution are required for effective

analysis. The advantages of the method include the analysis of the

correlation between metabolites in a variety of metabolic pathways

and the identification of unknown metabolites other than the

targeted metabolites. However, the method of untargeted

metabolomics is not able to obtain information on all metabolites

due to various interference phenomena between compounds. This

is because metabolites with no information in the search database

and standard libraries such asNIST/EPA/NIH (NIST 14) mass

spectral library, Fiehn_chemical (sequential), TMS_Chemical

(sequential), Metline and in-house laboratory library (RDA)

cannot be identified, but at the same time, the method has the

advantage in that extensive metabolomic data can be obtained.

Profiling of non-target metabolites is challenging due to the need

for accurate mass values and comparisons to target metabolites, but

can be addressed by upgrades in publicly available metabolome

libraries and improved accuracy of chromatogram peak matching

algorithms as equipment becomes more sophisticated. As GC MS is

the most common analytical method and is suitable for the analysis

of relatively small molecular weight, volatile and nonpolar

substances, whereas LC MS, on the other hand, has a wider range

of analyzable molecular weights and is effective for the analysis of

highly polar substances. Therefore, it is possible to improve the

detection of non-target metabolites by cross-using these

two instruments.
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3.2 Metabolomic profiling

Metabolites and functional compounds play a major role in

biological metabolic processes, as such the integrated analysis

of targeted and untargeted metabolites or network mapping for

correlation analysis can signify the potential role of metabolites

in different biological processes. Many studies have validated the

significance of metabolites and their role in the plant development

and their effects according to environment (Table 2). Metabolites

have a range of functions, including those of fuel, structure, signaling,

enzyme stimulation and inhibition, catalytic activity (usually as a

cofactor), defense, and ingestion. These metabolites fall into one of

two categories: primary metabolites, which include substances like

lactate, carbohydrates, vitamins, and hormones, and secondary

metabolites, which are produced biosynthetically and contain a

variety of active substances with high biological activity (Bedair and

Glenn, 2020). The four main chemical families that make up

secondary metabolites are alkaloids, flavonoids, steroids, and

pigments. The hallmarks of targeted metabolomics include high

specificity, high detection sensitivity, and reliable quantitative data

obtained through high throughput instrumental analysis. It can reveal
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the relevant molecular mechanisms and offer strong support for the

ongoing study, development, and use of metabolic molecular markers

through the quantitative and qualitative analysis of target metabolites

in plant tissues in combination with other experimental data

(Cardoso et al., 2019). When novel qualities of crops are generated,

metabolomics information can play a role in giving quick and crucial

information regarding unintentional differences since it is most

directly related to the phenotypic characteristics of plants

(Figure 2). Non-targeted metabolomics is a method for

investigating vast amounts of metabolites and revealing properties

and interactions in an organism and highlights the substances that

have accumulated during a certain growth stage in an organism. A

highly helpful technique for discovering unique changes in an

organism at the screening level is non-targeted analysis. Complex

metabolic matrices in biotech plants can offer a quick way to compare

and assess the output (Perez De Souza et al., 2019). Because of this,

metabolomics research requires the fusion and interpretation of vast

volumes of data from a range of devices, the most popular of which

are nuclear magnetic resonance and mass spectrometry (Scossa et al.,

2016). As these procedures may be important in the detection of

metabolites that play critical role in plant and human nutrition and
TABLE 2 Current studies use different tools for metabolite profiling under different environmental condition in conventional or GM crop varieties.

Analytical Tool Test Study Crop Detected Metabolites References

LC-MS/MS;
MALDI–MSI

Salinity Hordeum vulgare
PC, fatty acyls, SQDAG, glycerolipid, prenol lipid, polyketide, DAG,

and sphingolipid
(Sarabia et al.,

2018)

LC-TQMS Drought
Medicago sativa; M.

truncatula
carbohydrate, Flavonoid, proline and abscisic acid

(Echeverria et al.,
2021)

GC-MS Salt, cold, Physcomitrella patens organic acid, Sugar, and amino acid (Arif et al., 2018)

GC-TOF MS;
LC-MS/MS

High light, cold A. thaliana Sugar, hexose, amino acid, gluconic acid, organic acid, Citrate,
(Küstner et al.,

2019)

FIE-HRMS,
Nutritional
improvement

Peral Millet dietary starch, antioxidants and vitamins
(Yadav et al.,

2021)

