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2Department of Industrial Plant Science and Technology, Chungbuk National University,
Cheongju, Republic of Korea, 3Phyzen Genomics Institute, Seongnam, Republic of Korea
The family Schisandraceae is a basal angiosperm plant group distributed in East

and Southeast Asia and includes many medicinal plant species such as

Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of

two species, Schisandra repanda and Kadsura japonica, in the family were

characterized through de novo assembly using sequencing data obtained with

Oxford Nanopore and Illumina sequencing technologies. Themitogenomes of S.

repanda were assembled into one circular contig (571,107 bp) and four linear

contigs (10,898–607,430 bp), with a total of 60 genes: 38 protein-coding genes

(PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonicawere

assembled into five circular contigs (211,474–973,503 bp) and three linear

contigs (8,010–72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes,

and 3 rRNA genes. The mitogenomes of the two species had complex structural

features with high repeat numbers and chloroplast-derived sequences, as

observed in other plant mitogenomes. Phylogenetic analysis based on PCGs

revealed the taxonomical relationships of S. repanda and K. japonica with other

species from Schisandraceae. Finally, molecular markers were developed to

distinguish between S. repanda, K. japonica, and S. chinensis on the basis of

InDel polymorphisms present in the mitogenomes. The mitogenomes of S.

repanda and K. japonica will be valuable resources for molecular and

taxonomic studies of plant species that belong to the family Schisandraceae.
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1 Introduction

Mitochondria are essential organelles that play an important role in energy production

through aerobic respiration in most eukaryotic cells (Newton, 1988). They also regulate

vital activities in vivo by participating in metabolic processes such as cell differentiation,

apoptosis, cell growth, and cell division (Kroemer and Reed, 2000; van Loo et al., 2002;
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Bonora and Pinton, 2014). Mitochondria arose from endosymbiotic

a-proteobacteria in archaea-derived host cells and eventually came

to possess an independent mitochondrial genome (mitogenome)

via their evolution into eukaryotic organelles (Gray et al., 1999;

Lang et al., 1999).

The mitogenomes of plants are larger and more complicated

than those of other eukaryotes. They contain varied master circular,

linear, and branching structures (Backert et al., 1997; Rice et al.,

2013; Gualberto et al., 2014). Since mitogenomes of Marchantia

polymorpha and Arabidopsis thaliana were first mapped, a total of

hundreds land plants mitogenomes have been deposited in the

Organelle Genome Resources of NCBI. The mitogenome sizes in

land plants vary greatly, from 66 kb (Viscum scurruloideum;

Skippington et al., 2015) to 11.3 Mb (Silene conica; Sloan et al.,

2012). Similarly, the number of protein-coding genes (PCGs) ranges

from 19 (Viscum scurruloideum) to 79 (Ammopiptanthus

mongolicus; unpublished accession NC_039660). Mitogenome size

also differs between related species (Sloan et al., 2012; Gualberto and

Newton, 2017). It has diversified because of foreign DNA insertion,

nuclear or chloroplast sequence insertion, and recombination

activity in non-coding regions such as repeat and intron

sequences (Alverson et al., 2011; Gandini and Sanchez-Puerta,

2017; Gualberto and Newton, 2017; Cui et al., 2021).

In land plants such as Cucurbita pepo (Alverson et al., 2010),

Cycas taitungensis (Chaw et al., 2008), Garcinia mangostana (Wee

et al., 2022), and Oryza sativa (Notsu et al., 2002), short repeats of

less than 100 bp or large repeats of 1 kb or more contribute

significantly to mitogenome size (Arrieta-Montiel et al., 2009;

Wynn and Christensen, 2019). At least 300 MYA, when plants

first evolved into seed plants, chloroplast DNA containing PCGs

and tRNAs frequently transferred into the mitogenome (Wang

et al., 2007). Such transfer of non-functional plastid-derived

sequences to the mitogenome can introduce new chimeric genes,

tRNAs, or promoters (Nakazono et al., 1996; Miyata et al., 1998;

Hao and Palmer, 2009; Wang et al., 2012). Furthermore, introns can

be acquired by the mitogenome via gene transfer (Palmer et al.,

2000), and AT contents can be increased even in species with

relatively abundant GCs in the genome (Sloan and Wu, 2014).

These characteristics provide useful information for the study of

plant evolution and phylogeny (Wallace et al., 1988; Cameron et al.,

2007; Mower et al., 2012).

The family Schisandraceae is composed of basal angiosperm

plants of the order Austrobaileyales and branches out after

Amborellales and Nymphaeales (Qiu et al., 1999; Leitch and

Hanson, 2002). Schisandraceae plants that belong to the genera

Schisandra and Kadsura are distributed throughout Korea, China,

and Japan and are valuable economic and medicinal resources

(Liu et al., 2014). The fruits of Schisandraceae have anticancer,

antioxidant, and anti-inflammatory properties (Li et al., 2018;

Zhou et al., 2021) and contain lignans, polysaccharides,

flavonoids, and organic acids (Jiang et al., 2015; Zhou et al.,

2021). These features have driven interest in Schisandraceae plants

(Liu et al., 2022), and research has been conducted on the

extraction of fruit-derived substances (Lee and Kim, 2010; Nam

et al., 2014; Yi et al., 2016), individual breeding techniques (Kim

et al., 2014; Boo and Kim, 2020), flower growth, and sex
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determination (Liu et al., 2022). In addition, genes involved in

compound biosynthesis have been recently identified using

transcriptome and metabolome analyses (Chun-Yu et al., 2020;

Hong et al., 2022; Li et al., 2022). However, it is difficult to

distinguish between Schisandra species because the dried mature

fruits are morphologically similar (Lee et al., 2013). Furthermore,

Schisandraceae plant classification is complex and has changed

several times over the last few decades (Li et al., 2018).

