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In this study, we propose a high-throughput and low-cost automatic detection

method based on deep learning to replace the inefficient manual counting of

rapeseed siliques. First, a video is captured with a smartphone around the rapeseed

plants in the silique stage. Feature point detection and matching based on SIFT

operators are applied to the extracted video frames, and sparse point clouds are

recovered using epipolar geometry and triangulation principles. The depth map is

obtained by calculating the disparity of the matched images, and the dense point

cloud is fused. The plant model of the whole rapeseed plant in the silique stage is

reconstructed based on the structure-from-motion (SfM) algorithm, and the

background is removed by using the passthrough filter. The downsampled 3D

point cloud data is processed by the DGCNN network, and the point cloud is divided

into two categories: sparse rapeseed canopy siliques and rapeseed stems. The

sparse canopy siliques are then segmented from the original whole rapeseed siliques

point cloud using the sparse-dense point cloud mapping method, which can

effectively save running time and improve efficiency. Finally, Euclidean clustering

segmentation is performed on the rapeseed canopy siliques, and the RANSAC

algorithm is used to perform line segmentation on the connected siliques after

clustering, obtaining the three-dimensional spatial position of each silique and

counting the number of siliques. The proposed method was applied to identify

1457 siliques from 12 rapeseed plants, and the experimental results showed a

recognition accuracy greater than 97.80%. The proposed method achieved good

results in rapeseed silique recognition and provided a useful example for the

application of deep learning networks in dense 3D point cloud segmentation.

KEYWORDS

rapeseed siliques, 3D Reconstruction, sparse-dense point clouds mapping, point clouds
segmentation, silique recognition
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1 Introduction

Rapeseed is one of the main oil crops in the world (Shyam et al.,

2012). The yield of rapeseed is mainly determined by the number of

siliques per plant, the number of seeds per silique, and the thousand

seed weight (Tang et al., 2020). Among them, the number of siliques

per plant has the highest correlation with yield. However, currently,

the counting of rapeseed siliques is still done manually, which is not

only time-consuming and laborious but also usually has a high cost.

This to some extent has limited the rapid progress of rapeseed-related

research. Therefore, the intelligent recognition, segmentation, and

counting of rapeseed siliques have important research significance.

The 2D image-based silique counting method is fast in

detection and high in throughput (Du et al., 2023). For example,

Liu et al. proposed an improved K-means-based method for

counting wheat ears. Utilizing the clustering of color features, the

number of sub-regions within the clustered region was employed as

a mean of approximating the wheat crop count. The accuracy of

wheat ear counting reached 94.69% (Liu et al., 2019). Dandrifosse, S

proposed a deep learning method. It is an unsupervised learning

method using the YOLOv5 model on and the cutting edge

DeepMAC segmentation method capable of counting and

segmenting wheat ears (Dandrifosse et al., 2022). Wang, proposed

an improved efficient entdet-d0 model. The introduction of the

convolutional block attention module (CBAM) in the model allows

the model to refine the features, focus more on the wheat ears and

suppress other useless background information. The problem of

overlap in wheat ears images can be solved in wheat ears detection

and counting (Wang et al., 2021). Zhang proposed a high-precision

wheat head detection model with strong generality based on a

single-stage network structure. The number of wheats can be

detected quickly (Zhang et al., 2022). Liu et al. accurately

calculated the number of canola siliques by scatter treatment and

image analysis of piled-up siliques(Ren-feng et al., 2020). However,

there are high requirements for automated loading and unloading

devices. Zhao proposed a P2PNet-Soy method that maximizes the

performance of the model in soybean counting and localization by

adjusting the architecture and subsequent post-processing. It

achieves higher accuracy than the original P2PNet (Zhao et al.,

2023). However, traditional methods for 2D image processing have

difficulty in solving the occlusion problem due to the lack of high-

level semantic features. The existing counting methods based on

deep learning of 2D images are also ineffective in solving the

occlusion problem. In contrast, precise 3D point clouds data

could obtain from various sensors such as Time-of-Flight (ToF),

structured light cameras, and 3D laser scanners, which can provide

more detailed spatial information about plants to solve the

above problems.

High resolution and accurate 3D point cloud data allow for

more accurate 3D morphological parameters of plants (Ni et al.,

2021). 3D reconstruction is the basis for 3D three-dimensional

phenotyping studies of crops, but the requirements for algorithms

are high. For instance, with the Kinect V2 (a kind of camera), Xu

et al. captured images of rapeseed branches from four different
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perspectives to reconstruct the rapeseed branches. Then they used

the super-green segmentation algorithm to extract the siliques,

removed the largest connected domain using opening operation,

and identified and located individual siliques through Euclidean

clustering (Shengyong et al., 2019). However, due to the swinging

effect caused by the tall and soft rapeseed plants, the measurement

errors of ToF and structured light sensors used widely range from

millimeter to centimeter level (Tao and Zhou, 2017). Moreover, the

slender shape of rapeseed siliques requires high spatial resolution

for depiction. Therefore, the 3D data of rapeseed plants obtained by

ToF or structured light sensors may be less accurate and reliable. 3D

scanners (e.g., laser and radar) will give high-precision point clouds.

