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A simulation framework
for reciprocal recurrent
selection-based hybrid
breeding under transparent
and opaque simulators
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1Program of Bioinformatics and Computational Biology, Iowa State University, Ames, IA, United States,
2Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA,
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Hybrid breeding is an established and effective process to improve offspring

performance, while it is resource-intensive and time-consuming for the

recurrent process in reality. To enable breeders and researchers to evaluate

the effectiveness of competing decision-making strategies, we present a

modular simulation framework for reciprocal recurrent selection-based hybrid

breeding. Consisting of multiple modules such as heterotic separation, genomic

prediction, and genomic selection, this simulation framework allows breeders to

efficiently simulate the hybrid breeding process with multiple options of

simulators and decision-making strategies. We also integrate the recently

proposed concepts of transparent and opaque simulators into the framework

in order to reflect the breeding process more realistically. Simulation results

show the performance comparison among different breeding strategies under

the two simulators.

KEYWORDS

hybrid breeding, reciprocal recurrent selection, opaque simulator, genomic prediction,
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1 Introduction

Hybrid breeding typically refers to breeding among genetically diverse pure line

populations to harvest hybrid progeny F1 that have superior performance in certain

favorable traits over their inbred parents. This phenomenon is known as heterosis. The

concept was validated by some early recorded experiments (Shull, 1908; Shull, 1909). A

number of economically important species have benefited from hybrid breeding, including

maize, rice, and sorghum (Fu et al., 2014; Labroo et al., 2021). However, the mechanism has

not yet reached a consensus and there are three possible hypotheses for the explanation of

overperformance of hybrid offspring. The dominance hypothesis states that heterosis is due
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to dominant alleles from either parent cancelling the effect of

deleterious recessive alleles contributed by the other parent in the

hybrid (Davenport, 1908; Bruce, 1910; Jones, 1917). The

overdominance hypothesis attributes heterosis to the fact that

heterozygous genotypes are more adaptive than homozygous ones

on a single locus (Shull, 1908; Shull, 1909). The epistasis hypothesis

attributes the contribution of positive epistatic interactions between

non-allelic genes to heterosis (Minvielle, 1987).

Hybrid breeding attempts to take advantage of dominance

effects (Hallauer et al., 2010) by breeding for inbred parents

whose F1 progeny will possess positive heterosis. To address the

assessment and selection for heterosis, hybrid breeding usually

makes use of self-pollinated or double-haploid inbred lines,

followed by progeny evaluation in heterotic pools (Fritsche-Neto

et al., 2021). As such, hybrid breeding involves both inter-

population breeding and intra-population breeding (Labroo et al.,

2021). There are three main steps in hybrid breeding: (1) selecting

founders of heterotic pools, (2) crossing parental lines within

heterotic pools, and (3) selecting breeding parents for offspring

production (Labroo et al., 2021). As a representative approach,

reciprocal recurrent selection (RRS) was pioneered to help develop

selective maize recombinant lines featuring the heterosis selection

(Robinson et al., 1949). It is a cyclical breeding procedure designed

to improve the cross of two populations from different heterotic

groups, where genotypes from two homozygous populations are

evaluated in reciprocal crosses and the best-adapted genotypes of

each population are selected and recombined to give rise to

improved hybrid (Santos et al., 2005; Li et al., 2008).

Owing to the resource-intensive and time-consuming nature of

the RRS process, it is challenging to design, validate, and compare

algorithms for the many decisions to be made in RRS. As a result, it

becomes important to use a simulation framework that can quickly

and realistically simulate the process, as alluded to in Labroo et al.

(2022) and Powell et al. (2020). An ideal framework should consist

of simulation modules (e.g., phenotyping, genotyping, and meiosis)

and decision-making modules (e.g., genomic prediction and

genomic selection); to address heterosis in hybrid selection,

dominance effects should also be considered in the decision-

making modules. Existing simulation tools for plant breeding that

build upon diverse mechanisms include AlphaSimR (Gaynor et al.,

2021), AlphaSim (Faux et al., 2016), QM Sim (Sargolzaei and

Schenkel, 2009), MoBPS (Pook et al., 2020), XSimV2 (Chen et al.,

2022), and MBP (Gordillo and Geiger, 2008). Breeders can obtain

genotype and/or phenotype at the individual or population level

after providing inputs such as the numbers of chromosomes and

loci and quantitative trait loci (QTL), minor allele frequency (MAF)

of each locus, mutation rates, heritability, and pedigree (Pook et al.,

2020). The implemented selection methods are mainly truncation

selection based on different criteria such as phenotypes, genetic

values, breeding values, or estimated breeding values, without

directly accounting for dominance effects.