In this study, we aimed to gain a better understanding of

mitogenome characteristics, structure, evolution, and function.

We therefore assembled the mitogenomes of Schisandra repanda

and Kadsura japonica using Nanopore and Illumina sequencing.

We used the resulting assembled mitogenomes to conduct

taxonomic studies and investigate the relationships between

highly utilized Schisandraceae species. Our results will help

protect these species and develop their genetic resources.
2 Materials and methods

2.1 DNA extraction and sequencing

Fresh leaf samples were collected from single S. repanda and

K. japonica plant growing at Jeju Agricultural Research Field, and

genomic DNA was extracted. For Illumina sequencing, 200 ng

genomic DNA was sonicated to a fragment size of 350 bp using a

Covaris S2 system (Covaris, USA) and processed with the

Illumina TruSeq Nano Sample Prep kit (Illumina, USA)

according to the manufacturer’s instructions. The constructed

library was quantified using digital PCR and Taqman Probe

(Thermo Fisher Scientific, USA) and sequenced using an

Illumina NovaSeq 6000 platform. For Oxford Nanopore

sequencing, 10 µg unfragmented genomic DNA was processed

using the Quick Ligation Kit (NEB, USA) and SQK-LSK109

Ligation kit (ONT, UK) according to the manufacturers’

instructions. The purified library was loaded into a MinION

Flow Cell (ONT, UK) and sequenced for 72 h.
2.2 Mitogenome assembly and annotation

The quality trim tool (Phred score > 20) in the CLC Assembly

Cell package (ver. 4.2.1, Qiagen, Denmark) and Porechop software

(ver. 0.2.3; https://github.com/rrwick/Porechop) with default

parameters were used to trim the Illumina and Nanopore raw

sequencing data and remove adaptor and chimeric sequences.

The trimmed Nanopore data were assembled using the

NextDenovo program (ver. 2.3.1; https://github.com/Nextomics/

NextDenovo) with 1-kb read cutoff and 100-Mb genome size as

the parameters. The total assembled contigs were aligned with

mitochondrial genome sequence of Schisandra chinensis

(MK860624) using nucmer (ver. 4.0.0beta2; https://github.com/

mummer4/mummer) with default parameters and then contigs

that were aligned with the mitochondrial genome sequence were

selected as mitochondrial contigs. The selected contigs were

merged, gap-filled, and error-corrected by a series of mapping
frontiersin.org
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the trimmed Illumina data using clc_ref_assemble and

clc_mapping_viewer with default parameters in CLC Assembly

Cell package ver. 4.2.1 (QIAGEN, Denmark) (Kim et al., 2015).

The assembled mitogenome sequences were validated by read

mapping of Nanopore and Illumina sequencing data. The trimmed

reads were mapped to the assembled mitogenome sequences, and

the consistency and connectivity of the mapped reads on the

mitogenome sequences and junctions between contigs were

confirmed using clc_ref_assemble, clc_mapping_viewer, and

clc_mapping_info with default parameters in CLC Assembly Cell

package ver. 4.2.1 (QIAGEN, Denmark).

The mitogenome sequences were annotated using Artemis

(Carver et al., 2012) and GeSeq (Tillich et al., 2017) programs on

the basis of similarity with the mitochondrial reference genome (S.

chinensis chromosome 1 mitochondrion, complete sequence

[MK860624]) (Baek et al., 2019). In addition, manual curation

with BLAST was used to pinpoint particular gene areas.

Circular maps of the mitogenome were created with the

annotated data using OGDRAW (http://ogdraw.mpimp-

golm.mpg.de; Lohse et al., 2007).
2.3 Repeat sequence analysis

Repeat sequences, such as forward and reverse repeats, in

mitogenomes were identified using the REPuter program (ver.