There are more than 100,000 data points for an entire plant. Each

plant organ has more than 100,000 to 30,000 data points. Although

the point clouds obtained by this method are of high quality, they

suffer from problems such as expensive equipment (Jin et al., 2021).

A low-cost and high-precision method to construct 3D point clouds

of plants can be achieved using smartphone and SFM algorithm

(Marzulli et al., 2020). However, the cumbersome process of taking

photos from multiple angles greatly affects the efficiency of

acquiring point clouds. Therefore, this study proposes a video-

based SFM 3D reconstruction method for an entire mature rapeseed

plant, aiming at achieving low-cost, high-accuracy, and high-

efficiency 3D reconstruction. This makes it possible to divide and

count whole rapeseed siliques with high precision. However, the

numerous siliques of the mature rapeseed are scattered and partially

overlapping, making it difficult to identify them accurately.

Therefore, high-precision identification and segmentation of

rapeseed siliques remain a challenge (Li et al., 2022). Although

the rapid development of deep learning has facilitated research on

plant point cloud segmentation. However, previous research has

mainly focused on methods based on hard voxelization or down

sampling. These methods are limited to segmenting simple plant

organs. Segmentation of complex plant point clouds with high

spatial resolution remains challenging. Recent deep learning

methods to segment the to point clouds have emerged to address

this challenge. They learn features from the input data in a data-

driven manner [23]. Thanks to advanced neural networks, deep

learning has shown great potential in plant 3D phenotypic analysis,

surpassing most traditional segmentation methods (Guo et al.,

2020). However, high-precision 3D point clouds places high

demands on computer performance, especially graphics cards (Shi

et al., 2019). Ghahremani et al. proposed a new pattern-based deep

neural network, Pattern-Net, for segmentation of wheat point

clouds. For the first time, they partitioned wheat point clouds

into defined organs. And their features are analyzed directly in

3D space. The network provides a method for the actual

segmentation of plant parts directly in the point cloud domain

(Ghahremani et al., 2021). However, the network requires high

computer performance and average recognition accuracy. A point-

based fully convolutional neural network (PFCN) was proposed by

Jin et al. The network directly uses points containing only geometric

information. Then extracts point-by-point and block-by-block

features to classify each point. The method addresses the difficulty
frontiersin.org
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of segmenting large-scale forest scenes (Jin et al., 2020). A

bifunctional deep learning neural network (PlantNet) was

proposed by Li et al. The method implemented semantic

segmentation and instance segmentation of two dicotyledons and

one monocotyledon in a point cloud (Li et al., 2022). However,

high-precision 3D point cloud processing places high demands on

computer performance, especially on the size of graphics memory.

Therefore, existing network architectures and hyperparameters are

mainly designed for small-scale inputs under current hardware

limitations. Down sampling the point clouds before feeding it into a

point-based network is necessary, but it also leads to significant loss

of original data information.

In summary, the main challenge for segmentation of dense and

small sized rapeseed siliques in two reasons. Firstly, both the hard

voxelization, which is widely used in voxel-based methods, and the

down sampling operation in point-based methods result in a

significant loss of information from the original data. Secondly,

training and inferring on dense pixel grids or point clouds may

impose intolerable computational costs on existing deep learning

methods. Therefore, this paper proposes an efficient and high-

precision deep learning segmentation method for sparse point

clouds that uses DGCNN (Wang et al., 2019) to segment and

then maps the results onto dense point clouds. This method

accurately identifies and segments rapeseed siliques while

maintaining complete spatial information and requiring low

computer performance, making it a low-cost and high-efficiency

method for silique identification. The method proposed in this

paper provides a useful example of deep learning applied to dense

3D point clouds segmentation and lays the foundation for low-cost

and high-efficiency intelligent measurement of rapeseed, promoting

further research on rapeseed.
2 Materials and methods

2.1 An overview of the proposed silique
identification methods

First, a circle video was captured around the rapeseed plant using a

smartphone. Then the frames are filtered to meet the requirements of

high definition, a complete view and no significant redundancy. Some

of the over-exposed and dark images are then enhanced to obtain a

high-quality video collection to improve the speed and quality of the

3D reconstruction. The processed video frames are then used as input

to obtain a 3D dense point cloud after sparse reconstruction, depth

estimation, and dense reconstruction (Figure 1A).

Next, the whole rapeseed silique point cloud was then obtained

using straight pass filtering and down sampling to obtain the target

horn fruit point cloud. The DGCNN network segmentation method

was then used on this target point cloud. The down-sampled canopy

canola rapeseed silique with the stalks removed were

obtained (Figure 1B).
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Then, the sparse-dense point cloud mapping segmentation

method was then applied to the down sampled canopy rapeseed

silique to obtain the original canopy rapeseed silique with stalks

removed (Figure 1C).

Finally, Euclidean clustering was used to segment for canopy

siliques. For the adherent siliques a linear fitting method based on a

random sampling consistency algorithm was used to segment the

identified siliques (Figure 1D).