LC-MS/MS Pathogen resistance Maize benzoxazinoid and Flavonoid, (Zhou et al., 2019)

LC-MS Salt tolerance Maize amino acids, Terpenoids, lipids, benzoxazinoids, and flavonoids (Liang et al., 2021)

LC-MS
Seed oil-related

traits
Soybean

arginine, aspartic acid,
asparagine, Alanine, and daidzein

(Liu et al., 2020)

LC/UPLC-MS/MS;
GC-MS

Drought A. thaliana TAG, DGDG, SQDG, PC, MGDG, PS, PE, and PI
(Salem et al.,

2020)

GC-MS; LC Drought Oryza sativa
Aconitic acids, benzoic acid, Citric, carbohydrates, norvaline, proline,

GABA, benzoic acid,
(Auler et al., 2021)

LC-ESI-MS/MS
Environment
adaptation

Foxtail Millet Phenolamides, lipids, hydroxycinnamoyl derivatives, and flavonoids (Wei et al., 2021)

LC-MS/MS Flavonoid pathways Wheat Flavonoids (Chen et al., 2020)

LC-MS/MS Grains, plant height Wheat deoxyinosine-5′-monophosphate and Betaine, (Shi et al., 2020)

ESI-QqTOF-MS/MS Fruit traits Tomato Polyphenol, vitamins, polyamine, alkaloids, and Amino acid (Zhu et al., 2018)

GC-TQMS Salinity Oryza sativa organic acid, Mannitol, and sugar,
(Chang et al.,

2019)

LC-ESI-MS Fruit quality Strawberry anthocyanins, flavonoids, and Phenolics,
(Labadie et al.,

2020)

LC-MS/MS Agronomic traits Rice feruloylserotonin and L-asparagine (Li et al., 2019a)
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defense response, such as carbohydrates serve as molecules for energy

storage and transport (starch) and structural molecules (cellulose,

hemicellulose and lignin) in biological systems (Nelson and Cox,

2005; Wingard et al., 2014). Monosaccharides are the basic units of

carbohydrates and include galactose, fructose, and glucose. Multiple

monosaccharides are linked together to form polysaccharides (Niaz

et al., 2020) (Table 3). Organic acids can be converted into

monosaccharides (such as glucose) and are synthesized into

polysaccharides (such as starch). Pyruvate, lactic acid, glycerol,

3-phosphoglyceric acid, and amino acids are involved in

gluconeogenesis. Thus, gluconeogenesis and glycolysis are

regulated separately. Furthermore, polysaccharides and glycans are

synthesized by dedicated glycosyltransferases. In this mechanism,
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uridine diphosphate glucose (UDP-glucose), a nucleotide sugar, is

sequentially added to the hydroxyl group of the growing

polysaccharide chain for polymerization. The synthesized

polysaccharides may serve structural or metabolic functions

as they are, or may be, linked to lipids or proteins by

oligosaccharyltransferases (Kay et al., 2019; Sim et al., 2022). Those

the lipids and proteins serves as the most concentrated source of

energy, and constitute the bilayers of biological membranes (Nelson

and Cox, 2005). The acyl chain of the fatty acid is elongated by a cycle

of reactions that add the acetyl group, which reduce it to an alcohol,

and dehydrate it to an alkene group, and then reduce it again to an

alkane group (Mullen and Yet, 2015; Wase et al., 2017) (Table 4). In

similar, the proteins act as enzymes and catalyze chemical reactions
TABLE 3 Metabolite profiling of carbohydrates.

Category Carbohydrates

General structure Aldoses, Ketoses, Furanose, Pyranose, Glycosidic bond

Geometrical structure Anomers, Epimers, Mutarotation

Monosaccharides

Trioses Aldotrioses (Glyceraldehyde), Ketotrioses (Dihydroxyacetone)

Tetroses Aldotetroses(erythrose, threose), Ketotetroses(erythrulose)

Pentoses Aldopentoses(arabinose, lyxose, ribose, xylose) Ketopentoses(ribulose, xylulose), Deoxy sugars (deoxyribose)

Hexoses
Aldohexoses(allose, altrose, galactose, glucose, mannose), Ketohexoses(fructose, tagatose), Deoxy sugars (fucose, fuculose,

rhamnose)

Heptoses Ketoheptoses(mannoheptulose, sedoheptulose)