2.3.0), with maximum size of gaps between repeat instances of 30

(Kurtz et al., 2001). Simple sequence repeats (SSRs) were detected

using the MISA program (ver. 2.1; https://webblast.ipk-

gatersleben.de/misa/), with mononucleotide, dinucleotide,

trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide

repeat parameters set as 10, 5, 3, 4, 3, and 3, respectively (Beier et al.,

2017). Tandem repeats were found using the Tandem Repeats

Finder program (ver. 4.09; https://tandem.bu.edu/trf/trf.html),

with min match = 2, min mismatch = 7, min score = 50, and

max period = 2,000 (Benson, 1999).
2.4 Identification plastid-derived
sequences in mitochondrial DNA

The mitogenome sequences of S. repanda and K. japonica were

examined for the presence of plastid-derived sequences using

BLASTn with megaBlast parameters and a cutoff e-value of 1e–5

against the S. chinensis chloroplast genome sequence (NC_034908).
2.5 RNA-editing analysis

PREPACT (ver. 3.12.0; http://www.prepact.de/prepact-

main.php) with default options was utilized to predict RNA

editing sites within PCGs of S. repanda and K. japonica

mitogenomes. The cutoff value was set to 0.001 to ensure

prediction accuracy (Lenz et al., 2010; Lenz and Knoop, 2013;

Lenz et al., 2018).
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2.6 Ka/Ks analysis

The multiple sequence alignments of 33 commonly found genes

from four species were performed using MAFFT v7.305b and the

alignments were corrected with Gblocks v0.91b94, and then we used

ParaAT v2.0 was used to estimate the Ka/Ks ratio (Castresana, 2000;

Zhang et al., 2012; Katoh and Standley, 2013). The plot was drawn

using in-house Python and R scripts.
2.7 Phylogenetic analysis

Phylogenetic analysis was performed using 14 conserved coding

sequences (CDSs; atp1, atp6, atp8, atp9, cob, cox2,mttB, nad1, nad2,

nad3, nad5, nad6, rpl5, and rps12) in 17 species. Concatenated

CDSs were aligned using the MAFFT program (ver. 7) with default

parameters and used as input data for the phylogenetic analysis

(Katoh et al., 2019). The RAxML program (ver. 8.2.12) was used for

the phylogenetic analysis, with the substitution model GTR + I + G,

and 1,000 bootstrap replicates (Stamatakis, 2014). The FigTree

program (ver. 1.4.3; http://tree.bio.ed.ac.uk/software/figtree/) was

used to visualize the trees.
2.8 Gene clusters conserved in
the mitogenomes

Gene orders in the mitogenomes of S. repanda and K. japonica

were compared with those in the mitogenomes of 15 other species.

Two nearby genes with no intervening genes and less than 5 kb of

intergenic sequences between them were defined as clusters. A gene

cluster was considered conserved when the two flanking genes in

the S. repanda and K. japonica mitogenomes were also present in

other mitogenomes.
2.9 Identification of InDel polymorphisms
and PCR amplification

The mitogenomes of S. repanda, K. japonica, and S. chinensis

were compared reciprocally using megaBLAST with a cutoff e-value

of 1e–5 and minimum length of 10 kb. Based on the megaBLAST

results, homologous regions of >10 kb among the three

mitogenomes were selected and InDel polymorphisms were

identified. InDels of >5 bp were selected and used to design InDel

primers. The flanking sequences ( ± 300 bp) of the selected InDels

were extracted from S. chinensismitogenome sequences and used to

design primer sets for PCR amplification of the InDel sites. The

PCR primers were designed using Primer 3 software with modified

parameters: primer size of 17–25 mer, temperature of 50–60°C, GC

of 45–55, and amplicon size of 300–500 bp (Untergasser et al.,

2012). The specificity of the designed primers was confirmed using

BLASTN against S. chinensis mitogenome sequences. PCR

conditions were 5 min at 95°C for pre-denaturation; 40 cycles of

30 s each at 95°C, 58°C, and 72°C; and a final extension for 5 min at
frontiersin.org
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72°C. Gel electrophoresis on 4% agarose gels in TAE buffer with

loading dye was used to analyze the PCR products.
3 Results

3.1 Whole-genome sequencing and
assembly of the S. repanda and
K. japonica mitogenomes

The mitogenomes of S. repanda and K. japonica were assembled

using sequencing data obtained from the third- and next-generation

sequencing platforms of Oxford Nanopore and Illumina

technology, respectively. Additionally, we confirmed the assembly

sequences through read mapping and checking read depth

(Supplementary figures 1, 2). For S. repanda, 10.79 and 2.69 Gb

were obtained by trimming 10.82 Gb of raw Nanopore data and

3.02 Gb of raw Illumina data, respectively. For K. japonica, 9.80 and

1.99 Gb were obtained by trimming 9.84 Gb of raw Nanopore data

and 2.27 Gb of raw Illumina data, respectively (Supplementary table

1). The trimmed sequencing data were then de novo assembled to

characterize the mitogenomes of the two species.

Five and eight mitochondrial contigs with varying genome sizes

and gene contents were assembled from S. repanda and K. japonica,

respectively. The S. repanda mitogenome had one circular and four
Frontiers in Plant Science 04
linear contigs: (circular-1: 571,107 bp; linear-1: 607,403 bp; linear-2:

215,128 bp; linear-3: 42,796 bp; and linear-4: 10,898 bp;

Supplementary figure 3). We investigated gene content (PCGs,

tRNA, and rRNA) in these five S. repanda mitochondrial contigs:

S. repanda circular-1 included 34 genes (18 PCGs, 13 tRNAs; 3

rRNAs), linear-1 contained 34 genes (20 PCGs, 11 tRNAs, 3

rRNAs), linear-2 contained 11 genes (4 PCGs, 4 tRNAs, 3 rRNA),

linear-3 contained 4 PCGs, and linear-5 contained 2 PCGs

(Supplementary table 2). In all, 60 genes were identified,

comprising 38 protein-coding (23 unique core genes except nad9

and 15 variable genes), 19 tRNA, and 3 rRNA genes (Table 1).