The overall flowchart is shown in Figure 1.
2.2 Experimental materials and
data collection

Mature rapeseed plants, whose varieties are Zhongshuang 6,

Dadi 55, and Huayouza 62, were collected from experimental fields

in Ezhou Base in May 2022. Thirty plants each variety were

manually counted for the number of siliques per plant. Image

acquisition was conducted indoors under natural light. The entire

rapeseed plant was fixed in a flowerpot and photographed using a

smartphone. The rapeseed was placed in the center of a device with

a black background cloth surrounding it. A Xiaomi 10 smartphone

was used to record 4K (3840 x 2160, 30fps) videos, with default

imaging mode selected. The distance between the phone and

rapeseed siliques was about 1-2 meters, and the video was about

30 seconds long. The distance between the phone and the siliques of

the rapeseed depends on the size of the rapeseed. The larger the

rapeseed the greater the distance. Simply fill your phone’s

viewfinder with the entire rapeseed. Some of the captured video

images are shown in Figure 1A. The algorithm development and

testing platform for this paper was a general-purpose computer

(Intel Core 11th generation i9-12900K processor with a frequency

of 2.5-5.2 GHz, 64GB memory, NVIDIA GeForce RTX 3090

graphics card with 24GB graphics memory), Windows 10

Professional Edition, VS 2019 + PCL 1.80, and Python 3.6.
2.3 3D reconstruction based on video key
frames and SFM

Using sequential images, the steps for 3D reconstruction

include image data collection and preprocessing, sparse point

clouds reconstruction, depth map estimation, and dense point

clouds reconstruction. The reconstruction process is shown in

Figure 1A. SFM method requires capturing 100 images from

different angles, which is tedious and inefficient. Using a

smartphone to capture short videos is undoubtedly a more

efficient and effortless way. However, compared to using a single

image sequence, 3D reconstruction, based on video and SFM,

requires solving two new problems. Firstly, 3D reconstruction,

based on SFM, requires feature point extraction and matching.

However, the unavoidable shaking during smartphone shooting can

cause image blurring and dragging, making feature point detection
frontiersin.org
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difficult. Secondly, SFM algorithm only requires around 100

sequence images. But a 30-second video captured by a

smartphone can have 900 frames after decompression. Hence,

directly using these images for 3D reconstruction will consume

enormous computing power (Pepe et al., 2022). To address these
Frontiers in Plant Science 04
two problems, we propose targeted solutions. On the one hand, for

blurred images, Laplacian blurred image rejection based on

convolutional variance can eliminate them. On the other hand,

for redundant images, we use a similar image filtering method based

on feature-matching similarity.
B

C

D

A

FIGURE 1

Flow chart of overall silique identification and counting. (A) Process for SFM 3D reconstruction from video capture (B) Segmentation of canopy
silique point clouds after downsampling using the DGCNN network (C) A segmentation method using sparse-dense point cloud mapping to obtain
the original canopy silique process (D) A straight-line fitting approach to segmentation using the Euclidean clustering-RANSAC algorithm to identify
siliques process.
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2.3.1 Laplacian blurred image rejection based on
convolutional variance

A Laplacian convolution is performed on the image to calculate

the variance, which is used to measure the image clarity. The

calculation result quantifies the high-frequency information in the

image. The larger the numerical value, the more high-frequency

information the image contains, corresponding to a clear image;

while a smaller numerical value corresponds to a blurry image with

lost edge details. The commonly used Laplacian template has the

disadvantage of weak anti-noise interference ability, so it needs to

be smoothed before convolution. Bilateral filtering can effectively

remove noise while preserving edges. In this paper, we choose to

first apply bilateral filtering to the image for denoising, then convert

the color image to grayscale, and perform Laplacian convolution to

obtain the final variance (Rehman et al., 2022). This can be

expressed mathematically as:

F = o
I
i=0oJ

j=0(P(i,j) − P)

I*J

2

(1)

Where F is the sharpness value, I and J are the length and width

of the 2D image, P(i, j) is the pixel value at a point of the image and

P is the average pixel value of the 2D image.

2.3.2 Similar image filtering based on feature-
matching similarity

To extract a subset of keyframes from a large number of video

frames while avoiding including too many redundant images,

similarity detection on the images is necessary. The image

similarity calculation based on feature point matching can solve

this problem. For the same object, even if there is a significant

change in angle between two images, our method can still judge the

similarity based on the number of matched feature point pairs

detected. The results obtained are relatively accurate. Each normal

image has a certain number of feature points distributed throughout

the image, such as edge points and corner points. Matching the

feature points detected from two images, the higher the number of

correctly matched pairs, the higher the image similarity.

The first step: Read in the two images to be detected, img1 and

img2, and convert them to grayscale images, gray1 and gray2.

The second step: Create a SURF feature extractor and select the

fast library for approximate nearest neighbors.

The third step: Extract the image features of gray1 and gray2,

namely the feature points and the feature vectors around the

feature points.

The fourth step: Perform SURF feature matching on the

extracted feature points, obtain the number of matches, Matches,

and set an empirical threshold of 0.7 to remove points that do not

meet the matching requirements, leaving the number of correctly

matched features, MatchNum.

