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provides new insights into the
evolution and adaptation of
Fagaceae species
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Fagaceae species dominate forests and shrublands throughout the Northern

Hemisphere, and have been used as models to investigate the processes and

mechanisms of adaptation and speciation. Compared with the well-studied

genus Quercus, genomic data is limited for the tropical-subtropical genus

Castanopsis. Castanopsis hystrix is an ecologically and economically valuable

species with a wide distribution in the evergreen broad-leaved forests of

tropical-subtropical Asia. Here, we present a high-quality chromosome-scale

reference genome of C. hystrix, obtained using a combination of Illumina and

PacBio HiFi reads with Hi-C technology. The assembled genome size is 882.6 Mb

with a contig N50 of 40.9 Mb and a BUSCO estimate of 99.5%, which are higher

than those of recently published Fagaceae species. Genome annotation

identified 37,750 protein-coding genes, of which 97.91% were functionally

annotated. Repeat sequences constituted 50.95% of the genome and LTRs

were the most abundant repetitive elements. Comparative genomic analysis

revealed high genome synteny between C. hystrix and other Fagaceae species,

despite the long divergence time between them. Considerable gene family

expansion and contraction were detected in Castanopsis species. These

expanded genes were involved in multiple important biological processes and

molecular functions, which may have contributed to the adaptation of the genus

to a tropical-subtropical climate. In summary, the genome assembly of C. hystrix

provides important genomic resources for Fagaceae genomic research

communities, and improves understanding of the adaptation and evolution of

forest trees.

KEYWORDS

Castanopsis hystrix, cellulose synthase (CesA) gene, chromosome-scale genome
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1 Introduction

The Fagaceae family includes nine genera and roughly 900

species, which dominate forests and shrublands throughout the

Northern Hemisphere (Oh and Manos, 2008; Petit et al., 2013). The

three largest genera, Quercus (about 450 species), Lithocarpus

(about 300 species), and Castanopsis (about 120 species) rapidly

diverged after the Cretaceous-Paleogene boundary (K-Pg) (Zhou

et al., 2022b) and currently occupy various habitats (Petit et al.,

2013; Cannon et al., 2018). Quercus species are the dominant tree

species of temperate forests in Eurasia and North American, while

Castanopsis and Lithocarpus are mainly found in the tropical-

subtropical evergreen forests of East and Southeast Asia (Petit

et al., 2013; Cannon et al., 2018). Fagaceae species have been

widely used as models of ecological and evolutionary genomic

studies for the investigation of the processes and mechanisms of

adaptation and speciation (Petit et al., 2013; Cavender-Bares, 2019;

Kremer and Hipp, 2020). To date, more than 10 genomes of

Quercus species have been assembled (Table 1), and the genomes

of a dozen to one hundred individual oaks, such as those of Q.

acutissima (Fu et al., 2022; Yuan et al., 2023), Q. dentata (Zhou

et al., 2022a), Q. petraea (Leroy et al., 2020) and Q. variabilis (Liang

et al., 2022) have been re-sequenced. By contrast, there is only a

limited amount of genomic data available for the genus Castanopsis,

and only one genome assembly (C. tibetana) is available for this

genus (Sun et al., 2022). Molecular markers have been used to

investigate the genetic diversity and evolutionary history of

Castanopsis species (Shi et al., 2011; Li et al., 2014; Sun et al.,

2014; Sun et al., 2016; Jiang et al., 2020; Li et al., 2022). However, our

knowledge of the evolution of those species is incomplete or

possibly biased due to a lack of sufficient genomic data. The

availability of whole genome-wide data would provide an

unprecedented opportunity for acquiring a deeper understanding

of the adaptation and evolution of the genus Castanopsis, and would

expand Fagaceae genome resources for comparative analysis.

Castanopsis hystrix (2n=2x=24) is one of the most important

and dominant species of the tropical-subtropical evergreen forests

of Asia (Li, 1996). In China, C. hystrix is naturally distributed in

mixed and secondary forests, and its distribution extends from

Nanling Mountain to Hainan Island and from Taiwan to south

Tibet (Huang et al., 1999). C. hystrix is an ecologically and

economically valuable species, and its forests play critical roles in

water and soil conservation, disaster prevention, biodiversity, and

the global carbon budget (Huang et al., 2015; You et al., 2018; Liang

et al., 2019; Zhang et al., 2019a). C. hystrix is also a source of well-

textured heartwood, which is widely used in furniture, construction,

and shipbuilding, and it also produces seeds that can be used to

extract tanning agents and starch (Chen et al., 1993; Chang et al.,

1995). Due to the overexploitation of natural forests, the once

widespread C. hystrix populations have been greatly diminished and

fragmented (Zhao et al., 2020). High-quality genomic data are

essential for assessing the patterns of genetic diversity, tracking

the evolutionary history, and developing effective and efficient

conservation strategies for this plant species. To date, only plastid

and nuclear SSR markers have been used to investigate differences

in the genetic diversity and divergence of C. hystrix (Li et al., 2007;
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Li et al., 2022); however, information on its nuclear genome is

still unavailable.