The mitogenome of K. japonica had five circular and three

linear contigs: (circular-1: 973,503 bp; circular-2: 897,204 bp;

circular-3: 848,837 bp; circular-4: 261,590 bp; circular-5: 211,474

bp; linear-1: 72,712 bp; linear-2: 68,176 bp; and linear-3: 8,010 bp;

Supplementary figure 4). K. japonica circular-1 included 45 genes

(29 PCGs, 13 tRNAs, 3 rRNAs), circular-2 included 43 genes (28

PCGs, 12 tRNAs, 3 rRNAs), circular-3 included 43 genes (27 PCGs,

13 tRNAs, 3 rRNAs), circular-4 included 14 genes (7 PCGs, 7

tRNAs), circular-5 included 9 genes (7 PCGs, 2 tRNA), linear-1

contains 3 genes (1 PCG, 2 tRNAs), linear-2 contained 6 genes (5

PCGs, 1 tRNA), and linear-3 contained only 1 PCG (Supplementary

table 2). A total of K. japonica 66 genes were identified, including 44

protein-coding (24 unique core genes and 20 variable genes), 19

tRNA, and 3 rRNA genes (Table 1).
TABLE 1 Annotated genes in the mitogenomes of S. repanda and K. japonica.

Group of genes Common genes
Unique genes

S. repanda K. japonica

Complex I
(NADH dehydrogenase)

nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7 nad9

Complex II
(Succinate dehydrogenase)

sdh3 – sdh4

Complex III
(Ubiquinol-cytochrome c reductase)

cob – –

Complex IV
(Cytochrome c oxidase)

cox1, cox2, cox3 – –

Complex V
(ATP synthase)

atp1, atp4, atp6, atp8, atp9 – –

Cytochrome c biogenesis ccmB, ccmC, ccmFc, ccmFn – –

Large subunit ribosomal proteins rpl2, rpl5, rpl10, rpl16 – –

Small subunit ribosomal proteins rps2, rps3, rps7, rps10, rps11, rps12, rps13, rps14, rps19 – rps1, rps4

Maturase matR – –

Transport membrane protein mttB – –

Ribosomal RNAs rrn5, rrnL, rrnS – –

Transfer RNAs trnA-UGC, trnC-GCA, trnD-GUC,
trnE-UUC, trnF-GAA, trnG-GCC,
trnH-GUG, trnK-UUU, trnL-CAA,
trnM-CAU, trnN-GUU, trnP-UGG,
trnR-UCU, trnS-GCU, trnW-CCA,
trnY-GUA

trnG-UCC,
trnI-GAU,
trnU-GGU

trnL-UAG,
trnQ-UUG,
trnV-GAC

Other genes petA – accD, rbcL, ycf4
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Based on the assembled contig sequences, we performed a

BLASTN search to look for regions of similarity between contigs.

As a result, 18 (1,054-43,663 bp) and 72 (1,041-819,626 bp) similar

sequences were identified in S. repanda and K. japonica, respectively

(Supplementary table 3; Supplementary figure 5 and 6). In

particular, the K. japonica circular -1 to -3 sequences 815,430 bp,

815,483 bp, and 819,626 bp were identified as the longest similar

sequences. Many of the ends of the linear contigs are homologous to

other genomic regions (Supplementary figure 5 and 6), suggesting a

multipartite structure of these genomes. The mitogenomes of five

contigs of S. repanda and eight contigs of K. japonica have been

deposited in NCBI under GenBank Accession Numbers

OK077167–OK077171 and OK077159–OK077166, respectively. S.

repanda circular-1 (Accession No. OK077168) and K. japonica

circular-1 (Accession No. OK077159) were used in all further

analyses (repeat sequence analysis and DNA migration from

chloroplasts to mitochondria), except prediction of RNA-editing,

Ka/Ks, phylogenetic analysis, gene clusters, and identification of

InDel, as they are the largest circular and contain the most

genes (Figure 1).
3.2 Repeat sequence analysis

SSRs are DNA sequences in eukaryotic genomes that typically

consist of 1- to 6-bp nucleotides (Lovin et al., 2009). SSR frequency

varies among plant species, although SSRs are uniformly dispersed

throughout the mitogenome (Zhang et al., 2020). MISA program

analysis revealed that the SSR distribution ratios of S. repanda and

K. japonica were highly comparable (Figure 2A; Supplementary

table 4). S. repanda and K. japonica had 200 and 320 SSRs,

respectively; the proportion of tetranucleotide repeats was the

highest at 36.5% and 32.7%, and the proportion of hexanucleotide

repeats was the lowest at 4.5% and 3.4%, respectively.