Nonoses Neuraminic acid, Sialic acid

Disaccharides Cellobiose, Isomaltose, Isomaltulose, Lactose, Lactulose, Maltose, Sucrose, Trehalose, Turanose

Polysaccharides

Trisaccharides Maltotriose, Melezitose, Raffinose

Tetrasaccharides Acarbose, Stachyose

Oligosaccharides
Fructo-oligosaccharides-FOS, Galactooligosaccharides -GOS, Isomalto-oligosaccharides -IMO, Maltodextrin, Mannan

oligosaccharides (MOS)

Other polysaccharides
(Complex

carbohydrates)

Beta-glucans (Oat beta-glucan, lentinan, sizofiran, zymosan, cellulose, chitin), Chitosan, Dextrin, Dextran, Fructan
(Inulin), Galactan, Glucan, Hemicellulose, Levan, Lignin, Mannan, Pectin, Starch(Amylopectin, Amylose), Xanthan gum
Carbohydrates profiling, the first column expresses two general categories such as geometrical structural carbohydrates and disaccharides carbohydrates, while the second column expresses the
carbohydrates present their respective category.
FIGURE 2

Assessment and utilization of different tools for Omics approach (genomics, microarray, proteome and metabolome).
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in metabolism. Nucleotides are made from amino acids, carbon

dioxide, and formic acid. The synthesis of purine nucleotides is an

edge case use of amino acids whose canonical roles include protein

synthesis, synthesis of chemical signals and mediators, and

catabolism for energy (Davies et al., 2011; Gautam and Chahota,

2022). Adenine and guanine are synthesized from inosine

monophosphate (IMP), a nucleoside precursor, and pyrimidines

are synthesized in the form of heterocyclic oxide of glutamine

(Gupta et al., 2021) (Table 5). As a result, all proteins and

eventually metabolites that interact with a certain protein of

interest and affect its activity or expression are included in the

protein’s interactome. The development of a protein interactome

may provide details on the purpose of the protein and all of the

molecular actions in which it takes part and protein interactomes in

disease may also reveal dysfunctional pathways, how they are

controlled, and probable protein partner involvement in the illness

(Martins-De-Souza, 2014). Similar to this, the phosphatidylinositol 3-

kinase and mammalian target of rapamycin pathway (PI3K-mTOR)

is crucial for treating MDD because it results in inflammatory

cytokines activating immune cells. A 33 components of the PI3K-

mTOR pathway have been studied extensively utilizing the Y2H

screen as part of an interactome analysis. More than 800 interactions,

including 67 unique ones, are present in the PBK-mTOR pathway

(Weichhart and Säemann, 2008). A number of MS techniques,

including Q, QqQ, IT, or TOF, have been utilized, depending on

the level of sensitivity, mass resolution, and range required. For

example, MALDI-assisted TOF/MS is suitable for precise and

quantitative single-cell metabolite profiling, low mass protein

detection (with a mass range of 1-300 kDa), and low mass protein

detection with a high sensitivity of around 10-18 nanomolar

(Marchev et al., 2020). Moreover, the most critical step for the

successful application of these metabolites in the market is to

profile them with accuracy in different sources such as plant-based

sources (fruits, vegetables, leaves, seeds, etc.) is require susing various

sophisticated methods and techniques in order to boost their

detection and use at a quicker rate for the development of novel

medicines, nutraceuticals, chemical discovery, food safety,

and quality.
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3.2.1 Metabolite profiling of plant-derived
functional compounds

Terpenes and isoprenoids are lipids containing carotenoids

and are the largest group of plant natural products (Kim et al.,

2016). The compounds are synthesized through polymerization and

transformation of isoprene units from the reactive precursors,

isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate

(DMAPP). In plants, IPP is synthesized using pyruvic acid and

glyceraldehyde 3-phosphate. Isoprene donors are involved in the

steroid biosynthesis pathway. In the steroid biosynthesis pathway,

isoprene units are combined into squalene, which is cyclized into

lanosterol. Lanosterol is a tetracyclic triterpenoid and is involved in

the biosynthesis of steroids such as lanosterol which converted into

other steroids, like cholesterol and ergosterol in animals and fungi,

where plant steroids are synthesized through cycloartenol. (Jäpelt and

Jakobsen, 2013; Lee et al., 2020). In this regard, the simultaneous

characterisation and dereplication of active substances in complex

mixtures, such as extracts of different plant spices, is made possible by

affinity selection-mass spectrometry (AS-MS), UHPLC-MS size-

based separation techniques, NMR, GC-MS etc (Muchiri and Van

Breemen, 2021). Those the metabolites in plants are expected to be

simultaneously measured by metabolic profiling. Metabolic profiling

can be done using a number of analytical methods, including (GC-

MS), (LC-MS), and (NMR) (Muchiri and Van Breemen, 2021).