In this study, we assembled and annotated the first

chromosome-scale high-quality genome of C. hystrix by

integrating PacBio HiFi long-reads, Illumina short-reads,

RNAseq, and Hi-C sequencing data. We performed comparative

genomic analysis to explore the evolution of genes, gene families,

and genomes of C. hystrix and related Fagaceae species. Our study

provides new insights into the genome evolution of Fagaceae tree

species and provides essential genomic resources for germplasm

conservation and genetic improvement of C. hystrix.
2 Material and methods

2.1 Plant sampling and genome sequencing

Fresh leaves were collected from an adult C. hystrix tree growing

in Guangdong Fenghuangshan Forest Park (23.22° N, 113.39° E)

and immediately frozen in liquid nitrogen until further use. Total

genomic DNA was isolated from leave tissues using a DNeasy Plant

MiniKit (Qiagen, Germany). The DNA quality and concentration

were assessed by agarose gel electrophoresis and the Qubit

Fluorometer (Thermo Fisher Scientific, USA). To obtain whole

genome sequencing data, three DNA libraries were constructed and

sequenced. First, an Illumina library with insert size of ~350 bp was

sequenced on an Illumina NovaSeq 6000 platform with 150 bp

paired-end reads. Second, a 20 kb HiFi library was prepared using

the SMRTbell Express Template Preparation kit 2.0 (Pacific

Biosciences, USA), and then sequenced on the Pacbio Sequel II

platform to produce long-reads. Finally, a Hi-C sequencing library

was constructed and sequenced on an Illumina NovaSeq 6000

platform (paired-end 150 bp).

Leaves at three different development stages (bud, immature,

and mature) were collected from the same tree used for genome

sequencing. Total RNA was extracted from leave samples using an

RNAprep Pure Plus Kit (Tiangen, China), and the quality of RNA

was evaluated using a Nanodrop spectrophotometer (Thermo

Fisher Scientific, USA) and an Agilent 5400 (Agilent

Technologies, USA). Total RNAs isolated from different leave

tissues were mixed in equal amounts. A synthesized

complementary DNA (cDNA) library was sequenced on an

Illumina NovaSeq 6000 platform (paired-end 150 bp).
2.2 Genome survey and de novo assembly

To predict genomic characteristics, k-mer analysis was

performed based on Illumina paired-end reads. The 17 bp K-mers

were counted using Jellyfish v2.2.7 (Marcais and Kingsford, 2011),

and genome size, heterozygosity, and repetitive element content

were predicted based on the k-mer count distribution using

GenomeScope v2.0 (Vurture et al., 2017).

The de novo assembly of C. hystrix genome was conducted in

three steps by integrating Illumina short-reads, PacBio HiFi long-

reads, and Hi-C sequencing data. First, the PacBio HiFi reads were
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TABLE 1 Comparisons of genome assembly quality among 12 Fagaceae species.
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error-corrected using NextDenovo v2.4.0 (https://github.com/

Nextomics/NextDenovo), and were then initially assembled using

Hifiasm v0.15.4 (Cheng et al., 2022). Second, the draft assembly was

polished using NextPolish v1.3.1 (Hu et al., 2020), and redundant

contigs were filtered using Redundans pipeline (Pryszcz and

Gabaldón, 2016). Finally, contigs were linked to 12 pseudo-

chromosomes of C. hystrix using ALLHiC (Zhang et al., 2019b)

and Juicebox (Durand et al., 2016) based on Hi-C data. The quality

of the genome assembly was evaluated using BUSCO

(Benchmarking Universal Single-Copy Orthologs) (Seppey

et al., 2019).
2.3 Prediction of genes and
repetitive elements

The repeat regions, protein-coding genes, and non-coding RNA

(ncRNA) were annotated in the C. hystrix genome assembly.