Analysis of pentanucleotide and hexanucleotide locations

revealed four SSRs in S. repanda located in nad5, nad7, and rpl5

and two SSRs in K. japonica located in rpl2 and rps3 (Supplementary
Frontiers in Plant Science 05
table 5). The Tandem Repeats Finder program was used to analyze

perfect tandem repeats, with 11 and 24 identified in S. repanda andK.

japonica, respectively (Supplementary table 6). Among them, rpl2,

rrnL, and nad5 in S. repanda had three tandem repeats, and rrnL in

K. japonica had two tandem repeats. The SSRs and tandem repeat

sequences were mostly in the intergenic spacers.

Using the REPuter program to analyze non-tandem repeats

other than SSRs and tandem repeats, 714 (total length, 21,695 bp;

3.8%) and 1,193 (total length, 53,852 bp; 5.53%) repeats were

detected in S. repanda and K. japonica , respect ively

(Supplementary table 7). The most abundant repeats in S.

repanda and K. japonica were 511 and 871 repeats in the 20- to

29-bp range, with the longest repeats measuring 539 and 12,605 bp,

respectively (Figure 2B). Non-tandem repeats were similarly

distributed in the two species, and only K. japonica had two long

repeat sequences of more than 1 kb. According to a repeat analysis,

K. japonica had longer repeats than S. repanda.
3.3 DNA migration from chloroplasts
to mitochondria

Intergenomic gene transfer is the movement of DNA sequences

between mitochondria, chloroplasts, and the nucleus, as opposed to

DNA sequence movement by inheritance, and it is an important

cause of mitogenome expansion and evolution (Adams et al., 2001;

Renner and Bellot, 2012; Hao et al., 2022). We compared the

complete chloroplast sequence of S. chinensis (NC_034908.1) to

the S. repanda and K. japonica mitogenomes and identified 16 (32–

2,807 bp, 3.39%) and 37 (39–7,515 bp, 4.34%) fragments with high

similarities to chloroplast genome, respectively (Figure 3;

Supplementary table 8). There were eight complete tRNAs (trnH-

GTG, trnL-CAA, trnM-ATG, trnN-GUU, trnP-TGG, trnR-TCT,

trnV-GAC, and trnW-CCA) and three partial tRNAs (trnH-GTG,

trnN-GUU, and trnR-TCT). The chloroplast-derived sequences also

included two partial rRNAs (rrn16s and rrn23S) and 29 partial

PCGs (accD, atp1, atpA, atpE, atpF, atpH, cemA, infA, ndhB, ndhI,
BA

FIGURE 1

Maps of S. repanda and K. japonica circular-1 mitogenomes. (A) The S. repanda mitogenome has a total length of 571,107 bp. (B) The K. japonica
mitogenome has a total length of 973,503 bp. Mitochondrial gene functional groups are represented by the same color.
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petA, petD, psaA, psaI, psaJ, psbE, rbcL, rpl20, rpl33, rpl36, rpoA,

rpoC1, rpoC2, rps2, rps7, rps8, ycf1, ycf2, and ycf4).
3.4 Prediction of RNA editing sites

RNA editing, i.e., the post-transcriptional addition, deletion, or

conversion of nucleotides in the coding region of transcribed RNA,
Frontiers in Plant Science 06
occurs frequently in the plant mitogenome (Gray, 2003; Yang et al.,

2017). In the PCGs of S. repanda and K. japonica mitogenomes, we

detected 639 and 684 RNA editing sites, respectively

(Supplementary table 9). The first base position of the codon had

224 and 237 RNA editing sites, and the second base position had

415 and 447, respectively, in S. repanda and K. japonica. No RNA-

editing sites were predicted at the third base position

(Supplementary table 10). To date, the RNA-editing prediction
BA

FIGURE 3

Representation of gene transfers between mitochondrial and chloroplast genomes for S. repanda and K. japonica. Regions of chloroplast sequences
that have been inserted into the mitogenome are indicated by red lines. (A) S. repanda. (B) K. japonica.
B

A

FIGURE 2

Frequency distribution of SSRs and non-tandem repeats in S. repanda and K. japonica mitogenomes. (A) Number of SSRs. Different types of SSRs are
represented by different colors. (B) Number of non-tandem repeats.
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programs cannot reliably predict RNA-editing at third base

positions due to technical limitation. After RNA editing, 28.79%

and 29.39% of the amino acids remained hydrophobic, whereas

13.3% remained hydrophilic in S. repanda and K. japonica.

However, 47.42% and 47.37% of the amino acids were converted

from hydrophilic to hydrophobic, and 9.86% and 9.36% were

converted from hydrophobic to hydrophilic in S. repanda and K.

japonica, respectively; only four of them were changed to stop

codons in the S. repanda and K. japonica mitogenome. After RNA

editing, leucine was the predominant amino acid in 48.67% of S.

repanda and 41.96% of K. japonica, respectively.
3.5 The substitution rates of
protein-coding genes