Numerous hundred compounds from a variety of classes, such as

sugar, organic acids, amino acids, alcohols, amines, and fatty acids,

can be identified using GC-MS. Similarly, Pyroline-5-carboxylate

synthetase (P5CS), which converts glutamate to pyrroline-5-

carboxylate (P5C), is an enzyme that metabolizes both proline and

glutamate. Pyroline-5-carboxylate reductases (P5CR) finally produce

this stress-responsive amino acid from the reduction of P5C (Meena

et al., 2019). Considering the nutritional qualities of fruits in the

human diet, the antioxidant potential is among the most nutritious

rich crops having multi-minerals, proteins, essential amino acids,

carbohydrates, vitamins, fatty acids, phytosterols, carotenoids,

polyphenolics and flavonoids as reactive oxygen species. Similarly,

crops containing secondary metabolites quercetin 3,7-di-O-a-l-
rhamnopyranoside and narigenin-7-O-b-d-(3-p-coumaroyl)-
TABLE 4 Metabolite profiling of lipids.

Category Lipids

General classification Saturated fat, Unsaturated fat, Monounsaturated fat, Polyunsaturated fat

Geometrical classification Trans fat, Omega-3, Omega-6, Omega-7, Omega-9

Eicosanoids Arachidonic acid, Prostaglandin, Prostacyclin, Thromboxane, Leukotriene

Fatty acids Caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid

Glycerides Monoglyceride, Diglyceride, Triglyceride (Triheptanoin, Trimyristin, Tripalmitin, Tristearin, Trilinolein, Triolein)

Phospholipids Phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, cardiolipin, dipalmitoylphosphatidylcholine

Sphingolipids Ceramides

Steroids Cholesterol, Corticosteroids, Sex hormones, Secosteroids
The first column shows the different classes of lipids such as general class, geometrical, Eicosanoids, Fatty acids, Glycerides, Phospholipids, Sphingolipids, and Steroids. while the second column
shows the lipids present in their respective class.
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glucopyranoside have desirable nutritional benefits. The high

content of carbohydrates, organic acids (ascorbic, citric, malic,

quinic, succinic, fumaric and oxalic acids), capsaicinoids

(capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin,

homodihydrocapsaicin), carotenoids, flavonoids, luteolin and

vitamins (E, C and A) that add to the antimicrobial, antiseptic,

anticancer, counterirritant, appetite stimulator, immunomodulator

and antioxidant properties (Batiha et al., 2020). The metabolite

profiling of plants based secondary metabolites have been

considering as most vital component in nutritional and safety

assessment by utilizing UHPLC-Q-TOF-MS, GC-MS and LC-MS

based metabolomics assessment in different plants species.
3.3 Statistical analysis and visualization
in metabolomics

Data may be referred to as a set of variables and observations

collected by selecting parameters in line with the purpose of analysis

and designing an appropriate data collection and sampling method

to obtain the desired information. Therefore, sufficient information

on the data collection method (location and time) and sampling

method needs to be presented to enable proper data analysis. As

the results of metabolomics may differ depending on the

normalization of the data, the process of normalization for the

analyzed raw data is imperative. For example, if the distribution of
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the data is non-normal, or if there are large differences in the

magnitude of the values due to different units for the variables, or

if there are missing values, we can normalize the data using

logarithmic transformations, square-ratio transformations, min-

max normalization, etc. to improve the accuracy of the analysis

results. In order to examine the overall trend of data distribution,

a box plot or histogrammay be used to grasp the trend in the overall

data at a glance. The utilization of statistical techniques in

metabolomics is highly important in -omics research. In

particular, in multivariate analysis, the number of metabolomic

variables is reduced to a small number of new variables, so that the

high-dimensional data matrix can be reduced to lower dimension

matrix with new axes, thereby enabling the examination of the

overall data patterns (Barnes et al., 2016). Because the purpose of

multivariate analysis is to make use of the correlation between

variables rather than the analysis of causal relationships, it is

characterized by the absence of dependent variables. In the case

of data with a causal relationship with the dependent variable, the

correlation analysis can be performed through regression analysis

or ANOVA (Eicher et al., 2020).