Tandem repeats were identified using Tandem Repeats Finder

v4.09 (Price et al., 2005), and dispersed repeats were identified by

integrating de novo and homology-based methods. Briefly, de novo

prediction was performed using LTR_FINDER v1.0.6 (Xu and

Wang, 2007), LTR_retriever v2.9.0 (Ou and Jiang, 2018),

RepeatScout v1.0.5 (Price et al., 2005), and RepeatModeler v2.0.1

(Flynn et al., 2020). The homology-based approach was conducted

using Repeatmasker v4.1.0 (Chen, 2004). The C. hystrix assembly

was searched against the RepBase library (Jurka et al., 2005) to

identify sequences that are similar to known repetitive elements.

To annotate protein-coding genes, we conducted de novo,

homology-based and RNA-Seq-assisted predictions on the repeat-

masked C. hystrix genome. For de novo gene annotation, coding

regions of genes were predicted using Augustus v3.2.3 (Stanke et al.,

2006), Geneid v1.4 (Blanco et al., 2007), Genescan v1.0 (Burge and

Karlin, 1997), GlimmerHMM v3.04 (Majoros et al., 2004), and

SNAP (Aylor et al., 2006). For homology-based prediction, protein

sequences of Castanea mollissima (Wang et al., 2020), Castanopsis

tibetana (Sun et al., 2022), Fagus sylvatica (Mishra et al., 2018),

Quercus lobata (Sork et al., 2016), Quercus robur (Plomion et al.,

2018), and Quercus suber (Ramos et al., 2018) were downloaded

from Genbank and aligned with the C. hystrix genome using

TblastN v2.2.26 (Altschul et al., 1990). By comparing the

homologous genome sequences to the matched proteins, gene

models were constructed using GeneWise v2.4.1 (Birney et al.,

2004). For RNA-Seq-based auxiliary prediction, a C. hystrix

transcriptome was assembled using Trinity v2.1.1 (Grabherr et al.,

2011) and aligned to the C. hystrix genome assembly using Hisat

v2.0.4 (Kim et al., 2015). After that, gene models were predicted

using PASA v2.0.2 (Keilwagen et al., 2016). Gene models predicted

by the three methods were integrated using EvidenceModeler v1.1.1

(Haas et al., 2008), resulting in a non-redundant gene set. The

ncRNAs, including rRNAs, micro RNAs (miRNAs), and small

nuclear RNAs (snRNAs) were identified by searching the genome

assembly against the Rfam database (Griffiths-Jones et al., 2003)

with default parameters using Infernal v1.1 (Nawrocki and Eddy,

2013). tRNAs were predicted using the program tRNAscan-se v2.0

(Chan et al., 2021).
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To infer gene functions, protein sequences were compared with

those in Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa and Goto, 2000), non-redundant (NR), Gene Ontology

(GO) (Ashburner et al., 2000), SwissProt (Boeckmann et al., 2003),

InterPro (Hunter et al., 2009), and protein family (Pfam) (Finn

et al., 2014) databases using Blastp (E-value cutoff of 1e-5). The

motifs and domains were characterized using InterProScan v5.31

(Zdobnov and Apweiler, 2001) by searching against public

databases, including ProDom, PRINTS, Pfam, SMRT, PANTHER,

and PROSITE.
2.4 Gene family evolution analyses

To track the gene family evolution, we analyzed the protein

sequences of C. hystrix generated in this study together with those of

10 other species representing major lineages of Fagaceae and eudicots.

Proteins of these species were downloaded from public databases.

These species included C. tibetana (https://db.cngb.org; Accession

number: CNA0019678), C. mollissima (https://ngdc.cncb.ac.cn;

Accession number: GWHANWH00000000), and Oryza sativa

(https://phytozome-next.jgi.doe.gov/info/Osativa_v7_0). Other seven

species were downloaded from National Center for Biotechnology

Information (https://www.ncbi.nlm.nih.gov/), including Fagus sylvatica

(GCA_907173295.1), Juglans regia (GCF_001411555.2), Malus

domestica (GCA_002114115.1), Prunus persica (GCA_000346465.2),

Populus trichocarpa (GCA_000002775.5), Quercus robur

(GCA_932294415.1), Vitis vinifera (GCA_000003745.3). We

identified orthologous genes using OrthoFinder v2.5.4 (Emms and

Kelly, 2019), and then aligned gene coding regions using the package

ParaAT v2.0 (Zhang et al., 2012). Single gene alignments were

concatenated using seqkit v1.3 (Shen et al., 2016), and poorly aligned

regions were excluded using Trimal v1.4 (Capella-Gutierrez et al.,

2009). Then, a maximum likelihood (ML) tree was constructed based

on the alignment of orthologous genes using IQ-TREE v2.1.2 (Nguyen

et al., 2015), and dated using MCMCTree in the PAML v4.9j package

(Yang, 2007). Two fossil calibrations were used to constrain the age of

nodes. The first split within the Fagaceae family (genus Fagus vs. the

rest of the genera) was constrained to 82–81 million years ago (Mya)