The number of non-synonymous substitutions (Ka) and

synonymous substitutions (Ks) is important for phylogenetic

reconstruction of related species and for understanding the

evolutionary dynamics of protein coding sequences (Fay and

Wu, 2003). Ka/Ks values are used to determine whether certain

protein-coding genes have undergone selection pressure during

evolution. Ka/Ks=1 indicates neutral evolution, Ka/Ks > 1

indicates positive selection, and Ka/Ks <1 indicates negative

selection (Zhang et al., 2006). In this study, all of the 33 PCGs

of S. repanda, K. japonica, S. chinensis, and S. sphenanthera

mitogenome were used to calculate the Ka and Ks substitution

rates. As a result, due to the limitation of the ParaAT, Ka/Ks

cannot be calculated when sequences are identical between

species. In the comparison of the four species, the Ka/Ks of

rps13 was the highest at 2.26 to 2.42, and appeared to be under

positive selection along with genes such as atp9 (Figure 4A;

Supplementary table 11). Genes such as ccmFc, cob, cox2, matR,

nad6, sdh3, RPL and RPS showed Ka/Ks values less than 1,

indicating that they were under negative selection (Figure 4B-

G). The cox1 and cox3 exhibited the lowest Ka/Ks ratio, suggesting

that these genes had fewer changes and well conserved

between species.
3.6 Phylogenetic analysis

Phylogenetic analysis using the maximum likelihood (ML)

method was performed using a dataset of 14 PCGs from the

following 17 plant taxa (including four species from

Schisandraceae): Amborella trichopoda, Nymphaea colorata, S.

chinensis, S. repanda, K. japonica, Schisandra sphenanthera,

Liriodendron tulipifera, Magnolia biondii, Spirodela polyrhiza,

Nelumbo nucifera, Vitis vinifera, Bombax ceiba, Hibiscus

cannabinus, Carica papaya, Cercis canadensis, Senna occidentalis,

and Senna tora (Figure 5). The ML tree contained 15 nodes, of

which 14 had at least 90% of the support value with 100% for 10 and

85% for only one; S. repanda and K. japonica were classified into

one clade with bootstrap support values of 100 and 94. The four

plants of the family Schisandraceae were placed quite close to each

other, with S. repanda being the closest to S. chinensis. Finally,
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Schisandraceae plants were classified as basal angiosperms along

with Amborella and the Nymphaeales, and the placement indicated

that the family evolved from mesangiosperms into monocots

and eudicots.
3.7 Conservation of gene clusters

The sequences of rRNA and PCGs in plant mitogenomes are

highly conserved, but the relative order of genes is frequently

rearranged by homologous recombination. However, some gene

clusters have been conserved during evolution (Palmer et al., 2000;

Richardson et al., 2013; Gui et al., 2016). There were 47 and 46

conserved gene clusters in all S. repanda and K. japonica contigs,

respectively (Figure 6). Three gene clusters (rpl16~rps3,

rps3~rps19, and rps19~rpl2) can be traced back to mitochondrial

origins in endosymbiotic bacterial ancestors (Takemura et al.,

1992; Niu et al., 2022), two gene clusters (nad3~rps12 and

cox1~rps10) could be found in gymnosperms, and the

sdh3~trnP-UGG cluster arose during bryophyte evolution

(Turmel et al., 2007). In addition, trnF-GAA~trnS-GCU and

trnF-GAA~trnP-UGG arose during evolution into Schisandraceae

and Mesangiospermae. However, sixteen gene clusters (blue box;

rpl10~trnS-GCU, petA~trnM-CAU, trnK-UUU~trnW-CCA,

rps2~trnP-UGG, nad1(exon4)~trnD-GUC, atp1~nad9, mttB~rps1,

trnS-GCU~trnY-GUA , atp1~rrn5 , rps2~trnL-CAA, trnD-

GUC~trnM-CAU, accD~rbcL, accD~ycf4, nad5(exon1)~trnM-

CAU, nad5(exon2)~petA, atp4~trnE-UUC) were regained in only

Schisandraceae and were confirmed to be lost in the subsequent

evolution process. The gene clusters of nad2(exon3)~trnY-GUA

was not present in basal angiosperms, but they appeared to have

been regained in the course of evolution in Mesangiospermae,

except for Bombax ceiba.
3.8 Species identification with
InDel markers

InDel regions are widely utilized to create markers to

distinguish between species because they can be easily detected

(Sebbenn et al., 2019). However, Schisandra and Kadsura species

have not been identified using this method on the basis of their

mitogenomes. We used BLAST to search for InDel regions of the S.

chinensis mitogenome in the S. repanda and K. japonica

mitogenomes. InDel markers were designed for 95 of the 130

InDel regions confirmed to be longer than 5 bp (Supplementary

table 12). We selected two InDel markers for PCR analysis

(Figure 7A, B; Supplementary table 13). Notably, S. repanda, K.

japonica, and S. chinensis could be distinguished using PCR

amplification with the two primer sets. Based on the S. chinensis

sequence, 6 and 11 bp were inserted into S. repanda and K. japonica,

respectively, in the case of InDel_8_18_7873, and 5 bp were inserted

to S. repanda and 6 bp were deleted from K. japonica in the case of

InDel_1_21_11950 (Figure 7C, D). The three species can be

distinguished readily using two InDel markers developed through

this study.
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4 Discussion

The mitogenome comprises repeated sequences and

recombination regions, leading to a range of sizes and

structures, whereas the plant chloroplast genome is made up of

a single-ring structure. This difference in complexity has likely

contributed to a lack of research into mitogenomes (Mower et al.,

2012; Gualberto et al., 2014). Recently, mitogenome research has

advanced because of the development of efficient, inexpensive, and

precise genome sequencing tools (Han et al., 2022; Wee et al.,
Frontiers in Plant Science 08
2022; Yang et al., 2022). In this study, S. repanda and K. japonica,

two important medicinal plants, were examined for their

mitogenome features. According to our sequencing data, S.