Multivariate analysis includes Principal Component Analysis

(PCA), Factor Analysis (FA), Cluster Analysis (CA), and

Discriminant Analysis (DA) (Chen et al., 2018). PCA is mainly

used when the purpose is to reduce dimensionality due to a large

number of variables (as in the case with metabolomics). Principal

Component Analysis (PCA) is used for sorting data into an order or
TABLE 5 Metabolite profiling of proteins.

Category Proteins

Properties

Aliphatic Glycine, Alanine, Proline, Methionine, Valine, Isoleucine, Leucine

Aromatic Phenylalanine, Tyrosine, Tryptophan

Polar uncharged Serine, Threonine, Cysteine, Asparagine, Glutamine

Positive charged Lysine, Arginine, Histidine

Negative charged Aspartic acid, Glutamic acid

Type

Essential amino
acids

Lysine, Threonine, Leucine, Isoleucine, Valine, Methionine, Phenylalanine, Tryptophan

Conditional
amino acids

Glutamine, Glycine, Cysteine, Arginine, Serine, Tyrosine, Proline

Positive charged Arginine, Histidine, Lysine

Negative charged Aspartic acid, Glutamic acid

Polar uncharged
side chains

Serine, Threonine, Asparagine, Glutamine

Special cases Cysteine, Selenocysteine, Glycine, Proline

Hydrophobic side
chain

Alanine, Isoleucine, Leucine, Methionine, Phenylalanine, Tryptophan, Tyrosine, Valine

Glucogenic The 20 standard amino acids excluding leucine and lysine

Ketogenic Leucine, Lysine + Tryptophan, Tyrosine, Threonine, Isoleucine, Phenylalanine

Secondary amino
acids

Proline(the only proteinogenic secondary amino acids), Azetidine-2-carboxylic acid, Pipecolic acid, Hydroxyproline (non-proteinogenic
cyclic secondary amino acids), Sarcosine (acyclic secondary amino acids)
Category of different proteins on the base of their properties and types and the proteins present in their respective category.
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classification, and is also used as a method of resolving a problem

called multicollinearity in regression analysis (Mafata et al., 2022).

PCA is a method of reducing the dimensionality of the original

variables by obtaining k (<n) independent principal components

from n variables, formed as a linear combination (Chatfield, 2018)

(Figure 3). PCA is an unsupervised learning method for effectively

identifying data patterns for the data to represent biological

changes. The method is based on one-dimensional transformation

to uncorrelated (orthogonal) variables (known as principal

components) of multidimensional metabolomics data. Other

analysis methods based on unsupervised learning include
Frontiers in Plant Science 11
hierarchical clustering analysis and the self-organizing map. The

difficulty in determining whether the observed changes among the

thousands of signals described by the untargeted profiling method

(s) have any bearing on safety is one major barrier to employing

data from omics research with GM crops, including metabolomics.

A suggestion to quantify omic comparisons using a one-class

SIMCA (Soft Independent Modelling of Class Analogies) model

was published in 2014 (Van Dijk et al., 2014). Transcriptomic data

from six commercial potato cultivars with a track record of safe use

were used to construct a multivariate one-class classification

classification model.
FIGURE 3

K principal components and clustering on a two-dimensional plane.
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The purpose of factor analysis (FA) is to determine the

relationship between n variables and divide them into m (<n)

groups of variables. Examining the group of variables formed in

FA, the coefficient of correlation of within-group variables is high

and the coefficient of correlation of between-group variables is low

(Zhao et al., 2021). PCA explains the variability in the variables by

expressing them into orthogonal linear combinations of the original

variables, whereas FA expresses the original variables as an

orthogonal linear combination and explores the relationship

between the variables (Lever et al., 2017). Moreover, the cluster

analysis (CA) method of grouping target individuals into clusters

with similar features in consideration of various features of the

individuals and visualizing the clusters in a low-dimensional space.

Measured variables are used to obtain distances between individuals

(similarity) to perform classification. In CA, it is not known to

which cluster the individuals are assigned before analysis; Multi-

Dimensional Scaling (MDS) is an example. Cluster analysis enables

visualized classification, but similarity must be calculated as values

to actually perform classification of individuals by similarity.