(Grıḿsson et al., 2016), and the divergence time between genera

Castanopsis and Castanea was restricted to 52.2 Mya (Wilf et al.,

2019). Based on the dated phylogenetic tree, the expansion and

contraction of gene families were inferred using CAFÉ v4.2.1 (De Bie

et al., 2006).
2.5 Genome synteny and whole genome
duplication analyses

To investigate the syntenic relationship between C. hystrix and

relative species, proteins of C. mollissima (Wang et al., 2020) and C.

tibetana (Sun et al., 2022) were downloaded from Genbank and

compared with the genome of C. hystrix using Blastp (E-value cutoff

of 1e-5). Collinear blocks were inferred using MCScanX (Wang

et al., 2012) and visualized in JCVI v1.2.20 (Tang et al., 2008). The

times of whole genome duplication (WGD) events were inferred
frontiersin.org
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from the synonymous substitution rates (Ks) between paralogous

and orthologous gene pairs. The Ks of gene pairs was calculated

using the Nei-Gojobori algorithm as implemented in MCScanX.
2.6 Long terminal repeat
retrotransposons analysis

To investigate the evolution of LTRs in C. hystrix and relative

species, we identified LTRs in four Fagaceae species (C. mollissima,

C. tibetana,Q. robur, and F. sylvatica) following the same procedure

used for C. hystrix (see above). For full-length LTRs, the reverse

transcriptase (RT) domains were identified using TEsorter v1.4.5

(Zhang et al., 2022), and were then aligned using MAFFT v7.475

(Katoh et al., 2002) with default parameters. The phylogenetic trees

of LTRs were constructed based on the alignment of RT domains

using FastTree v2.1.10 (Price et al., 2009). To estimate the insertion

times (T) of full-length LTRs, the Kimura two-parameter distance

(K) of each LTR-RT pair was calculated and converted to the

insertion time using the formula T = K/2m, where the substitution
rate (m) was estimated using the baseml program in the

PAML package.
2.7 Evolutionary analysis of the CesA
gene family

Hard and well-textured heartwood are typical features of C.

hystrix trees (Watanabe et al., 2014). Cell wall and lignin metabolic

pathway genes are essential for wood formation. The cellulose

synthase (CesA) gene family is involved in primary cell wall

formation and cellulose synthase is considered the most

important enzyme in the synthesis of cellulose microfibrils in

plant cells (Kumar and Turner, 2015; Wang et al., 2022b). Hence,

we conducted genome-wide characterization of the CesA family in

C. hystrix and three relative Fagaceae species (C. mollissima, C.

tibetana and Q. robur). The CesA genes in each species were

identified using two methods. First, CesA protein sequences of A.

thaliana (Persson et al., 2007) and O. sativa (Hazen et al., 2002)

were blasted against the genomes of C. hystrix, C. mollissima, C.

tibetana, and Q. robur, and homologous genes with an E-value

cutoff of 1e-10 were identified. Second, two DNA-binding domains

(PF03552 and PF00535) from Pfam (https://pfam.xfam.org/) were

searched against protein sequences of Fagaceae species using

HMMER v3.3.2 (Finn et al., 2011). The unions identified by both

methods were considered to be common elements. To verify the

reliability of the intersected results, we analyzed the completeness of

CesA gene domains using Pfam and the conserved domain database

(CDD, https://www.ncbi.nlm.nih.gov/cdd/). Then, the theoretical

isoelectric points (PI) and molecular weights of CesA proteins were

analyzed on the ExPASy website (https://web.expasy.org/

compute_pi/).

