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ShinyFruit: interactive fruit
phenotyping software and
its application in blackberry

T. Mason Chizk*, Jackie A. Lee, John R. Clark
and Margaret L. Worthington*

Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
Introduction: Horticultural plant breeding programs often demand large

volumes of phenotypic data to capture visual variation in quality of harvested

products. Increasing the throughput potential of phenomic pipelines enables

breeders to consider data-hungry molecular breeding strategies such as

genome-wide association studies and genomic selection.

Methods: We present an R-based web application called ShinyFruit for image-

based phenotyping of size, shape, and color-related qualities in fruits and

vegetables. Here, we have demonstrated one potential application for

ShinyFruit by comparing its estimates of fruit length, width, and red drupelet

reversion (RDR) with ImageJ and analogous manual phenotyping techniques in a

population of blackberry cultivars and breeding selections from the University of

Arkansas System Division of Agriculture Fruit Breeding Program.

Results: ShinyFruit results shared a strong positive correlation with manual

measurements for blackberry length (r = 0.96) and ImageJ estimates of RDR

(r = 0.96) and significant, albeit weaker, correlations with manual RDR estimation

methods (r = 0.62 - 0.70). Neither phenotyping method detected genotypic

differences in blackberry fruit width, suggesting that this trait is unlikely to be

heritable in the population observed.

Discussion: It is likely that implementing a treatment to promote RDR expression in

future studies might strengthen the documented correlation between phenotyping

methods by maximizing genotypic variance. Even so, our analysis has suggested

that ShinyFruit provides a viable, open-source solution to efficient phenotyping of

size and color in blackberry fruit. The ability for users to adjust analysis settings

should also extend its utility to a wide range of fruits and vegetables.

KEYWORDS

image analysis, postharvest quality, red cell regression, red drupelet reversion,
reddening, Rubus subgenus Rubus
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Introduction

The value of a horticultural product is almost always influenced

by its appearance, which includes color, size, shape, and other

morphological components. These characteristics are often

important indices of maturity, harvest efficiency, structural

integrity, disease, insect damage, and flavor. Even when flavor

differences are not present, individual consumers perceive

differences in flavor intensities between differently colored but

otherwise identical, food products (Bayarri et al., 2001; Shankar

et al., 2009). The United States Department of Agriculture,

Agricultural Marketing Service (USDA-AMS) has implemented

visual grading and inspection guidelines for nearly all fresh-

market fruit and vegetable crops (United States Department of

Agriculture, Agricultural Marketing Service, 2017). Inspectors

assess color and shape using subjective visual techniques, which

can become costly and time-consuming for researchers when a high

degree of accuracy is desired (Abebe et al., 2023).

With modern photography and computing, it is possible to

construct low-cost objective phenotyping pipelines that are high

throughput and based exclusively in open-source software. ImageJ

software is a general user interface (GUI) enabled tool that has been

widely used to construct such phenotyping pipelines (Maloney

et al., 2014; Cortes et al., 2017; Chizk, 2018). Unfortunately, using

ImageJ for customized batch image processing requires an

understanding of the ImageJ macro programming language,

which is a java-based language somewhat restrictive in scope to

the utilities present in the tool. PlantCV is a Python-based tool that

presents an alternative to ImageJ, but its effective implementation

requires some knowledge of the Python programming language

(Gehan et al., 2017). Furthermore, as a generalized tool for plant

image analysis, PlantCV contains a large number of functions and

lengthy documentation. It has been used effectively in a number of

studies for high-throughput image phenotyping (Enders et al., 2019;

Kumar et al., 2020; Chang et al., 2021; Marrano and Moyers, 2022),

but like ImageJ, this tool may present a steep learning curve to

some users.

We present an alternative R-based approach (R Core Team,

2022) called ShinyFruit, which is a software package that offers an

interactive GUI designed to simultaneously perform color, size, and

shape analyses on large sets of fruit images. ShinyFruit users

currently can detect fruit in.jpg images by setting color threshold

values in red-green-blue (RGB), hue-saturation-brightness (HSB),

and L*a*b* color spaces. Following fruit detection, the user can

indicate a size reference and select from a list of traits to include in

the.csv output file. ShinyFruit is primarily intended to be used by

researchers who have an interest in measuring visual characteristics

of fruit and vegetables for the purpose of breeding, estimating the

incidence or severity of disease or insect pest injury, or investigating

the effects of farm management practices on quality. Secondary

users might include processors, distributors, or farmers that wish to

evaluate samples of fruit at various stages of the supply chain.