Discriminant analysis (DA) also known as canonical discriminant

analysis, is a multivariate technique used to separate two or more

groups of observations (individuals) based on variables measured

on each experimental unit (sample) and find the contribution of

each variable in separating the groups DA is a statistical technique

that enables determination of the group to which a target individual

belongs, based on a discriminant function when groups (two or

more) are known a priori (Figure 4).

In order to overcome the limitations of the PCA method when

reducing the dimensionality using linear relationships, a partial

least squares (PLS) method is introduced, which reduces

dimensionality and increases the predictive performance by

deriving latent variables that consider the correlations with the

dependent variables. Since the PLS–DA method, which combines

PLS and Linear Discriminant Analysis (LDA) methods, was

proposed (Lasalvia et al., 2022), it has been used in a wide range

of applications. OPLS is a method in which orthogonal component

is added to PLS, and when there is only one response variable (Y),

Orthogonal Partial Least Squares–Discriminant Analysis (OPLS–

DA) is used. The OPLS–DA method is used to determine the

difference between two groups (Thevenot, 2016). By rotating the

data matrix so that the difference between the observed groups

appears in the first singular vector, the difference between the
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observed values and the groups can be easily identified. Since

there are many analysis variables in metabolomics, use of PLS–

DA and OPLS–DA methods, which are combined with

discriminant models, allows more clear identification of the

classification patterns (Thevenot, 2016).
4 Metabolomics and genomics
in plants

Similar to the terms genomics, transcriptomics, and proteomics,

“metabolomics” refers to the study of a live organism’s metabolome

and encompasses metabolite identification, measurement, and

interactions. The metabolite profile of an organism is altered by

changes to genes and proteins (Gomez-Casati et al., 2013). Similar

to other omics, high throughput metabolite screening techniques

are available. For example, a combination of gas chromatography

and mass spectrometry (GC-MS) was used to compare the

metabolic profiles of different genotypes to show that the

metabolic phenotypes diverged from each other more than they

did from each mutant from its parent ecotype, indicating that the

cell metabolome is influenced more by the difference in ecotype

than by a single mutation (Zhang et al., 2022). The results of

metabolomics must be evaluated to connect anomalies in

metabolites to potentially inadequate reactions/enzymes and their

related genes in order to integrate metabolomics and genomics. For

this, a few strategies have already been created such as IEM is

employed for metabolic networks (Baumgartner et al., 2004;

Bongaerts et al., 2022).

Similarly, transgenic potato plants expressing specific genes were

subjected to pair-wise metabolite-to-metabolite and transcript-to-

metabolite correlation analyses, which revealed novel connections

not previously proposed by conventional targeted techniques

(Oksman-Caldentey and Saito, 2005; Zhang et al., 2022). A large

percentage of these transgenic plants showed no discernible

characteristics. There were no obvious phenotypic changes in the

Arabidopsis pal1 and pal2 mutants lacking the activity of the two

phenylalanine ammonia lyase genes. The particular function of

PAL1 and PAL2 was proposed by the phenotyping of the single

mutants and the double-mutant using a combination of transcript

profiling and in-depth targeted metabolite profiling for sugars,

amino acids, and phenylpropanoids (Vanholme et al., 2010). For
FIGURE 4

Comparison of cluster and discriminant analysis.
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Arabidopsis lines overexpressing the PAP1 gene, which codes for a

Myb-like transcription factor, integrated transcriptome analyses and

a thorough chemical analysis using LC-MS and FT-ICR MS were

performed (Zhang et al., 2022). The enhanced accumulation of

anthocyanins was the only factor contributing to the modifications

in metabolic profiles brought on by PAP1 gene expression. The

expression of genes known to be involved in the manufacture of

anthocyanins was elevated, and as a result, other upregulated genes,

such as members of the glycosyltransferase, acyltransferase, and

glutathione S-transferase families, might be tentatively ascribed a

function in the generation of anthocyanins. Experimental testing

using T-DNA-inserted knockout mutant lines and in vitro

enzymatic tests using recombinant proteins validated the function

of some of these putative genes (Chorfi et al., 2022; Yin et al., 2022).