The fifth step: Calculate the ratio of the number of correctly

matched feature points to the total number of feature points, which

represents the similarity value, denoted by Similarity. The larger the

Similarity value, the more similar the images are. The formula for

calculating Similarity is:
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Similarity =
MatchNum ∗ 100

Matches
(2)

The process of the video keyframe extraction algorithm is as

follows: First, set the sampling interval K according to the video

duration. Then take out the first frame image and check if it is a

blurry image. If it is blurry, continue to check the next frame until it

meets the requirements and is used as the starting frame. Then take

out the frame at a distance interval of K and continue to check if it is

a blurry image. After it meets the clarity requirements, calculate the

similarity between these two frames. If the similarity reaches S1 but

does not exceed S2, take out this frame image. If the similarity is

higher than S2, detect the (K+I)th frame. If the similarity is lower

than S1, detect the (K-I)-th frame until it meets the requirements.

Repeat the above steps until all images have been checked.
2.4 Point clouds segmentation methods of
rapeseed siliques

2.4.1 Deep learning dataset
First, the 3Dmodel of rapeseed siliques was reconstructed based

on SFM algorithm. Then, the Cloud Compare open-source toolbox

was used to create rapeseed silique point clouds dataset by labeling

the stems and canopy siliques of the training data separately. The

stem part was labeled as 0, and the canopy siliques were named as 1,

and saved as “txt” format. When training the model using deep

learning methods, a sufficient number of training sample images are

required. Consider the rotational translation invariance and scale

invariance of a point cloud. For each point in the point cloud

dataset, a random translation vector can be generated in the x, y and

z directions. The point coordinates are then added to this vector to

achieve a random translation. Each component of the translation

vector can be randomly generated between [-0.2, 0.2]. Three scaling

factors can also be generated randomly between [0.65, 1.7],

corresponding to the scaling factors in the x, y and z directions

respectively. The coordinates of the point are then multiplied by

each of the three scaling factors. This results in random anisotropic

scaling to augment the training data. A total of 90 sets of training

datasets were created, which expanded the dataset to six times its

original size. In total, 540 sets of rapeseed siliques point clouds

training data were obtained. The training set was trained, validated,

and tested with semantic segmentation models at 70%, 15%,

and 15%.
2.4.2 Silique and stalk point clouds segmentation
based on DGCNN

Dynamic Graph Convolutional Neural Network (DGCNN) is a

model based on Graph Convolutional Neural Network (GCN). It is

specifically used for tasks such as image classification, point cloud

classification and semantic segmentation. DGCNN uses local

neighborhood information to perform feature extraction on each

node. The global information is captured by a graph convolutional

neural network to enable classification and segmentation tasks. It

uses an integrated convolution module, EdgeConv, as its core,
frontiersin.org
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which models the points in the point clouds by using a graph

approach. This enables the network to learn both local and global

features of the point clouds while also learning the independent

information of each point (Liu et al., 2022). Traditional 2D image

convolution defines the local region of pixels using the size of the

convolution kernel. EdgeConv, on the other hand, constructs a local

region using a k-nearest neighbor (kNN) graph and performs

convolution operations on it.

Since 3D point clouds are unstructured and unordered, most

deep learning methods for processing 3D data in point clouds

segmentation tasks convert the point clouds into a collection of

sequential images or a voxel-based 3D data representation.

However, multi-view and voxel-based representations can lead to

unnecessary data redundancy and limit output resolution.

Subsequently, PointNet (Qi et al., 2017a) directly processes 3D

point clouds as deep neural network input data, but only based on

global features of the point clouds, lacking local features. Therefore,

PointNet++ (Qi et al., 2017b) proposes grouping and layering the

point clouds, using PointNet to capture both local and global

information. However, this method lacks the association between

points. The introduction of DGCNN, based on PointNet++, adds

the relationship between points, making local information more

prominent. Compared to traditional CNN models, DGCNN is able

to handle unstructured data and capture the relationship between

local and global features. DGCNN can also be used to classify and

segment unordered point sets without considering the order in

which the points are arranged. In addition, DGCNN also has better

robustness and is more capable of handling noisy and incomplete

data. For the segmentation of the entire rapeseed siliques, high-

precision local information is required for the segmentation of the

siliques and stems, which can be met by DGCNN. Therefore, in this

paper, DGCNN is used for semantic segmentation of rapeseed

images to obtain the point clouds of the siliques without the stems.

This network model architecture is used as a model architecture

for classification (top branch) and segmentation (bottom branch).

The classification model takes as input n points, computes an edge

feature set of size k for each point at the EdgeConv layer, and

aggregates within each feature set to compute the response of the

EdgeConv counterpart of the corresponding point. The output

features of the last EdgeConv layer are aggregated globally to

form a one-dimensional global descriptor that is used to generate

the classification scores for class c. The partitioning model extends

the classification model by connecting the one-dimensional global

descriptor to all EdgeConv outputs. The EdgeConv output (as a

local descriptor). It outputs a classification score for each point for

the p semantic labels. The point cloud transformation block aims to

align the input point set to the typical space by applying an

estimated 3 × 3 matrix. To estimate the 3 × 3 matrix, a tensor is

used that connects the coordinates of each point with the difference

in coordinates between its k neighbors. The EdgeConv module takes

as input a tensor of shape n ×f and computes the edge features of

each point by applying a multilayer perceptron (mlp) with the

number of layer neurons defined as {a1, a2,…, an}, and generating a

shape tensor × an after the set of neighboring edge features.