To evaluate the potential of ShinyFruit, we examined its ability

to quantify red drupelet reversion (RDR), a specific postharvest

disorder affecting the growing fresh-market blackberry (Rubus
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subgenus Rubus) industry (Figure 1). RDR refers to the

phenomenon wherein fully black blackberries revert to a red color

after shipping/storage, negatively impacting fruit quality and

consumer perception (Clark and Finn, 2011). In an online survey

of demographically diverse blackberry consumers, individuals

strongly preferred images of blackberries with minimal RDR

(Threlfall et al., 2020). These results were also validated in a

subsequent in-person consumer sensory panel (Threlfall et al.,

2021). In addition to deterring would-be consumers, severe RDR

can incur immediate and apparent economic losses. According to

USDA-AMS guidelines, entire lots of blackberries can be rejected if

RDR damage affects at least 10% of the berry lot by volume or only

5% by volume if the damage is categorized as severe (United States

Department of Agriculture, Agricultural Marketing Service, 2018).

Much like other postharvest conditions, RDR is affected by genetic

factors (Salgado and Clark, 2016; Lawrence and Melgar, 2018) and

cultural practices such as temperature and handling at harvest

(Edgley et al., 2019a; Armour et al., 2021), shipping vibration

patterns (Pérez-Pérez et al., 2018), and nitrogen fertilizer

application rates (Edgley et al., 2019b). On the cellular level, RDR

is likely the result of mechanical cell disruption, separation, and loss

o f in tegr i ty in the upper mesocarp lead ing to the

decompartmentalization and subsequent oxidative degradation of

anthocyanin (phenolic) pigments (Edgley et al., 2019c; Kim

et al., 2019).

Published methods for RDR detection are inconsistent or

performed using subjective visual assessment. For instance, Clark

and Perkins-Veazie (2011) evaluated RDR by categorizing entire

berries as reverted or non-reverted based on a minimum threshold

of three reverted drupelets, and Segantini et al. (2017) quantified

RDR on individual berries by dividing the total number of reverted

drupelets by total drupelets on each berry. Edgley et al. (2019a)

devised a similar approach that also accounted for partially reverted
FIGURE 1

A clamshell of blackberry fruit with severe red drupelet reversion
(RDR) in postharvest evaluations in the University of Arkansas System
Division of Agriculture Fruit Breeding Program.
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drupelets. Developing a standardized, efficient, and objective

technique would benefit breeders by providing the necessary

framework for a scalable, simplified RDR screening protocol,

improving their ability to select shipping tolerant genotypes.

Beyond color quality, morphological berry traits are often

important to breeders as well. Large fruit size has been a key

objective of the University of Arkansas (UA) System Division of

Agriculture Fruit Breeding Program since its inception in 1964

(Clark, 1999). In fresh-market blackberry production, where fruit is

harvested by hand, large fruit presents an obvious benefit to harvest

efficiency. Surveyed consumers also tend to prefer blackberries that

are large and oblong rather than small and round (Threlfall et al.,

2020; Threlfall et al., 2021). Drastic gains in size have been achieved

by modern cultivars like ‘Natchez’ (8.0 – 10.2 g/berry) (Clark and

Moore, 2008), which can reach twice the size of the earliest UA

releases (4.8 – 6.0 g/berry) (Moore et al., 1974). These large-fruited

cultivars have approached maximum desirable size for packaging,

but adequate size remains an important qualification for any new

release. Like RDR, fruit size may easily be incorporated in an

automated imaging pipeline, replacing the traditional use of scales

or calipers.

With flexible, user-determined input settings, the utility of an

image analysis pipeline may be extended to data collection in a

wider array of morphological characteristics in blackberry and other

fruits and vegetables, allowing breeders to have more versatility in

selection methods. In the present study, we seek to compare the

ShinyFruit software package, which has been designed with these

specific objectives in mind, to ImageJ and more traditional

phenotyping techniques in a blackberry population of diverse

sizes and shipping qualities. We demonstrate one implementation

of this tool in blackberry (Rubus subgenus Rubus) by comparing

automated phenotypic measurements with those from traditional

manual techniques.
Materials and methods

Plant material and harvest

Floricane blackberry fruit from fourteen UA System breeding

selections and cultivars representing a diverse range of textures and

susceptibility to RDR were harvested from 6 m plots located at UA

System Fruit Research Station (FRS) in Clarksville, Arkansas in

2019, 2020, and 2021. The FRS site is located at 35°C 31’5”N and

long. 93°C 24’12”W, in USDA hardiness zone 7b (United States

Department of Agriculture, Agricultural Research Service, 2021), on

Linker fine sandy loam. All plots evaluated were treated with

standard production practices including and early spring

application of ammonium nitrate (56 kg.ha-1 N) and a biweekly

fertigation application of 20N-4.4P-17K from flowering to harvest.

Liquid lime sulfur fungicide (94 L.ha-1) was applied during bud

break, five weeks before first harvest, and three weeks before first

harvest to minimize anthracnose (Elsinoë veneta), botrytis fruit rot

(Botrytis cinerea), and cane and leaf rust (Kuehneola uredines).