These methods show that integrating transcriptome and

metabolomics analysis in functional genomics research on

Arabidopsis is feasible (Yin et al., 2022). The re-programming of

the transcriptome and metabolome is modulated by nutritional and

abiotic stressors. As a result, an integrated analysis identifies the gene

functions that these stresses modulate. A study on sulfur starvation

in Arabidopsis provided a nice illustration of this (Oksman-

Caldentey and Saito, 2005; Zhao and Rhee, 2022).

When metabolomics is combined with disease GWASs, the

examination of disease molecular mechanisms improves from an

understanding of the genetic mechanisms behind the variation in

metabolite levels. Metabolite levels are biological readouts of age,

environment, lifestyle, and the genome. Numerous metabolite levels

have thousands of genetic correlations (metabQTLs) identified by

GWAS (Hollywood et al., 2006; Kastenmüller et al., 2015). similarly,

Sun and co-workers highlighted the huge potential for crop

development in connecting certain metabolites and metabolic

pathways linked to health and nutrition. and concentrate on the

use of metabolomics in rice, maize, soybean, wheat, and other crops

and validate the effects of environment on the evaluation of the

quality and metabolite variation of plant-derived products and food

safety (Sun et al., 2020). In this regard, the application of

metabolomics in breeding programs is led by metabolite

quantitative trait loci (mQTLs) and metabolome-based genome-

wide association study (mGWAS). Many metabQTLs’ underlying

processes, however, are unknown. The majority of metabQTLs are

found in non-coding genomic areas, but it is still unclear how much

of this is due to changes in gene expression. MetabQTLs and

transcriptomics data have been combined, although only for

metabolite-specific transcriptomics data. Similar to this, utilizing

the Metabolon mass spectrometry instrument, (Yin et al., 2022)

examined plasma metabolites in 6,136 Finnish men from the

Metabolic Syndrome in Men (METSIM) research and conducted

GWASs for 1,391 metabolites, discovering 2,030 unique metabolite

genetic correlations (metabQTLs).can improve our comprehension

of the molecular causes of disease. These studies show that integrating

transcriptomic and metabolomics results with GWASs individually

complements the identification of genes underlying GWAS

associations and that doing so reveals regulatory mechanisms

underlying metabQTLs. This emphasizes the fact that integrating

transcriptomic and metabolomics results together can help us better

understand the molecular mechanisms underlying disease.
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5 Utilization of metabolomics data
for safety assessment of
biotechnology crops

In the safety assessment of crops developed or engineered

using biotechnology, changes in the components other

than the protein expressed for the intended target trait are

common factor to compared. In this case, the items of analysis are

nutrients recommended in the OECDBiosafety Consensus Documents

(Safety Assessment of Transgenic Organisms in the Environment),

which correspond to target compounds of the safety assessment. The

assessment method is based on the concept of substantial equivalence

(Kearns, 2019). An -omics analytical approach that measures non-

target compounds can be used depending on the target component of

the analytes and its need. If comparative evaluation based on

metabolomics, phenotypes, and agronomic characteristics is used,

systematic assessment of unintended changes will be possible while

expanding the concept of substantial equivalence.

Metabolomics of crops forms the basis for the overall

understanding of the components using a range of metabolomics

profiling, and is the basis of the monitoring the process. Through

metabolomics profiling or the approach of targeted metabolites,

metabolic synthesis pathways of natural components constituting

the crop and enzyme actions can be understood. Because the traits

of existing commercially approved genetically modified (GM) crops

have clear metabolic pathways (such as herbicide and disease

resistance) and are not metabolites of complex networks, it is

possible to perform risk assessment with targeted metabolomics.

In the case of methods not used previously or organisms introduced

with new traits with no prior precedence, assessment is possible

with current regulatory scientific techniques, but there is a need to

develop new assessment techniques to reflect these changes. In the

case of engineered crops that are similar in genetic variation to that

found in traditional breeding (Bhandari et al., 2017), it will be

difficult to perform safety assessments using the existing assessment

methods. In this case, various methods, including the -omics

technique, should be applied; the new crop should be compared

with existing crops, new assessment methods should be proposed

(Bhandari et al., 2017; Valle et al., 2019).