Since the network provides the probability prediction for each

point in each class, the maximum probability value of the class and
Frontiers in Plant Science 06
the point clouds label are used together to calculate the loss during

network training. The network parameters are trained and learned

through backpropagation. During network training, point clouds

are input in batches (batch size) to reduce their differences in type

and geometry. The equation of loss calculation during the training

process uses the classic cross-entropy loss function as shown in (3).

LOSS(x, label) = − log ( exp½x(label)�=oj exp½x(j)�) (3)

where x is the output of the network, the label is the

corresponding label and j is the order of the output.

During the training process, the network needs to learn how to

set parameters based on the results of the loss function calculation

in each epoch, which is directly influenced by the manually labeled

data. The hyperparameters that need to be manually set in the

network (parameters that cannot be learned) control the speed of

convergence of the network’s loss and the training effect. This is

because the more the loss calculation results converge, the better the

semantic segmentation effect of the network. The hyperparameter

settings in this article mainly focus on the optimizer, learning rate,

training epochs, and batch size of inputs in each epoch. The

optimizer used is Adam; the learning rate is set to 0.001; the

training epoch value is set to 200; and the batch size is set to 20.

The new point cloud data is segmented using a trained DGCNN

network. The segmentation process consists of two processes:

forward propagation and backward propagation. The forward

propagation process is to input the point cloud data into the

DGCNN network and get the output result of the network. The

backward propagation process is to calculate the gradient of the loss

function based on the network output result. The back propagation

algorithm is used to update the network parameters, thus enabling

the network to segment the point cloud data better. These

parameters represent the maximum computational capacity

supported by the computer during experimentation. The

segmentation results are shown in Figure 2.
2.4.3 Kd-tree radius searches - a segmentation
method for sparse-dense point clouds mapping

Point clouds processing requires extremely high computational

power. The DGCNN can effectively segment rapeseed point clouds.

However, the computer used in this study is unable to process point

clouds with more than 16,384 points. To handle large rapeseed

point clouds, a new method of sparse-dense point clouds mapping

is needed to solve the bottleneck caused by insufficient

computational power. This method, based on the sparse crown

siliques obtained by DGCNN segmentation, uses Kd-tree radius

search to obtain the original dense point clouds of crown siliques

(Evangelou et al., 2021).

KdTree is a high-dimensional space indexing structure used to

partition k-dimensional data space. Its essence is a binary search

tree with constraints. Approximate search algorithms based on Kd-

Tree can quickly and accurately find the nearest neighbors of a

search point, which is often used in feature point matching based on

similarity (Xiao et al., 2022). There are two basic methods for

similarity search algorithms in index structures: one is radius

searches, and the other is K-neighbor searches (Zhang et al.,
frontiersin.org
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2020). Radius searches means finding all data in the dataset that is

within the given search distance threshold (with the search point as

the center and the search distance as the radius) that is less than the

threshold distance from the search point (data within the radius).

K-nearest neighbor searches is finding the K closest data points to

the search point from the dataset. When K=1, it becomes the

nearest neighbor searches. For 3D point clouds, all K-D trees are

3D. Building a k-d tree is a recursively unfolding process: at each

level of expansion, all remaining datasets are divided along a specific

dimension using a hyperplane perpendicular to the corresponding

axis. At the root of the Kd-tree, all data is split according to the first
Frontiers in Plant Science 07
dimension. The next level in the Kd-tree is divided along the next

dimension. When all other dimensions are exhausted, it returns to

the first dimension. The most efficient way to construct a K-D tree is

to use a partitioning method similar to quicksort, placing the

median at the root node, then placing values smaller than the

median in the left subtree and values larger than the median in the

right subtree, and finally repeating this process on the left and right

subtrees until the last element is partitioned.

Figure 3 shows the process of removing the stems from rapeseed

during the silique stage. The sparse crown siliques segmented by the

DGCNN are shown in (a), while (b) shows the original point clouds
B C DA

FIGURE 3

Diagram of the process of removing stalks from rapeseed silique. (A) Canopy silique point cloud after sampling is desired (B) Diagram of the original
carob point cloud index process (C) Diagram of the search process for raw carob point clouds (D) Raw rapeseed canopy mirage point cloud.
FIGURE 2