Multiple pesticides containing active ingredients zeta-

cypermethrin, bifenthrin, and malathion were applied weekly
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from flowering until floricane harvest in June to control spotted

wing drosophila (Drosophila suzukii). A bifenthrin-containing

insecticide was also applied annually in October to control

raspberry crown borer (Pennisetia marginata). All plants were

trained to a four-wire, horizontal T-trellis with low and high

wires at 0.5 m and 1.0 m height. Plants were tipped to 1.1 m

height in mid-May and lateral branches were pruned in August.

Plots were grown in black plastic mulch to reduce weed pressure.

The 14 genotypes evaluated included A-2444T, A-2453T, A-

2454T, A-2491T, ‘Black Gem™’, ‘Black Magic™’, ‘Sweet-Ark®

Caddo’, ‘Natchez’, ‘Osage’, ‘Ouachita’, ‘Sweet-Ark® Ponca’,

‘Prime-Ark® Horizon’, ‘Prime-Ark® Freedom’ and ‘Prime-Ark®

Traveler’. Blackberries were harvested at the shiny black stage in 500

mL clamshells on two separate harvest dates each year, with at least

one week between harvest dates. All fruit was harvested after 10:00

AM, when temperatures were usually over 27°C, to encourage

occurrence of red drupelet reversion (RDR) (Edgley et al., 2019a;

Armour et al., 2021). Clamshells were filled just below the lid and

placed directly into a portable cooler chilled by ice packs until they

could be transported. In 2020 and 2021, harvested fruit samples

were placed on a custom-built steel table for 30 minutes, with a

vibrating surface that produced 2 mm of displacement and a

frequency of 10 Hz. This treatment was intended to simulate

shipping conditions that lead to RDR by replicating the findings

of Pérez-Pérez et al. (2018). Samples were stored in an on-site

refrigerator for seven days at 5°C and 90% relative humidity.

Clamshells were removed from the refrigerator and allowed to

reach room temperature before photographs were taken.
Image capture

Photographs were collected seven days after harvest to allow

RDR to occur during cold storage. Clamshells of fruit were

photographed in a photo box (LimoStudio 16” x 16” Table Top

Photo Photography Studio Lighting Light Tent Kit in a Box,

AGG349; Las Vegas, NV) constructed on a countertop with a

Canon EOS Rebel T3 (Tokyo, Japan) camera mounted directly

above a green cutting board on which the fruit was staged. The

camera was equipped with a Canon EFS 18-55mm lens (Tokyo,

Japan) and images were captured in close-up mode with

International Organization for Standardization (ISO) values

ranging from 250-3200. Fruit from a single clamshell were

divided into two portions to be photographed separately due to

the size of the staging area. Number of berries photographed in each

sample varied depending on berry size, with 10-15 berries included

in larger genotypes and 20-25 included in smaller genotypes. In

2019, a standard US quarter dollar was included in each image as a

size reference. In 2020 and 2021, an X-Rite ColorChecker Classic

Mini (Grand Rapids, Michigan, USA) was included in each image

and used as a size reference. The X-Rite ColorChecker was used to

standardize the white balance in each image using the CIPF plugin

in ImageJ, which is no longer publicly maintained. Unedited

blackberry photographs used in this project that were taken in

2019, 2020, and 2021 are available at https://figshare.com/articles/

figure/Blackberry_Images_2019/23859342, https://figshare.com/
frontiersin.org
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articles/figure/2020_blackberry_images/23859837, and https://

figshare.com/articles/figure/Blackberry_images_2021/23860593.
Fruit size

Length and width of five berries from each sample clamshell

were measured using Pittsburgh digital calipers (Harbor Freight

Tools, Camarillo, CA). Length of a fruit was defined as the distance

between the abscission scar and the terminal drupelet. Berry width

was defined as the maximum distance between drupelets on the

equatorial plane. Fruit lengths and widths were only measured in

2020 and 2021.
Subjective evaluation of red
drupelet reversion

After all images were captured, each clamshell was subjectively

evaluated on a ‘by-berry’ and ‘by-drupelet’ basis. In both methods,

the Royal Horticultural Society Greyed-Purple 185-A color value

(L*a*b = 34.4, 42.0, 12.7) was used as a reference threshold.

Drupelets matching that value or brighter were counted as

reverted. For the ‘by-berry’ method, the number of berries in each

clamshell were recorded. Then, each fruit was individually

inspected for reverted drupelets, with fruit having three or more

red drupelets scored as reverted while fruit with two or fewer red

drupelets were scored as not reverted following Clark and Perkins-

Veazie (2011). For the ‘by-drupelet’ method, five berries from each

clamshell were selected at random. Each fruit was mounted on a

toothpick through the abscission scar to aid in viewing. Red

drupelets, including fully red and any deviated from standard

black toward red, were counted and marked with a paint pen.

After red drupelet count, the remaining drupelets were counted in

the same manner for a total drupelet count per fruit. Percent
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reverted drupelets were calculated for each of the five berries per

clamshell following Segantini et al. (2017).
ShinyFruit

Source code for version 0.1.0 of the ShinyFruit software (Chizk,

2022) is maintained and publicly available on GitHub (https://

github.com/mchizk1/ShinyFruit) under an MIT license.