In this paper, we performed comparisons among different

breeding strategies under the simulation framework for RRS using

transparent and opaque simulators. The concepts of transparent

and opaque simulators were formally defined and formulated in

Amini et al. (2021) for genomic selection. In Gaynor et al. (2021),
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similar concepts were implemented in the AlphaSimR with multiple

genetic effects and genomic prediction and selection methods. The

defining feature of a transparent simulator is the simplifying

assumption that the observed genomic data, which are used by

the decision-making modules for genomic prediction and genomic

selection, are the complete genomic information that, together with

the environment, contributed to the determination of phenotype. In

contrast, an opaque simulator acknowledges the fact that the

observed genomic data are only a subset of the whole genomic

information, and the unobserved genomic information also

contributes to the determination of phenotype. Since opaque

simulators intuitively reflect nature more accurately than

transparent ones, we are curious to compare the performances of

different genomic prediction and genomic selection algorithms

under these two simulators.
2 Method

The workflow of the RRS simulation framework is illustrated in

Figure 1, which has intra-population breeding as a sub-component

(Hallauer et al., 2010; Labroo et al., 2021). Intra-population

breeding refers to the common strategy in plant breeding to

perform recurrent individual evaluation and crosses within a

given pool of candidates.

As shown in Figure 1, RRS consists of five steps: (1) first select

and divide the raw pool of individuals into two different groups,

which become the heterotic candidates A and B; (2) mutually test

cross A and B, and perform hybrid selection to identify A0
and B0

that contribute to heterosis; (3) mate and cross the elites to enhance

genetic diversity; (4) let A0
and B0

go through intra-population

breeding to exploit genetic gains; and (5) convert the heterozygotes

to homozygotes by doubled haploid or self-crossing and prepare for

the next cycle. Major modules of the RRS workflow include test

cross and hybrid selection, mating and cross, intra-population

breeding (including genotyping and phenotyping, genomic

prediction, genomic selection, and meiosis), and homozygote

conversion, which will be explained in detail in the following

subsections.
2.1 Nomenclature

Here, we define the notations used in this paper.

N Number of the individuals in a population, a scalar

L Number of SNPs of an individual, a scalar

G Genotype of a population, a binary matrix G ∈ BL�N�2, with element Gi,j,m

indicating whether the allele in the 1st (m = 1) or 2nd (m = 2)
chromosome of diploid individual i at locus j is a major allele (Gi,j,m = 1)

or a minor allele (Gi,j,m = 0)

a Additive effect, a vector a ∈ RL , with aj being the allele effect for locus j

(Continued)
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Continued

b Dominance effect, a vector b ∈ RL , with bj being the allele effect for locus j

r Recombination frequencies, a vector r ∈ RL−1, with rj being the

recombination frequency between loci j and j + 1

v Genetic estimated breeding values (GEBVs), a vector v ∈ RN , with vi being
the GEBV of individual i
F
ronti
We further define the indicator of accumulating additive effects

at the jth locus of the ith individual as

gi,j = Gi,j,1 + Gi,j,2i = 1,⋯,N ;   j = 1,⋯, L : (1)

and use di,j to indicate heterozygosity at the jth locus of the ith

individual as

di,j = I(gi,j = 1)i = 1,⋯,N ;   j = 1,⋯, L : (2)

Define the hidden genotypic information as g
0
i,q and d

0
i,q for q =

f1, 2,⋯,Qg and the corresponding additive effects a
0
q and

dominance effects b
0
q. Let �G denote the whole genome, which is a

mixture of partially observed genotypes G and the hidden

information G
0
. Let �r denote the recombination frequency for �G.

The evaluation metric mainly used in the article is GEBV and we

can calculate it for the ith individual as

vi =o
L

j=1
ajgi,j +o

L

j=1
bjdi,j (3)

For the phenotypic values p = (pi), we further define e = (ei) as

the corresponding environmental effects where ei ∼ N(0,s 2
e ).
ers in Plant Science 03
Assume the phenotypic values are composed of genotypic and

environmental effects so that we have

pi =o
L

j=1
ajgi,j +o

L

j=1
bjdi,j + ei (4)

The variance for the environmental effects is controlled by

broad-sense heritability H2 and may be subject to changes in

different breeding cycles and can be shown in the following

equation:

H2 : =
Var   (Genotype)
Var   (Phenotype)

=
Var   (p − e)
Var   (p)

(5)

s 2
e = o

n
i=1(pi − �p)2

n − 1
(1 −H2) : (6)
2.2 Genotyping and phenotyping

Genotyping is the process of obtaining genomic information,

and phenotyping is the evaluation of traits of interest of plant

individuals. We describe the simulation of genotyping and

phenotyping steps using transparent and opaque simulators

as follows.

* A conventionally used transparent simulator makes two

major assumptions: (1) the whole genome of an individual

contains no more information than what is revealed by the
FIGURE 1

Workflow of RRS. Each block is a process step and the illustrations can be found in the following subsections. The blue bubble contains the process
of general intra-population breeding, which is repeated within the overall RRS. Each step will be also expanded.
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genetic markers and (2) the true genetic effects (aj and bj) for all
markers are the same as the results from the genomic prediction. As

such, the phenotypic value of individual i is determined as

pi = vi + ei =o
L

j=1
ajgi,j +o

L

j=1
bjdi,j + ei (7)

where aj and bj are, respectively, additive and dominance

genetic effects of allele j, and ei is a random error term for

individual i.