For phylogenetic analysis, the amino acid sequences of each

CesA member were aligned using MUSCLE v3.8 (Edgar, 2004), and

phylogenetic trees were constructed using IQ-TREE with 1000

bootstraps and online visualization using iTOL (https://
Frontiers in Plant Science 05
itol.embl.de/) (Letunic and Bork, 2019). To investigate in detail

the classification of protein motifs, Multiple Em for Motif

Elicitation (MEME) (http://memesuite.org/) was used to annotate

the conserved motifs in these proteins. The maximum number of

motifs was set to 10 and the motif width was set 10 to100 in MEME

analysis. Blastp and MCScanX were used to identify syntenic blocks

and duplication events with default parameters and visualization

using TBtools (Chen et al., 2020).
3 Results

3.1 Genome assembly and assessment

The C. hystrix genome was assembled by using integrated

multiple sequencing and assembly technologies. Whole genome

sequencing resulted in 52.92 Gb of Illumina short-reads (~59×),

28.14 Gb of PacBio HiFi long-reads (~31×), and 141.12 Gb of Hi-C

data (~160×). An initial genome survey using k-mer analysis

estimated that the genome size of C. hystrix is about 897.51 Mb

and that it has a high level of heterozygosity of 1.26% and a repeat

content of 57.38% (Table S1). Illumina short-reads, PacBio HiFi

long-reads, and Hi-C sequencing data revealed that the assembled

C. hystrix genome is 882.69 Mb, including 211 contigs and 172

scaffolds (Table 1). The contig N50 and scaffold N50 length are

40.95 Mb and 75.63 Mb, respectively. In total, 865.64 Mb (98.07%)

of assembled sequences were mounted on 12 pseudo-chromosomes

ranging from 51.51 Mb to 103.15 Mb (Figure 1A, Table 1). The heat

map of Hi-C interactions shows that the genome assembly is intact

and robust (Figure 1B).

The high accuracy and completeness of the C. hystrix genome

assembly was supported by three analyses. First, joint analysis of GC

content and sequencing depth revealed no obvious deviation in

quality across the genome, suggesting the high quality of genome

sequencing and assembly (Figures 1, S1). Second, approximately

97.66% of cleaned PacBio HiFi long-reads were successfully

mapped to the genome, and more than 99% of the genome

assembly had a coverage >10× (Table S2), suggesting that the

genome assembly was accurate and complete. Finally, BUSCO

analyses revealed that 99.5% of universal single-copy orthologs

were present in the genome assembly (Table 1), indicating the

high integrity of the genome assembly.
3.2 Genome annotation

A total of 449.72 Mb (50.95%) of the C. hystrix genome was

annotated as repetitive sequences (Tables 1, S3). The most abundant

repetitive elements were LTRs (374.50 Mb), followed by tandem

repeats (47.64 Mb), long interspersed nuclear elements (LINEs;

18.08 Mb), DNA transposons (12.90 Mb), and short interspersed

nuclear elements (SINEs; 16,791 bp) (Table S3).

By integrating de novo, homology-based, and RNA-Seq-assisted

predictions, a total of 37,750 protein-coding genes were predicted in

the C. hystrix genome (Tables 1, S4). The average lengths of coding

sequences (CDSs), exons and introns are 1,067 bp, 244 bp and 1,112
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bp, respectively (Table S4). By comparing the predicted gene set

with six public databases, 36,962 (97.91%) of the total predicted

genes were functionally annotated (Table S5). Non-coding RNA

annotation identified 922 miRNAs, 741 tRNAs, 8,971 rRNAs, and

665 snRNAs in C. hystrix (Table S6).
3.3 Gene family evolution in C. hystrix

To explore the evolutionary history of the C. hystrix gene

family, we clustered 36,448 (96.6%) annotated genes into 19,143

gene families. Among these, 12,573 gene families were shared

with those of four other studied Fagaceae species (Figure 2A), and

299 families (1,043 genes) were unique to C. hystrix. Functional

enrichment analysis showed that unique genes of C. hystrix

were significantly enriched in 10 KEGG pathways and 115 GO

terms, including Fatty acid biosynthesis, Porphyrin and

chlorophyll metabolism, malate transport, and polynucleotide

adenylyltransferase activity (Table S7; Figure S2).

A phylogenetic tree constructed using 556 single-copy orthologs

among C. hystrix and other 10 angiosperms revealed that two

Castanopsis species (C. hystrix and C. tibetana) were grouped

together, and these two species are sister to a Castanea species (C.

mollissima) (Figure 2B). Calibration of the phylogenetic tree using

two Fagaceae fossil records showed that the divergence time

between C. hystrix and C. tibetana is 30.4 Mya (95% HPD: 19.6–

40.2 Mya) (Figures 2B, S3). The close phylogenetic relationships

between Castanopsis and Castanea species were supported by the

high genome synteny and colinearity (Figure 2C).