ShinyFruit’s image-processing utilities were built using the R

packages magick (Ooms, 2021) and imager (Barthelme, 2022),

which both offer efficient C++-based methods for image

manipulation. The GUI was built using the shiny (Chang et al.,

2022) package for web application development. Upon reading

user-provided sample images in.jpg format, ShinyFruit

automatically processes images in several ways to prepare for

analysis and maximize efficiency. All images are downsized such

that the maximum dimension does not exceed 1500 pixels. This

reduces time required for batch-image processing at the potential

expense of fine resolution. Contrast in images is increased by

normalizing pixel values to span the full RGB range. Finally,

differences in color intensity are sharpened, and the images are

enhanced to reduce noisy or inconsistent pixel color values.

Following read-in, the user may proceed through the image

analysis pipeline detailed in Figure 2. Despeckling, which is

implemented in the background removal and color feature

detection steps, is achieved by successive shrinking and swelling

of detected pixel groups. In this way, small, isolated groups of pixels

(dust, juice, debris, etc.) are avoided during feature detection.

Running the batch image analysis potentially generated two types

of outputs including processed images and a comma separated

value (csv) formatted text file containing requested data and

implemented user settings for repeatability.

For each year of this study, a single representative image of

blackberry fruit containing observable levels of RDR was read into
FIGURE 2

ShinyFruit image processing pipeline for colored feature detection using the example of red drupelet reversion (RDR) in blackberry fruit.
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the ShinyFruit program to remove background pixels, calibrate size

references and determine the appropriate color cutoff thresholds in

the L*a*b* color space (Table 1). Figure 3 provides an example of

the ShinyFruit GUI at the color thresholding stage of image

analysis. Size and color settings specific to each year of image

data were uniformly applied to batch-process all images. In 2019,

the diameter of a US quarter dollar included in each image was used

as the known size reference. In 2020 and 2021, the ruler edge of the

X-Rite ColorChecker Classic Mini was used as the known size

reference. The location surrounding these size references was

designated to be uniformly cropped out during image processing.

Pixels with an a* value of greater than 7.51, 16.15, and 8.58 were

counted as reverted in 2019, 2020, and 2021, respectively. No cutoff

thresholds were needed for L* or b* values to identify red regions.

Resulting images were output for visual post-analysis

quality checking.
ImageJ

For image analysis, software version 1.53e (https://

imagej.nih.gov/ij/download.html) was used with Java version

1.8.0_172. A custom-written ImageJ macro script maintained on

GitHub (https://github.com/mchizk1/UA_Fruit_Breeding/tree/

main/IJ_RDR) was used to perform image analysis in a two-step

procedure that mimics the ShinyFruit workflow presented. One set

of L*a*b* thresholds (0-255 scale) were used to remove pixels

associated with the green background, and another set of L*a*b*

thresholds were used to identify pixels associated with the reverted

regions. The proportion of RDR was estimated as the number of

reverted pixels divided by the total number of non-background

(fruit) pixels. In an initial run, all images were passed through a

consistent set of L*a*b* thresholds. All pixels with a* values greater

than 110 were considered to be fruit, and pixels with a* values of

greater than 138 were considered to be reverted. L* and b*

thresholds were not used. Based on visual inspection of results,

subsets of images were rerun under separate thresholds. The ImageJ

script did not include any of the image pre-processing methods

described in the ShinyFruit method, such as RGB normalization or

color sharpening.
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Experimental design and statistics

All analyses were performed using R version 4.1.2 (R Core

Team, 2022). An analysis of variance (ANOVA) was performed

using type III sums of squares and following a randomized complete

block design. Harvest date was used as the blocking effect, while

genotype and year were treated as fixed and random effects

respectively. Estimated marginal means were calculated using the

emmeans package (Lenth, 2022), and Tukey’s honestly significant

differences (HSD) were calculated using P < 0.05 for all dependent

variables for which significant genotypic differences were detected.

Pearson’s correlations were calculated for genotypic means across

years and pairwise linear regression were fitted with the ggplot2

(Wickham, 2016) and ggpubr (Kassambara, 2020) packages to

compare automated and manual data collection methods.
Results

ShinyFruit, manual counting ‘by-berry’, and manual counting

‘by-drupelet’ all detected genotypic differences for fruit length, but

none of these methods detected genotypic differences in fruit width.

Genotype by year interactions for fruit length and fruit width were

only significant in the ShinyFruit analysis (Table 2). ‘Prime-Ark®

Freedom’ and ‘Natchez’ were both shorter in 2020 than in 2021, and

this difference was most apparent in the ShinyFruit dataset. Across

years, ‘Natchez’ produced the longest fruit regardless of method, but

the caliper-based method only distinguished ‘Natchez’ significantly

from ‘Osage’ and A-2453T (Table 2). The latter two genotypes

consistently produced the shortest fruit, regardless of method.