repanda and K. japonica have five and eight mitogenome

structures, respectively, which is not surprising given the various

sizes and structures of the plant mitogenome. For example, five

circular mitogenomes have been found in A. trichopoda (Rice

et al., 2013), and fluorescence microscopy examination of lettuce

revealed linear, branching, and circular mitogenome structures

(Kozik et al., 2019).
B C
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FIGURE 4

The Ka/Ks values of 33 PCGs of S. repanda, K. japonica, S. chinensis, and S. sphenanthera. (A) Box plot for pairwise divergence of Ka/Ks ratio
(mean ± SD, and range). (B-G) Bar graph for pairwise divergence of Ka/Ks ratio (error bars representing either the mean ± SD). The missing values,
such as atp1 in S. repanda vs S. sphenanthera, could be due to the limitation of the ParaAT, Ka/Ks cannot be calculated when sequences are
identical between species.
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Mitogenomes in angiosperms encode 24 core protein-coding

genes, the majority of which are respiratory protein genes: atp1,

atp4, atp6, atp8, atp9, ccmB, ccmC, ccmFc, ccmFn, cob, cox1, cox2,

cox3,matR,mttB, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7,

and nad9 (Adams et al., 2002). Although the full-length nad9 gene

was not identified in the S. repanda mitogenome, some sequences

similar to nad9 were observed in S. repanda circular-1, linear-1, and

linear-2. Notably, we observed that the nad9 gene is similarly

lacking from the reported mitogenomes (in GenBank) of plants

including Pisum sativum subsp. elatius (MW160422), Camellia

nitidissima (NC_067639.1 and ON645224), Kandelia obovata

(NC_069222.1 and OP756530) , and Ipomoea batatas

(NC_068714.1 and OM808941). Thus, we conclude that nad9

might truly be absent from the S. repanda mitogenome. Future

work will examine the S. repanda nuclear genome for evidence of a

potential loss or shift of the nad9 gene.

Various repeat sequences, including short (<1 kb), long (>1

kb), and tandem repeats, have been found in the mitogenome

sequence (Gualberto et al., 2014; Guo et al., 2017). These repeats

not only expand the mitogenome but also cause genomic

recombination (Dong et al., 2018; Wang et al., 2019). In this

study, we identified 200 (2704 bp, 0.47%) and 321 (4,076 bp,

0.42%) SSRs in S. repanda and K. japonica, respectively, which can

be used to develop important markers for species distinction,

genetic diversity, and evolution studies (Powell et al., 1996;

Morgante et al., 2002; Guang-Xin et al., 2019). The total lengths

of perfect tandem repeats in S. repanda and K. japonica were 269

and 520 bp, respectively, and the longest non-tandem repeats were

539 and 12,605 bp, respectively. These lengths were greater in K.

japonica (5.53%) than in S. repanda (3.8%). The repeat sequences

may have increased the K. japonica mitogenome size relative to

the S. repanda mitogenome size.
Frontiers in Plant Science 09
In the mitochondrial, chloroplast, and nuclear genomes, gene

transfer is possible in both directions. (Martin et al., 1998; Cui et al.,

2021). Nuclear and plastid DNA sequences can be transferred to the

mitogenome, resulting in mitogenome size changes (Sloan et al.,

2012). When a foreign gene is inserted into the mitogenome at this

time, it is preferentially inserted into the intergenic region (Zhao

et al., 2018). The plastid genome rarely integrates foreign genetic

material (Zhao et al., 2018), whereas the mitogenome frequently

integrates DNA sequences from the nucleus, chloroplast, and other

mitogenomes (Rice et al., 2013; Zhao et al., 2018). The length of the

DNA integrated into the mitogenome varies on the basis of plant

species but is generally within the range of 1–12% of angiosperm

plastome sequences (Mower et al., 2012), such as in G. mangostana

(1.7%) (Wee et al., 2022) and C. pepo (11.6%) (Alverson et al., 2010).

Similarly, 3.39% and 4.34% integrated DNA fragments were found

in S. repanda and K. japonica, respectively, driving genome size and

genetic and evolutionary diversity.