Based on the clustered gene families and dated phylogenetic

tree, CAFÉ analyses detected 2283 expanded gene families and 2505

contracted gene families in C. hystrix (Figure 2B; Tables S8). Among

these, 202 expanded and 62 contracted gene families were
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statistically significant (P < 0.01; Table S8). The 202 expanded

gene families were enriched in 7 KEGG pathways and 36 GO terms,

such as “Arginine and proline metabolism”, “Phenylalanine

metabolism” , “Fatty acid degradation” , and “Trehalose

biosynthetic process” (Table S9; Figure S2). The 62 contracted

gene families were primarily enriched in KEGG pathway

processes “Sesquiterpenoid and triterpenoid biosynthesis”, “Plant-

pathogen interaction”, and “MAPK signaling” (Table S9). A search

of C. hystrix expanded genes families against PlantTFDB (http://

planttfdb.gao-lab.org/) revealed that 29 genes were categorized into

four transcription factors (TFs) families (FAR1, B3, bHLH, and

NAC). Among these, 23 genes belong to the FAR1 family, and the

other six genes belong to B3 (one gene), bHLH (two genes), and

NAC (three genes) families (Table S10). We also found that 17 and

16 gene families significantly expanded and contracted, respectively,

in the most common ancestor of C. hystrix and C. tibetana.

Functional enrichment analysis revealed that the 17 expanded

gene families were overrepresented in 11 KEGG pathways and 8

GO terms, including “Fatty acid degradation”, “Plant-pathogen

interaction” and “RNA-DNA hybrid ribonuclease activity” (Table

S9). The 16 contracted gene families were enriched in six KEGG

pathways and four GO terms (Table S9).
3.4 WGD in C. hystrix

Comparative genomic analyses were performed to discern the

number of WGD events in C. hystrix. A total of 65 syntenic blocks

(2,442 collinear genes) with sizes ranging from 11 to 48 gene pairs

were detected in C. hystrix, accounting for 6.47% of the total gene

set. The number of collinear genes in C. hystrix was close to those of

other Fagaceae species (2484–2673 genes; 6.53%–7.71% of the total

gene set) but lower than that in V. vinifera (3297 genes; 12.85% of
A B

FIGURE 1

Features of Castanopsis hystrix genome. (A) Genome-wide analysis of chromatin interactions in the C hystrix genome based on Hi-C data. (B) The
Synteny and distribution of genomic features. (A) The 12 pseudochromosomes; (B) gene density; (C–E) the density of total repeat sequences, Gypsy
LTR-RTs, and Copia LTR-RTs; (F) histogram of GC content; (G) intragenomic collinearity. (B–F) were drawn in 100 kb overlapping sliding windows.
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the total gene set) (Table S11). The Ks values of paralogous and

orthologous gene pairs showed that all four Fagaceae species and V.

vinifera shared a Ks peak of approximately 1.08 units (Figure 2D),

most likely representing the triplication event (g) shared by all

eudicots (Murat et al., 2015). Synteny analysis revealed a 1:1

syntenic depth ratio for C. hystrix vs. Fagaceae species and a 2:2

syntenic depth ratio for C. hystrix vs. V. vinifera (Figure S4). These

results suggested that no independent WGD events have occurred

in C. hystrix and other Fagaceae species.
3.5 Expansion of LTRs in C. hystrix

Copia and Gypsy are the two most abundant LTR super families

in C. hystrix and three other Fagaceae species. In C. hystrix, Copia-

and Gypsy-type LTRs accounted for 37.49% and 38.04% of LTRs,

respectively (Figure 3A; Table S12). The content of Copia- and

Gypsy-type LTRs was slightly different among Fagaceae species

(Figure 3A; Table S12), indicating independent expansion or

elimination of repetitive elements. Phylogenetic analyses using RT

domains of LTRs revealed that Copia-type elements were clustered

into seven major groups, with Ale-type repeats forming the largest

group (N = 355) followed by Angela (N = 320), SIRE (N = 235),

Tork (N = 46), TAR (N = 29), Ikeros (N = 28), and Ivana (N = 21;

Figure 3B). The Gypsy-type elements were grouped into six clades,

and the OTA group accounted for 91% (1,658) of Gypsy members
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(Figure 3B). Full analyses with all Gypsy and Copia elements from

the five Fagaceae species showed that the lineages of Copia and

Gypsy were grouped according to their respective tribes, indicating

different evolutionary relationships among LTR families (Figure

S5). To further explore the details of LTR expansion, we estimated

the insertion time of full-length LTRs. In C. hystrix, the insertion

time peaks of both Copia- and Gypsy-type LTRs were found

approximately at 2 Mya, while a more ancient amplification peak

was found around 8 Mya in C. tibetana (Figure 3C). In other

Fagaceae species, a significant burst of LTRs was detected at 1–3

Mya, but the extent of expansion varied among species and was also

different between Copia- and Gypsy-type LTRs (Figure 3C).
3.6 Evolution of the CesA gene family