Genotypic differences between mean fruit lengths were more

pronounced in the ShinyFruit analysis. According to the

ShinyFruit results, ‘Natchez’ and ‘Prime-Ark® Horizon’ had

significantly longer fruit than all other genotypes except for

‘Prime-Ark® Freedom’. Similarly, A-2453T fruit was significantly

shorter than all other genotypes except for ‘Osage’ and ‘Sweet-Ark®

Ponca’. ShinyFruit and caliper-based methods for measuring fruit

length were very tightly correlated (Table 3; Figure 4A, r = 0.962).

ShinyFruit, ImageJ, manual counting ‘by-berry’, and manual

counting ‘by-drupelet’ were all capable of distinguishing differences
TABLE 1 ShinyFruiti settings used for image processing and detection of blackberry red drupelet reversion (RDR) in 2019-2021.

Step Year Li a b

Background removal

2019 FRii >-10.00 FR

2020 FR >-12.00 FR

2021 FR >-8.50 FR

RDR detection

2019 FR >7.51 FR

2020 FR >16.15 FR

2021 FR >8.58 FR
frontiersin
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between genotypes across all three years for RDR (Table 2). ‘Black

Magic™’ had significantly more reversion than most other

genotypes tested (Table 2), regardless of phenotyping method.

Neither of the manual RDR counting techniques identified
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differences in RDR between ‘Sweet-Ark® Caddo’ and lower-

reversion genotypes, but both ShinyFruit and ImageJ did.

ShinyFruit and ImageJ based estimates of RDR were highly

correlated (Table 3; Figure 4B, r = 0.958). The two manual RDR
FIGURE 3

ShinyFruit general user interface (GUI) example during the colored feature detection step measuring blackberries.
TABLE 2 Least square means of red drupelet reversion and fruit size as measured by image-based estimation and manual methods (2019-2021i).

Geno

Red drupelet reversion (%) Fruit Length (mm)i Fruit Width (mm)

ShinyFruitiv ImageJvi By-drupeletvii By-berryviii ShinyFruit Calipers ShinyFruit Calipers

A-2444T 0.66 av 0.17 ab 2.31 ab 13.80 ab 30.84 b 29.18 ab 24.05 23.98

A-2453T 0.14 a 0.01 a 0.07 a 0.50 a 22.35 a 23.89 a 19.90 21.66

A-2454T 0.18 a 0.03 a 0.06 a 2.37 a 27.97 b 27.91 ab 23.48 23.90

A-2491T 0.16 a 0.02 a 0.18 a 1.19 a 30.57 b 32.27 b 21.16 21.58

Black Gem 0.64 a 0.15 ab 2.87 ab 26.23 ab 28.47 b 29.29 ab 21.92 23.24

Black Magic 3.18 b 0.60 b 4.62 b 34.97 b 29.21 b 28.00 ab 22.67 22.05

Natchez 0.82 a 0.19 ab 1.45 a 21.57 ab 36.58 c 36.98 b 23.74 23.56

Osage 0.69 a 0.05 a 0.44 a 2.10 a 25.49 ab 24.57 a 22.50 22.59

Ouachita 0.35 a 0.08 a 1.12 a 8.23 a 28.13 b 28.09 ab 23.92 23.74

Prime-Ark® Freedom 0.21 a 0.10 ab 2.05 ab 21.77 ab 31.36 bc 32.11 b 24.31 25.04

Prime-Ark® Horizon 0.80 a 0.04 a 1.05 a 6.81 a 35.45 c 35.44 b 21.77 22.71

Prime-Ark® Traveler 0.51 a 0.07 a 0.76 a 6.68 a 29.73 b 31.04 b 21.00 21.87

Sweet-Ark® Caddo 1.66 ab 0.30 ab 0.60 a 7.18 a 30.60 b 31.69 b 22.37 22.82

Sweet-Ark® Ponca 0.33 a 0.05 a 0.82 a 4.49 a 25.75 ab 26.52 ab 21.06 20.73

PG
ii 0.002 0.002 0.002 0.001 0.014 0.001 0.504 0.427

PGY
iii 0.767 0.576 0.374 0.666 0.021 0.825 0.044 0.769
fr
ontiersin
iFruit length and width were only measured in 2020 and 2021.
iiP values for genotypes.
iiiP values for genotype by year interactions.
ivOpen-source software available at https://github.com/mchizk1/ShinyFruit.
vLetters indicate significant differences between genotypes (P < 0.05) using Tukey's Honestly Significant Difference.
viOpen-source software available at https://imagej.nih.gov/ij/download.html.
viiThe mean percentage of reverted drupelets per blackberry.
viiiThe mean percentage of berries in a clamshell that had three or more reverted drupelets.
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counting methods were much more highly correlated with one