RNA editing is a post-transcriptional process required for plant

development and stress response (Zhu et al., 2014; Shi et al., 2016;

Tang and Luo, 2018). RNA editing, which occurs most frequently in

mitochondria, causes reorganization of the mitochondrial protein

structure by forming new start and stop codons via C-to-U

conversion or altering the RNA structure via splicing site changes

(Takenaka et al., 2013; Tang and Luo, 2018; Hao et al., 2021). RNA

editing sites were first discovered in the wheat cytochrome c oxidase

gene (Covello and Gray, 1989); subsequently, more than 400 sites

have been found in the genes of many plants, such as Acer

truncatum (Ma et al., 2022), Arabis alpina (Xu and Bi, 2018), A.

thaliana (Unseld et al., 1997), O. sativa (Notsu et al., 2002), Suaeda

glauca (Cheng et al., 2021), and Zea mays (Hoch et al., 1991). In the

mitogenome of K. japonica, a start codon was formed in rpl2 and a

stop codon was formed in ccmFC, ccmFN, and rps11. In the
FIGURE 5

Phylogenetic relationships of S. repanda and K. japonica with other 15 plant species. The numbers next to the branches indicate bootstrap values of
maximum likelihood phylogenetic trees. GenBank accession numbers are listed after the scientific names. Positions of S. repanda and K. japonica are
indicated in bold.
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mitogenome of S. repanda, start codons were formed in atp8, rps10,

and rpl10, but no stop codon was identified. The detection of RNA

editing sites in these mitogenomes provides clues to predict gene

functions, as different amino acids are produced (Cheng

et al., 2021).

In most plant species, the PCGs of the mitogenome is relatively

conserved compared to that of the animal species, so point

mutations are very rare and contribute to maintaining function

(Gualberto et al., 2014). Ka values for most genes are smaller than
Frontiers in Plant Science 10
Ks values because deleterious mutations are eliminated during

natural selection to maintain mitochondrial function (Hurst,

2002). Nevertheless, the sdh4 gene is only found in K. japonica,

indicating that sdh4 is evolutionarily unstable and has frequently

been deleted from the mitogenomes (Adams et al., 2001; Petersen

et al., 2017).

PCG and rRNA gene sequences are highly conserved, but the

relative order of genes often changes because of genome expansion

or recombination (Palmer et al., 2000); nevertheless, a number of
FIGURE 6

Gene clusters in the mitogenomes of 17 species. Gene sequences of S. repanda and K. japonica mitogenomes were compared with those of the
other 15 species. The evolutionary relationships of the mitogenomes are indicated in the phylogenetic tree. ‘1’ indicates the presence of the gene in
the mitogenome. ‘0’ indicateds the absence of the gene in the mitogenomes.
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highly conserved gene clusters can be found (Richardson et al.,

2013; Bi et al., 2016; Dong et al., 2018). The rps3~rpl16 gene cluster

is highly conserved and can be traced to the mitochondrial origin of

endosymbiotic bacterial ancestors (Takemura et al., 1992; Niu et al.,

2022). Most of the gene clusters are shared by species with close

evolutionary relationships (Niu et al., 2022). Eight gene clusters

were not found in any other plants, except Schisandraceae. This

implies significant genome rearrangements led to rapid

degeneration of these gene clusters in other plants (Dong et al.,

2018). These gene clusters may have been significant in the

development of Schisandraceae plants, in contrast to Amborella

and Nymphaeales.

Mitogenomes are ideal for lineage studies in seed plants because

they evolve more slowly than nuclear and chloroplast genomes and

undergo recombination less often (Drouin et al., 2008). Recently,

genotyping of both plastomes and mitogenomes has enabled us to

distinguish between different plant species (Sebbenn et al., 2019;

Han et al., 2022; Ma et al., 2022). InDel markers have the advantage
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of simplifying plant species identification by comparing

amplification product sizes from reference genomes with PCR,

making them more cost-effective than single-nucleotide

polymorphism or SSR markers (Sohn et al., 2017; Chun et al.,

2019). To date, only nuclear and chloroplast genome markers have

been reported for Schisandraceae plant identification (Kim et al.,

2012; Lee et al., 2013; Jeong et al., 2021). Here, we designed markers

based on two InDel regions in the mitogenome sequences of S.

repanda and K. japonica compared to S. chinensis. These InDel

markers could clearly distinguish between the three species of

Schisandraceae. In addition, our phylogenetic analysis results will

be helpful for future evolutionary research.
5 Conclusion

We assembled and analyzed the mitogenomes of S. repanda and

K. japonica. Various forms of repeats and chloroplast-derived
B

C D

A

FIGURE 7

Development of InDel markers for S. repanda, K. japonica, and S. chinensis mitogenomes. (A, B) Alignment of the InDel regions. (C) PCR amplicons
for K. japonica, S. chinensis, and S. repanda using InDel_1_21_11950 were 349, 355, and 360 bp, respectively. (D) The InDel_8_18_7873 primer set
was used to obtain PCR results for S. chinensis, S. repanda, and K. japonica (407, 413, and 418 bp, respectively).
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sequences in these mitogenome likely caused mitogenome

expansion. In addition, we catalogued RNA editing sites, which

will help predict novel gene activity that arises from changes in the

protein structure. The sixteen gene clusters we identified as specific

to Schisandraceae will be useful to study the evolution of this

family. Also, S. repanda, K. japonica, and S. chinensis could be

distinguished using two InDel markers that we designed. In

conclusion, our work on the mitogenomes of S. repanda and K.

japonica offers new avenues for investigating the evolution of

Schisandraceae and for understanding the individual species.
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