Genome-wide characterization of the CesA family in C. hystrix

identified 34 CesA-like genes (Figure 4A; Table S13). Phylogenetic

analysis suggested that these genes could be divided into seven

subfamilies (CesA, CslA–CslH) (Figure 4C; Table S13). Genes from

the same subfamily showed similar protein domains and motif

compositions, supporting their phylogenetic relationships

(Figures 4D, S6). Similar numbers of CesA-like genes were found

in three closely related Fagaceae species (41, 46, and 45 genes in C.

tibetana, C. mollissima, and Q. robur, respectively) and two distinct

related species, A. thaliana (40 genes) and O. sativa (45 genes)
A B

C
D

FIGURE 2

Genomic evolutionary and comparative genomic analyses. (A) Shared and unique gene families in C hystrix, C tibetana, C mollissima, Q. robur, and F
sylvatica. (B) Phylogenomic tree and expansion and contraction of gene families among C hystrix and 10 other species. Numbers in red (+) and
green (−) show the number of expanded and contracted gene families, respectively. (C) The synteny blocks between C hystrix, C tibetana, and C
mollissima. Syntenic blocks were connected by grey lines. (D) The synonymous substitution rates (Ks) distributions of paralogous genes.
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(Figure 4A; Table S14). However, Fagacea species showed different

CesA subfamily content to that of A. thaliana and O. sativa

(Figure 4A). For example, the number of CslE and CslG genes in

Fagaceae species (6–12 and 4–9, respectively) was much higher than

in A. thaliana (one and three, respectively) and O. sativa (three and

none, respectively) (Figure 4A). Nine CslA genes were identified in

A. thaliana and O. sativa, but only three CslA members were found

in Fagaceae species (Figure 4A). In addition, the collinearity of

CesA-like gene between C. hystrix and other Fagaceae species was

clearly higher than those for C. hystrix vs. A. thaliana and O. sativa

(Figures 4B, S7). An analysis of the distribution of CesA-like genes

across the genome of C. hystrix revealed tandem duplication of 10

CesA genes (Figure S8).
4 Discussion

In this study, we generated a high-quality chromosome-scale

assembly of C. hystrix. The assembled genome was approximately

882.6 Mb, of which more than 98% of the sequences were anchored

to 12 pseudo-chromosomes ranging from 51.5 to 103.2 Mb in size.

The contig N50 of the C. hystrix genome assembly was 40.95 Mb,

which is higher than those of recently published Fagaceae species,

such as C. tibetana (3.32 Mb) (Sun et al., 2022), C. mollissima (2.83

Mb) (Wang et al., 2020), Castanea crenata (6.36 Mb) (Wang et al.,

2022a), Quercus gilva (28.32 Mb) (Zhou et al., 2022c), Q. lobata
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(1.90 Mb) (Sork et al., 2022), Quercus variabilis (26.04 Mb) (Han

et al., 2022), and F. sylvatica (0.14 Mb) (Mishra et al., 2022).

Genome assembly integrity, as assessed by BUSCO, reached

99.5% for C. hystrix, surpassing that of previously assembled

Fagaceae genomes (90.5%–98.6%; Table 1). The high quality of

the genome assembly can be mainly attributed to the successful

implementation of new sequencing technologies, a statistical

algorithm, and analytical approaches. Although gap-free T2T

genomes are available in model species (Naish et al., 2021; Song

et al., 2021), de novo genome assembly is still challenging for forest

trees because of their large and complex genomes. Our genome

assembly of C. hystrix is one of the most high-quality genomes of

Fagaceae species ever reported.