another (Table 3, r = 0.940) than with ShinyFruit or ImageJ RDR

estimates, but both were still significantly correlated with image-

based results. ImageJ was more tightly correlated with manual

counting techniques than ShinyFruit (Table 3), but ShinyFruit

RDR estimates were consistently higher than those from ImageJ

(Table 2). Drupelet-based RDR estimation was more tightly

correlated with both image-based methods (Table 3; Figure 4C,

r = 0.696-0.795), although ‘by-berry’ RDR estimation was

significantly correlated as well (Table 3; Figure 4D, r = 0.621-

0.756). The image-based ImageJ method and manual ‘by-drupelet’

and ‘by-berry’ RDR methods all grouped ‘Black Magic™’, ‘Black

Gem™’, ‘Prime-Ark® Freedom’, and A-2444T together in the

highest reversion group. The ShinyFruit RDR method also
Frontiers in Plant Science 07
grouped ‘Black Magic™’ among the highest RDR genotypes, but

underestimated RDR in ‘Black Gem™’, ‘Prime-Ark® Freedom’, and

A-2444T. ‘Sweet-Ark® Caddo’ only grouped among the highest

RDR genotypes using the ShinyFruit estimation method.
Discussion

Manual measures of RDR using the ‘by-drupelet’ and ‘by-berry’

method were generally low compared to previous studies that have

implemented similar methods. Segantini et al. (2017) and Felts et

al., (2020) observed RDR ranges of 0.7-6.1% and 2.43-8.06%,

respectively, using the ‘by-drupelet’ method to evaluate

germplasm closely related to the materials included in this study.
TABLE 3 Pearson correlation of genotypic mean fruit characteristics between automated and manual measurements of red drupelet reversion (RDR)
and fruit length in blackberry.

RDR Fruit length

ImageJ By-drupelet By-berry ShinyFruit Calipers

RDR

ShinyFruiti 0.958 ** 0.696 ** 0.621 * 0.179 NS 0.058 NS

ImageJii 0.795 ** 0.756 ** 0.197 NS 0.081 NS

By-drupeletiii 0.940 ** 0.225 NS 0.085 NS

By-berryiv 0.361 NS 0.265 NS

Fruit Length ShinyFruit 0.962 **
frontiersin
NS, *, and ** Nonsignificant or significant at P < 0.05 or 0.01, respectively.
iOpen-source software available at https://github.com/mchizk1/ShinyFruit.
iiOpen-source software available at https://imagej.nih.gov/ij/download.html.
iiiThe percentage of reverted drupelets per blackberry.
ivThe percentage of berries in a clamshell that had three or more reverted drupelets.
FIGURE 4

Regression of least square means across years (2019-2020) for 14 blackberry genotypes between ShinyFruit estimations and manual measurements of
blackberry fruit length (A) and estimates of red drupelet reversion (RDR) from ImageJ (B) and ‘by-berry’ (C) and ‘by-drupelet’ (D) manual assessments.
.org
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In contrast, our ‘by-drupelet’ RDR observations only ranged from

0.06-4.63%. Similarly, Armour et al. (2021) observed a range of

1.42-79.83% using the by-berry RDR estimation method in closely

related germplasm, while our own observations ranged from 0.50-

34.97%. Each of these studies considered only partially overlapping

samples of UA germplasm, which could partially account for

differences in observed RDR ranges. However, this comparison

suggests that our vibration treatment following Pérez-Pérez et al.

(2018) was likely insufficient in promoting higher levels of RDR

expression across the population. There were several notable

similarities between our observed genotypic rankings for RDR

expression levels and those reported by others. Unsurprisingly, we

observed that ‘Black Magic™’ consistently grouped with the highest

RDR genotypes using manual techniques. These findings are

consistent with Armour et al. (2021), who reported that ‘Black

Magic™’ had the softest fruit and highest RDR among the seven

genotypes evaluated in that study. ‘Natchez’ also had moderate to

high levels of RDR in previous studies (Armour et al., 2021; Felts

et al., 2020), although ‘Natchez’ was only in the highest RDR

statistical group using the ‘by-berry’ RDR method in this study

(Table 2). This discrepancy could suggest a bias present in the by-

berry method, which may overestimate RDR in large-fruited

genotypes like ‘Natchez’ with many drupelets (Table 2). This bias

was not confirmed by any statistically significant correlation

between fruit length and ‘by-berry’ RDR estimation, but of all the

RDR methods, the ‘by-berry’method was most correlated with fruit

length (Table 3). As noted in previous studies of RDR, A-2453T,

‘Osage’, and ‘Prime-Ark® Traveler’ all consistently grouped with

the least reverted genotypes (Armour et al., 2021; Felts et al., 2020).

Among these low-RDR genotypes, A-2453T and ‘Prime-Ark®

Traveler’ are both noteworthy for their firm texture (Armour

et al., 2021) and shipping potential (Clark and Salgado, 2016;

Salgado and Clark, 2016).