DGCNN network structure and segmentation effect. Model architectures: The model architectures used for classification (top branch) and
segmentation (bottom branch). The classification model takes as input n points, calculates an edge feature set of size k for each point at an
EdgeConv layer, and aggregates features within each set to compute EdgeConv responses for corresponding points. The output features of the last
EdgeConv layer are aggregated globally to form an 1D global descriptor, which is used to generate classification scores for c classes. The
segmentation model extends the classification model by concatenating the 1D global descriptor and all the EdgeConv outputs (serving as local
descriptors) for each point. It outputs per-point classification scores for p semantic labels. ©: concatenation. Point cloud transform block: The point
cloud transform block is designed to align an input point set to a canonical space by applying an estimated 3×3 matrix. To estimate the 3×3 matrix, a
tensor concatenating the coordinates of each point and the coordinate differences between its k neighboring points is used. EdgeConv block: The
EdgeConv block takes as input a tensor of shape n×f, computes edge features for each point by applying a multi-layer perceptron(mlp) with the
number of layer neurons defined as {a1, a2,…, an}, and generates a tensor of shape n×an after pooling among neighboring edge features.
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of the entire rapeseed plant. The upper portion of (a) is a magnified

view of the sparse crown siliques segmented by the DGCNN, while

the upper portion of (b) shows the original point clouds of the entire

rapeseed plant. In (a), a point is selected and its corresponding

points in (b) is found. point clouds with a radius of 0.01 is then

retained around this point. The retained point clouds are shown in

yellow in (c). The final segmentation result is a dense crown silique,

as shown in (d), which prepares for the accurate segmentation of

individual silique in the subsequent steps.
2.5 Rapeseed silique identification based
on the RANSAC algorithm

The contour of the reconstructed 3D point clouds of the

rapeseed siliques is complete. Therefore, it is more suitable for

line fitting identification. In this study, the plant point clouds is first

segmented using the Euclidean clustering (Chen and Zhang, 2004).

Then, based on the RANSAC algorithm (Barath et al., 2022),

straight line fitting is applied to the clustered point clouds to

segment the point clouds of the rapeseed siliques. Finally, the

identification results are counted.

Plant point clouds exist in the form of multiple point clouds

clusters in 3D space. In order to effectively detect and count the

number of rapeseed siliques, it is necessary to determine the

number of point clouds clusters and process each cluster

separately to avoid missing or mis-segmenting the identification.

Therefore, the plant point clouds are first segmented into multiple

point clouds clusters using the distance-based Euclidean clustering

algorithm, and then each cluster is processed separately. The point

clouds clusters can be divided into two categories: those containing

only one rapeseed silique point clouds, and those containing two or

more rapeseed silique point clouds. Straight line segmentation is

performed on each cluster. If the cluster contains rapeseed silique
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point clouds, the corresponding straight line can be fitted. Finally,

the number of straight lines fitted for all point clouds clusters is

counted to obtain the number of rapeseed siliques in the entire

plant. A point clouds cluster may contain multiple rapeseed siliques,

so the straight-line point clouds is fitted and segmented multiple

times until the remaining un-fitted point clouds in the cluster is less

than a certain value. Based on the measured width of the rapeseed

siliques, the width range of the straight-line model is set to 0.03-

0.05m, and the error threshold between the inliers and the model is

set to 0.018m. At least 200 points are required to segment a straight-

line model. During the straight-line fitting process, if the number of

points in the point clouds is less than 200, the current model fitting

result is regarded as a misidentification result. The straight-line

model obtained in the previous fitting is retained as the

identification result, and the current fitting result is discarded.
3 Experimental results and analysis

3.1 3D reconstruction experiments based
on video and SFM

An experiment was designed to compare three methods of 3D

reconstruction: keyframe, sequence image, and fixed. Keyframes

refer to the frames that capture the critical movements or changes of

an object. Sequence images are the pictures taken around the

rapeseed siliques, while fixed-frames are the video frames

captured around the rapeseed siliques, with one frame extracted

every ten frames. The experiment ensured that both sequence

images and fixed-frames had 90 input images, while the

keyframes were determined based on the algorithm results from

the previous steps. The shooting method for sequence images was

consistent with that of video frames. The quality of the

reconstruction was compared from two aspects: the number of
FIGURE 4

Comparison of point cloud quality obtained by three reconstruction methods.
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point clouds and the degree of restoration of details. That is, for the

same rapeseed plant, the more point clouds, the more complete the

structure and the fewer holes and missing parts. At the same time,

the details of the point clouds, such as the siliques and stems, were

observed, and the reconstruction effect of the details represented the

quality of the point clouds. Figure 4 shows three point clouds

obtained 3D reconstruction using keyframe, sequence image and

fixed frame, respectively, from left to right. The small images below

Figure 4 are an enlarged display of the circled part, which facilitates

a more intuitive analysis of the reconstruction quality. Upon

observing the enlarged part, it was found that the three methods

had different reconstruction degrees of the 3D stem structure, with

the keyframe reconstructing the most complete stem details,

followed by the sequence image, and the fixed frame having the

worst reconstruction. Through the analysis and comparison of

point clouds obtained from multiple 3D reconstruction, it was

found that the algorithm proposed in this paper had significant

improvements compared to 3D reconstruction based on fixed

frame, which could greatly improve the accuracy of subsequent

phenotypic measurements of rapeseed siliques.

We conducted experiments on 12 rapeseed plants from three

different varieties. The required time for 3D reconstruction based

on the three methods was recorded and compared. The comparison

of time consumption for these three methods is shown in Figure 5.