Based on comparative genome analysis, we found high genome

synteny between C. hystrix and C. tibetana and C. mollissima,

although these species diverged more than 30 million years ago

(Zhou et al., 2022b). We also found that C. hystrix and other

investigated Fagaceae species did not experience WGD after the

triplication event (g) (Murat et al., 2015). These results are

consistent with the previous hypothesis that ploidy level and

genome structure are conserved among Fagaceae species, which

may have facilitated the adaptive introgression between species

(Chen et al., 2014; Cannon and Petit, 2020). Transposable elements

(TEs) account for large parts of plant genomes, where they play an

important role in evolution (Bennetzen and Wang, 2014; Akakpo

et al., 2020). The proportion of the repetitive elements in the C.
A C

B

FIGURE 3

The features of LTR expansion in the Fagaceae genomes. (A) Comparison of LTR contents in C hystrix and 4 other species. (B) Neighbor-joining
trees of Copia and Gypsy LTRs from C hystrix. (C) Insertion time estimates of full-length LTRs in five Fagaceae species.
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hystrix genome was 50.95%, similar to that reported for other

Fagaceae, such as C. tibetana (54.30%) (Sun et al., 2022), C.

mollissima (53.24%) (Wang et al., 2020), Q. mongolica (53.75%)

(Ai et al., 2022), and Q. variabilis (26.04 Mb) (Han et al., 2022).

Evolutionary analyses of LTRs showed that C. hystrix and relative

Fagaceae species experienced a recent large-scale LTR burst, but the

time and extent of LTR expansion varied between species and

between LTR families, which may have influenced the structure and

function of genomes and contributed to the adaptation and

evolution of Fagaceae species.

Whole genome annotation and analysis revealed considerable

gene family expansion and contraction in C. hystrix and relative

species. These expanded and contracted gene families were involved

in multiple important biological processes and molecular functions,

providing valuable information for understanding the genetic basis

of adaptation, evolution, and speciation in Fagaceae. For example,

17 gene families expanded in the most recent ancestor of C. tibetana

and C. hystrix, and 202 gene families independently expanded in C.

hystrix. Functional enrichment analysis suggested that the 17

expanded gene families were highly overrepresented in stress and

defense-associated pathways, such as plant–pathogen interaction

and Fatty acid degradation (Kindl, 1993; Goepfert and Poirier, 2007;

Dodds and Rathjen, 2010; Chhajed et al., 2020). Fatty acid

degradation is essential for seed development, seed germination,

and post-germinative growth before the establishment of
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photosynthesis (Kindl, 1993; Goepfert and Poirier, 2007). In

addition, expanded gene families in C. hystrix were enriched in

the biological processes “Phenylpropanoids”, which influences

plant responses to biotic and abiotic stimuli (La Camera et al.,

2004; Vogt, 2010), and “Arginine and proline metabolism”, which

plays key roles in nitrogen distribution and recycling in plants

(Slocum, 2005; Rennenberg et al., 2010). Several expanded genes in

C. hystrix are also members of the transcription factor family FAR1,

which modulates phyA signaling (Lin et al., 2007) and regulates the

balance between growth and defense under shade conditions (Liu

et al., 2019). Therefore, the gene family expansions might have

facilitated the adaptation of the genus Castanopsis to a tropical-

subtropical climate, after they had diverged from their deciduous

counterparts in cool-temperate areas. Furthermore, CslE/CslG

genes of the CesA family exhibited expansion and tandem

duplication in Fagaceae species. CesA genes are involved in the

biosynthesis of various polysaccharide polymers, in particular

hemicelluloses (Richmond and Somerville, 2000; Lerouxel et al.,

2006). A recent study suggested that the expansion of the

CesA family might have contributed to the formation of the high-

density timbers that are characteristic of Dipterocarpaceae species

(Wang et al., 2022b). Thus, we suspect that CesA gene expansion

might be related to the development of the high-density woods of

Fagaceae species. Taken together, these considerations suggest that

gene family expansions might have played critical roles in the
A

C D

B

FIGURE 4

Identification and Evolution of CesA family in Fagaceae. (A) The heatmap shown a comparison of the numbers of CesA genes among four Fagaceae
plants, Arabidopsis thaliana, and Oryza sativa. (B) Synteny analysis of CesA genes between C hystrix, C tibetana, and C mollissima. The blue lines
highlight the syntenic CesA gene pairs. (C) Phylogenetic tree of CesA gene families in four Fagaceae plants, A thaliana, and O. sativa.
(D) Phylogenetic relationships and architecture of the conserved protein motifs in 34 CesA genes from C hystrix.
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genetic, morphological, and physiological innovations of

Fagaceae species.

In conclusion, we obtained the first chromosome-scale genome

assembly of C. hystrix using a combination of multiple sequencing

and assembly approaches. Genome-wide characterization and

evolutionary analysis provided novel insights into the genome

evolution and key regulatory pathways of wood formation in

Fagaceae species. The C. hystrix genome assembly contains both

high-quality reference sequences and important functional genes,

which expands the genome resources for Fagaceae species and

opens the possibility of conducting comparative and functional

genomic studies of forest tree species.
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