ShinyFruit rankings of RDR intensity were similar to manual

methods and ImageJ in most respects, with a few exceptions in the

intermediate ranges. According to both ShinyFruit and ImageJ,

‘Sweet-Ark® Caddo’ grouped with ‘Black Magic™’ in the highest

RDR group. ImageJ and both manual techniques also grouped A-

2444T, ‘Black Gem™’, and ‘Prime-Ark® Freedom’ together with

‘Black Magic™’ as the genotypes with highest RDR. ShinyFruit

RDR estimates were more highly correlated with the manual ‘by-

drupelet’ (r = 0.696) method than the ‘by-berry’method (r = 0.621).

This was consistent with ImageJ correlations and aligns with

expectations, since the ‘by-berry’ method is expected to be biased

by fruit size and the other two methods are not. Even so, the manual

‘by-berry’ and ‘by-drupelet’ methods were much more correlated

with one another (r = 0.904) than either was with ShinyFruit or

ImageJ (Figure 4). This may partly be explained by the fact that both

manual estimates considered all drupelets on each berry, and each

drupelet was categorically considered to be either reverted or non-

reverted. Unlike the manual techniques, ShinyFruit and ImageJ

estimates only considered the upper surface area of berry samples

that were visible in each image. Furthermore, instead of categorizing

each drupelet as reverted or non-reverted, ShinyFruit and ImageJ

categorize individual pixels based on color thresholds. Thus, image-

based estimates can provide RDR estimates that accurately account
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for partial reversion of drupelets. Similarly, by using two separate

reversion thresholds, one could measure reversion with varying

degrees of color intensity as suggested by Edgley et al. (2019c).

Future implementations of ShinyFruit should be able to compensate

for the problem of RDR half-estimation, from only measuring one

side of the fruit, by doubling the amount of fruit imaged. Through

manual inspection of ShinyFruit output images, it is also clear that

the digital image analysis pipeline also detected certain non-RDR

discolorations of features such as desiccated, ruptured, or

anthracnose-infected drupelets. RDR on berries with excessive

glossiness may have also been underestimated with ShinyFruit,

since the reflection of light can mask the color of the drupelets

underneath. Future work may investigate this hypothesis through a

correlation of ShinyFruit RDR estimation and glossiness. If such a

relationship exists, future pipelines may consider glossiness as a

covariate for ShinyFruit RDR estimation.

Two key differences were observed between the image-based

RDR detection methods tested. Of the two image-based RDR

phenotyping methods tested, ImageJ held the tightest correlations

with manual by-drupelet (r = 0.795) and by-berry methods (r =

0.756), but ShinyFruit appears to be far more sensitive to detecting

low-levels of reversion. Even in the high-reversion ‘Black Magic™’,

ImageJ only estimated a mean RDR of 0.60% (Table 2), while

ShinyFruit estimated 3.18% for the same genotype. This increased

sensitivity is probably attributable to the image preprocessing

capabilities contained in the ShinyFruit package, which ease the

process of color-based thresholding while minimizing noisy data.

Just as with the manual techniques, both image-based techniques

were very highly correlated with one another (Table 3, r = 0.958).

However, the slight differences in correlation with manual

techniques are more difficult to interpret. While it is possible that

ShinyFruit is less accurate than other methods, James et al. (2022)

points out that automated methods approach the problem of color

quantification in a fundamentally different way than manual

techniques. Although automated methods do not eliminate

subjectivity entirely, the user-determined color thresholds are

evenly applied, producing greater consistency in results. For this

reason, the tightness of correlations between automated and manual

methods should not be intensely scrutinized. Instead, it may be

more beneficial to focus on sensitivity of detection and ease-of-use.

In contrast with the ImageJ macro method, ShinyFruit presents

strong advantages in these areas since it requires no coding

expertise to use. Thus, ShinyFruit may present an attractive

alternative in crops like strawberry, where color quantification is

important, but existing solutions require some coding capabilities

(Zingaretti et al., 2021) or specialized hardware (Liming and

Yanchao, 2010).

ShinyFruit measurements of fruit length and RDR were tightly

correlated with those from manual data collection techniques. This

resemblance is especially clear for fruit length measurements, which

were within 1 mm of caliper-based measurements in all genotypes

except for A-2453T and ‘Black Magic™’ (Table 2). Occasional and

slight differences between fruit length measurements could arise from a

slight difference in the way ShinyFruit estimates length compared to

calipers. ShinyFruit considers the length between the uppermost

detected berry pixel from the lowest berry pixel. Thus, berry
frontiersin.org
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orientation is key in producing accurate results. Calipers measure the

length between the peduncle attachment point and the terminal

drupelet. In addition, ShinyFruit relies on user-provided size

standardization from a single sample image, and it assumes that the

fixed camera height is kept consistent between other images analyzed

in the same batch. Violation of this assumption could result in

inaccuracies. Despite very tight correlations between length

phenotyping methods (Table 3, r = 0.962), Genotype by year

interactions were also present in ShinyFruit-based fruit length

estimations, but not in caliper-based measurements (Table 2). This

could stem from slight differences in camera settings, ambient lighting,

or ShinyFruit parameters between years, which may affect genotypic

length measurements differently based on interfering qualities such as

glossiness or turgidity. It seems more likely, based on a comparison of

means P values within years, that this interaction could indicate a ‘real’