For the same rapeseed plant, the duration of sequence image-based

3D reconstruction was significantly higher than that of fixed-frame

and keyframe. 3D reconstruction based on fixed frame and

keyframe, had similar durations, but keyframe-based 3D

reconstruction was slightly shorter than fixed-frame-based
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reconstruction. Fixed-frame-based reconstruction improved the

efficiency of reconstruction by 19.39% compared to sequence

image-based reconstruction, while keyframe-based reconstruction

improved efficiency by 24.4% compared to sequence image-based

reconstruction. Therefore, if judged solely on the basis of the

reconstruction time, sequence image-based reconstruction took

the longest time, followed by fixed-frame-based reconstruction,

and keyframe-based reconstruction took the shortest time.
3.2 Experimental segmentation of silique
point clouds

Semantic segmentation based on deep learning has a very broad

development prospect in the field of computer vision. However,

many network models with good segmentation results occupy a

large amount of memory and take a long time to process 3D point

clouds (Mirande et al., 2022). Based on the DGCNN-sparse-dense

point clouds mapping, it has faster processing speed and better

segmentation results, and consumes less memory. We conducted

experiments on four rapeseed siliques. Figure 6 shows the

segmentation results of PointNet, PointNet++, and DGCNN for

the four rapeseed siliques, respectively.

Table 1 shows a quantitative comparison of the three networks.

DGCNN achieved the best results in most cases and outperformed

other networks in all four average quantization metrics.

The reconstructed rapeseed silique point clouds were manually

segmented into rapeseed stems and canopy siliques using

CloudCompare software. The segmented point clouds were down
FIGURE 5

Comparison of reconstruction time of three reconstruction methods.
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TABLE 2 Quantitative comparison of silique down sampling to different point cloud numbers.

The number of point clouds after down sampling 4096 8192 12288 16384 18432

Times(h) 1.25 2.5 3.75 5 ×

The number of point clouds after restoration × 250241 272783 301013 ×

Silique recognition rate × 98.12% 91.99% 98.03% ×
F
rontiers in Plant Science
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FIGURE 6

Renderings of three types of network segmentation.
TABLE 1 The semantic segmentation performance of the three networks was quantitatively compared.

Methods 1 2 3 4

Prec (%)

PointNet 77.16 93.56 89.18 96.61

PointNet++ 87.79 95.91 91.71 96.70

DGCNN 92.72 96.37 92.39 97.97

Rec (%)

PointNet 91.21 89.08 86.89 98.28

PointNet++ 90.84 83.96 91.94 97.82

DGCNN 97.7 89.55 93.32 98.21

F1 (%)

PointNet 93.67 86.87 87.87 97.76

PointNet++ 94.84 91.92 91.82 97.79

DGCNN 97.25 93.86 94.54 98.31

IoU (%)

PointNet 88.09 92.42 93.42 93.26

PointNet++ 90.18 96.45 96.65 95.51

DGCNN 94.35 95.68 96.77 96.74
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sampled to 4096, 8192, 12288, 16384, and 18432 points for each

rapeseed siliques. Due to the large number and complex structure of

the rapeseed silique point clouds, down sampling to 4096 points not

only reduced the number of point clouds too much but also

destroyed the structure. When the number of point clouds is too

small, it cannot be restored to the original number of point clouds

under the method of sparse-dense point clouds mapping, which

leads to the inability to recognize subsequent siliques. On the other

hand, down sampling to 18432 requires a lot of resources, making it

impossible for the computer to run. Table 2 shows that when down

sampled to 8192 point clouds, the training and processing time is

the shortest and the siliques recognition rate is the highest after

sparse-dense point clouds mapping.
3.3 Experimental recognition of silique
point clouds

The recognition results were compared with the ground truth. As

shown in Table 3, numbers 1-4 were Huayouza 62, numbers 5-8 were

Zhongshuang 6, and numbers 9-12 were Dadi 55. The total

recognition precision was 97.80%, the mean absolute percentage

error was 1.96% and the R2 was 0.96. Figure 7 shows the

segmentation results of the siliques. Figures 7A, E show two

different cases of siliques adhesion. Figures 7C, B ,D, F, G show the

recognition results under the adjacent or adhesive state of the siliques.

Even when the siliques were heavily adjoined and occluded, our

method could distinguish and recognize different siliques. Our

method segmented and recognized the siliques based on their

spatial shape features. However, there were a small number of

missed recognitions during the silique’s recognition process. The

reasons for missed recognition were mainly due to the silique point

clouds having too few points or irregular shapes, which did not meet
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the fitting conditions set by the RANSAC algorithm. When the

siliques were extremely small in shape and had fewer point clouds

after down sampling and statistical filtering, they could be easily

treated as noise and removed. In addition, incomplete or irregular

straight-line contours resulted in the inability to fit a straight line.
4 Discussion
(1) In this paper the SFM method was chosen for the 3D

reconstruction of rapeseed silique. The method is

inexpensive and the quality of the 3D reconstruction is

high, but the time consumption is huge. The time required

for one 3D reconstruction was more than 30 minutes.