The -omics research allows more effective investigation of

changes and causes of biological phenomena as a result of the

comprehensive analysis of key compounds related to biological

phenomena (such as genes, RNA, proteins, and metabolites

expressed in cells or organisms), rather than individual analysis of

each element. Research using metabolomics data includes a number

of studies that analyze the effects of the environmental stress on

plants, including: metabolic profiling analysis of the effect of salt

stress on changes in the metabolite patterns of tomato using FT–IR

(Skolik et al., 2019), analysis on the effects of cold-temperature stress

(Davey et al., 2009) and herbicide stress on plant metabolites using

high-performance mass spectrophotometry (Sulpice et al., 2009).

These studies built metabolomics data and performed comparative

analyses. Another study on the effect of environmental stress on

plants investigated the stress tolerance of a plant using microarray

and network analysis (Kim et al., 2016). In safety assessments of
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biotech crops using new technology, there has been research

examining the synthesis of toxic substances to analyze unintended

changes. For example, in crops with non-browning traits,

comprehensive safety assessments can be performed by combining

targeted or untargeted metabolomics data centered on metabolites

such as polyphenols or glycoalkaloids. Using plant metabolomics,

integrated with the analysis of the effects of biological and

environmental factors, to analyze and compare metabolic

mechanisms will pave the way for more valuable results.
6 Conclusion

Metabolites are small molecules produced during metabolism, play

a vital role in biological phenomena through their direct involvement

in the regulation of physiological mechanisms, such as maintaining cell

homeostasis as well as signal transmission through protein–protein

interactions. Understanding biological phenomena based on the

integrated analysis of metabolomics mechanisms and biological

information is crucial. Plant metabolomics research focuses on

researching and comprehending all of a plant’s secondary

metabolites from a comprehensive viewpoint, including the genome,

transcriptome, and expressionome, in an omics-based approach rather

than on isolating and identifying a single component of a plant. To

learn more about metabolites fromGC-MS, LC-MS, NMR, etc., several

techniques are frequently used in conjunction in plant metabolomics

research. Techniques for statistical data analysis are also required in

order to mine the enormous amount of data that was collected.

Additionally, significant developments in metabolomics and its

incorporation into other omics (genomics, transcriptomics, and

proteomics) have advanced our understanding of the connections

between many levels of biological systems, paving the way for the

realization of systems biology. Combining knowledge from the fields of

biology, chemistry, instrumentation, and bioinformatics has made this

possible. To determine all of the metabolites in a plant extract,

metabolomics is primarily necessary. However, unlike DNA

sequencers for genomics or DNA arrays for transcriptomics, there is

no single technology for metabolomics, and it may never be practicable.

This is due to the fact that a variety of chemistries are required for the

study of metabolites with different physicochemical properties; unlike

nucleic acids and proteins, metabolomics cannot be handled by a single

chemistry. In terms of whole-genome sequencing, metabolomics is

analogous to attempting it without either the Sanger method or the

Maxam-Gilbert method. Currently, combinations of various high

sensitivity analytical methods are typically employed for

comprehensive nontargeted chemical analysis.

Recently, with the growing scope and application of research

using bioinformatics, and their use in metabolomics has also been

considerably increasing. In metabolomics, metabolites can be

characterized by profiling and obtaining information on targeted

and untargeted metabolites using high-performance analytical

instruments such as MS in order to examine interrelationships in

metabolic pathways.

Thereby, metabolomics profiling provides useful information

on various physiological phenomena of organisms. In order to

determine the extent of secondary, unintended changes in
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compounds (in addition to intentionally modified compounds in

biological systems) as a result of bioengineering (such as genetic

recombination), safety assessments can be done based on targeted

and untargeted metabolomics, which includes the targeted and

untargeted metabolomics compounds. Therefore, in safety

assessments based on metabolomics, it is important to understand

how the involved genes or substances are associated with the

metabolic pathways and what consequences are predicted.

In order to achieve this goal, it will be necessary to develop

comprehensive metabolomic databases and create corresponding

maps of metabolite profiling. It is important to note that currently

available equipment and technology might have limited information

on metabolomics. As a result, drawing conclusive insights from the

metabolic pathway maps could also be restricted. In order to overcome

these limitations, integration of -omics data information for analysis is

imperative. The information of metabolites obtained from a range of

analytical instruments must be collected, classified, and extracted

according to the purpose, and to this end, the introduction of

information analysis technology will be required. Since this process

requires considerable time and effort from data collection to analysis, it

will be necessary to establish a system for a series of processes from data

extraction, selection, and metabolomics data analysis for interpretation

of biological implications of the findings.
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