effect which is only detectable in larger sample sizes (up to 25 per

image). ‘Prime-Ark® Freedom’ provides a clear example of this

interaction. Both ShinyFruit and caliper methods indicate that mean

fruit lengths of ‘Prime-Ark® Freedom’ were at least 5 mm longer in

2021 than in 2020, but only ShinyFruit statistically distinguished this

genotype from the shortest genotypes in 2021. ShinyFruit may provide

an improvement in accuracy, even compared to direct caliper

measurement of fruit length, because of its enhanced throughput. In

the present study, only five randomly sampled berries were measured

with calipers, while entire clamshells were easily analyzed using

ShinyFruit. The ability to measure greater numbers of berries reduces

experimental error and improves the ability of the researcher to make

strong inferences between genotypes or treatment groups.

Based on the evidence presented, ShinyFruit appears to be

capable of sufficiently estimating RDR and fruit size in

blackberry. In fact, ShinyFruit was recently used in genome-wide

association analysis of RDR across 300 fresh-market blackberry

genotypes evaluated over three years (Chizk et al., 2023). But fruit

size and RDR are only two of many potential applications for this

tool. In blackberry alone, protocols could be developed to mimic

existing manual phenotyping methods for glossiness (Segantini

et al., 2017) or white drupelet disorder (Stafne et al., 2017).

Moreover, ShinyFruit’s potential may extend beyond blackberries,

as it can be adapted and applied to various niches in other crop

species, contributing to advancements in high-throughput image

analysis. The tool’s algorithms and user-friendly interface make it

accessible for researchers working with different horticultural crops,

enabling them to leverage its capabilities for diverse phenotyping

tasks. Efficient strategies for estimating fruit size could be applied to

numerous horticultural products by imitating ImageJ-based

strategies (Cortes et al., 2017; Manolikaki et al., 2022), but the

detection of color-based features could provide an even greater

number of implementations. ShinyFruit could be used to quantify

and characterize descriptive color value distributions for specific

cultivars by using the optional ‘Color Profile’ feature. This feature

reports the nearest matched RHS color descriptor to maximum,

minimum, and median RGB color values in detected features. Such

information may be of value in providing a standardized color

description for new releases with unique color characteristics.

Diseased or necrotic regions of fruit or leaves could easily be

quantified by ShinyFruit following the approach used by Stewart
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and McDonald (2014) or Maloney et al. (2014) in wheat. ShinyFruit

is an open-source response to proprietary image analysis tools, like

Assess, and it is much simpler to use than ImageJ.

James et al. (2022) highlight the need for automated image

analysis tools in strawberry trait automation, emphasizing the

potential benefits of high-throughput phenotyping strategies. Fruit

quality attributes have already been assessed using image-based

techniques in many fruit species, including apple (Throop et al.,

2005), citrus (Blasco et al., 2007), mango (Kang et al., 2008), and

banana (Mendoza and Aguilera, 2006). In each of these situations,

ShinyFruit could be employed as a GUI-based alternative that

assumes no prior skillsets or specialized hardware. More modern

methods have been used in grapes (Sozzi et al., 2022) and leverage

machine learning algorithms to offer an even higher throughput

solution, but these methods also come with certain drawbacks that

are worth considering. Currently they are highly effective for simple

tasks, like object detection, but they require training data that are

representative of test image sets, and these machine learning

algorithms are not easily customizable to changing thresholds or

alternate traits. Future updates to ShinyFruit will focus on developing

image segmentation algorithms for counting aggregated features,

such as blackberry drupelets or grapes on a cluster. With guidance

from the expert user, and no necessary training data, ShinyFruit

should reduce barriers to high throughput phenotyping in a wide

range of traits and species.
Conclusion

Using the ShinyFruit R package (a flexible GUI-enabled tool for

estimating size and color attributes in horticultural products), we

observed tight correlations with manual measurements of

blackberry fruit length (r = 0.96) and moderate correlations with

manual measurements of RDR using the ‘by-drupelet’ (r = 0.70) and

‘by-berry’ (r = 0.62) methods. Compared to ImageJ, ShinyFruit was

more sensitive to the low levels of RDR observed, but was slightly

less correlated with manual methods. ShinyFruit RDR values

aligned with manual measurements on high RDR and low RDR

genotypes, but intermediate rankings between methods shifted

slightly. Unlike the ‘by-berry’ method, ShinyFruit RDR

phenotyping is unbiased by fruit size, but additional fruit should

be harvested to account for ShinyFruit’s implicit half-measurement

problem. Strategies should be developed in future studies to

implement ShinyFruit phenotyping in fruit morphology and

color-based trait measurement across a wide range of species and

horticultural products.
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