Moreover, more images are required to obtain higher

quality 3D point clouds, which leads to a dramatic

increase in time consumption. Therefore, further research

is needed to explore optimization methods for SFM, such as

adding GPU acceleration.

(2) The point cloud segmentation method proposed in this

paper requires down sampling of whole rapeseed plant

point cloud. As can be seen from the above experiments,

due to the large number of point clouds and complex

structure of the whole rapeseed silique. When down

sampling to 4096, not only the number of point clouds is

too small, but also the structure is destroyed. When the

number of point clouds is too small, it cannot be restored to

the original number of point clouds under the sparse-dense

point cloud mapping method. This in turn results in the

subsequent number of siliques not being identified. And

when down sampling 18432, a large number of resources

are required causing the computer to become inoperable.
TABLE 3 Silique identification and counting results.

Rapeseed varie-
ties

Plant
number

True
value

Correct identification number of
siliques

Missing identification number of
siliques

Pr
(%)

Huayouza 62

1 126 124 2 98.41

2 196 192 4 97.96

3 110 108 2 98018

4 119 117 2 98.32

Zhongshuang 6

5 104 102 2 98.08

6 139 135 4 97.12

7 85 83 2 97.65

8 99 98 1 98.99

Dadi 55

9 129 126 3 97.67

10 105 104 1 99.05

11 124 121 3 97.58

12 118 115 3 97.46

Total 1457 1425 32 97.80
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Therefore, the range for down sampling the whole rapeseed

silique point cloud is 4096-18432.

(3) The Euclidean clustering-RANSAC segmentation and

identification method has certain limitations in the

segmentation of the siliques point cloud identification.

The number of siliques identified by this method is often

slightly smaller than the actual number. There are three

main reasons for this. Firstly, in the image pre-processing

process, some small siliques are mistakenly rejected.

Secondly, in the point cloud filtering session, some

siliques were broken into small pieces and mistakenly

considered as outlier noise and were rejected. Thirdly, the

parameter settings for segmenting the point cloud of

rapeseed silique based on the RANSAC algorithm for

linear fitting of the clustered point cloud. If the width

range of the line model is set to less than 0.03m or

greater than 0.05m, it can cause changes in the siliques

shape and inaccurate counting.
5 Conclusion

This paper provides a process and methodology that can be used

as a reference for segmenting dense plant point clouds with complex

structures.We take the dense point clouds of whole rapeseed plants at

the siliqua stage with complex morphological features as a typical

example. The DGCNN used in this paper performs semantic

segmentation on the entire rapeseed point clouds. Compared with

instance segmentation, the data annotation cost of semantic

segmentation is much lower. Moreover, the DGCNN adds
tiers in Plant Science 12
relationships between points on the basis of PointNet++, making

local information more prominent. For the entire rapeseed at the

siliqua stage, high-precision local information is required for the

segmentation between siliqua and stem. DGCNN is well suited for

this task. After segmentation, the sparse canopy siliqua point clouds

without stem are obtained, and then the sparse-dense point clouds

mapping segmentation method is used to segment the original

rapeseed canopy siliqua point clouds. This method greatly reduces

the computational requirements for deep learning network point

clouds segmentation. Targeted solutions are proposed for several

difficulties in identifying mature rapeseed siliqua.
(1) This paper proposes a similarity-based video keyframe

extraction algorithm. The algorithm effectively removes

redundant and motion-blurred images , saving

reconstruction time and cost, and ultimately ensuring a

more complete view of the extracted video frames. Image

enhancement processing of video frames improves contrast

and enhances edge details, thereby improving the quality of

the 3D model.

(2) To solve the problem of recognizing and counting the

overall number of rapeseed siliques, this paper proposes a

method based on DGCNN-sparse-dense point clouds

mapping to segment the crown siliques. This method can

remove the stems of the entire rapeseed siliques while

maintaining complete spatial information, compared to

only using DGCNN network to segment sparse crown

siliques. This method not only improves the accuracy of

subsequent siliques point clouds recognition and counting,

but also greatly reduces the algorithm’s requirements for

computer computing power.
B C D

E F G

A

FIGURE 7

Rapeseed silique segmentation results. (A) Diagram of three siliques adhesions (E) Diagram of two siliques adhesions (B, C, D, F, G) Single silique.
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(3) For the crown siliques, this paper uses Euclidean clustering

segmentation and a line fitting method based on random

sample consensus algorithm to segment and recognize the

siliques. Based on the contour features of line shapes, this

method can greatly improve the accuracy of siliques

recognition, which is of great significance for yield

estimation and subsequent cultivation.

(4) This paper identifies 1457 siliques from 12 rapeseed plants,

with a total identification accuracy rate of 97.80%. When

comparing the total calculated number of siliques with the

actual value, the coefficient of determination is 0.97, and the

average absolute percentage error is 1.96%. This method can

effectively recognize adhered siliques, as well as identify and

count the entire siliques. The proposed method not only has

extremely low cost, good portability, and high precision, but

also can effectively save runtime and improve efficiency,

greatly improving the accuracy of siliques counting.
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