* In the proposed opaque simulator, both assumptions made in

transparent simulators are relaxed. A separate genotype is assumed

to represent the ground truth genome, which is a superset of the

observed genotype; the phenotypic value is determined by the whole

genome, whose ground truth genetic effects are never revealed to the

genomic prediction module. As such, the phenotypic value of

individual i is determined as

pi = vi + ei =o
L

j=1
ajgi,j +o

L

j=1
bjdi,j+o

Q

q=1
a

0
qg

0
i,q+o

Q

q=1
b

0
qd

0
i,q + ei, (8)

where a
0
q and b

0
q are, respectively, additive and dominance

genetic effects of hidden allele q that exists in the ground truth but

unobservable by other modules.
2.3 Genomic prediction

Genomic prediction is a technology that builds the quantitative

relationships between phenotypic responses p and the SNP

information G, and predicts GEBV v̂ to guide the computation-

assisted selection. The sequenced and phenotyped group are often

treated as the sample for effect estimation. Three predictors are

considered in this paper.

* Bayesian predictor. We use the following Bayesian linear

mixed model (P´erez and de los Campos, 2014; Lopes et al., 2015) to

carry out the estimation based on the observable genotypes G:

pi = m +o
L

j=1
ajgi,j +o

L

j=1
bjdi,j + ϵi, (9)

aj s
2
a ∼ N(0,s2

a ), bj
�� ��s 2

d ∼ N(0,s 2
d ), ϵi ∼ N(0,s 2

ϵ )

where m is the mean value within the group and ϵi is the random

error for individual i with mean zero and a fixed variance sϵ. Each

additive effect aj and dominance effect bj are assumed a normal

distribution with mean zero and a fixed variance denoted by s 2
a and

s 2
b , respectively. With estimated m̂ , âj, and b̂j, the estimated GEBV

v̂i for individual i is then calculated as

bvi = m̂ +o
L

j=1
bajgi,j +oL

j=1

bbjdi,j : (10)

* Perfect predictor. This represents an ideal prediction

algorithm that is able to perfectly estimate the ground truth

GEBV for any individual i:

bvi = vi : (11)
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Depending on whether a transparent or opaque simulator is

used, vi takes the definition in either Equation (7) or

(8), respectively.

* Phenotypic predictor. This predictor simply uses the

observed phenotype as the estimated GEBV:

bvi = pi : (12)
2.4 Genomic selection

The goal of the genomic selection module is to select breeding

parents based on genotypic and/or phenotypic information.

Here, we consider the widely used truncation selection, which

selects individuals with the highest GEBVs as breeding parents.

This selection algorithm can be formulated as the following

optimization model:

maximize  o
N

i=1
xiv̂ i (13)

subject to o
N

i=1
xi = M (14)

xi ∈ 0, 1f g, i = 1,…,N : (15)

where binary decision variable xi indicates whether individual i

is selected (xi = 1) or not (xi = 0), and M is the number of

individuals to be selected.
2.5 Meiosis

When two individuals i1 and i2 are crossed, the genotype of

their progeny is simulated using the cross( · ) function, which has

the same procedures as the reproduce step in Goiffon et al. (2017).

The output of cross(ot)cross(ot)cross( · ) can be viewed as an

offspring conceived from one chromosome provided by each

parent and the recombinations controlled by r.

Let matrix G = fGi,j,mg for i = f1,⋯,Ng,   j = f1,⋯, Lg,  m =

f1, 2g denote SNP of all haplotype blocks for the transparent

simulator and �G = f�Gi,j
0
,mg,   j

0
= f1,⋯, �Lg for the opaque

simulator. Vectors of recombination rates r = frjg for j = f1,⋯, Lg
and �r = f�rj0 g for j

0
= f1,⋯, �Lg match the length of SNPs for G and

�G. Note that G was employed in the transparent simulator and was

also taken as the set of markers in the opaque simulator; G
0
was the

hidden genomic information and was only used in the opaque

simulator. The relationship can be established as �G = fG,G0 g. The
application of cross( · ) for the transparent and opaque simulator

can be viewed as

Gt+1 = cross(Gt
i1 ,G

t
i2 , r), (16)

�Gt+1 = cross(�Gt
i1 ,

�Gt
i2 ,�r) : (17)
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2.6 Test cross and hybrid selection

Test cross is a nontrivial step to provide the heterogeneous

progeny for further hybrid breeding. Let us interpret the process

with the following matrix notation: assume the test cross has been

executed mutually between N homozygous individuals from

population A and B, denoted as fa1, a2,⋯, aN } and fb1, b2,⋯, bN
g, respectively. The indices for hybrids are therefore denoted as (

ak, bl), where k = f1,⋯,Ng and l = f1,⋯,Ng. We use vak ,bl to

denote the GEBV of hybrid with ak and bl as parents so that the

GEBV matrix V for the test cross hybrids can be written with rows

of ak and columns of bl as

  b1 b2 ⋯ bN−1 bN

V   =

a1

a2

⋮
aN−1

aN

va1,b1 va1,b2 ⋯ va1,bN−1
va1,bN

va2,b1 va2,b2 ⋯ va2,bN−1
va2,bN

⋮ ⋮ ⋮ ⋮ ⋮

vaN−1,b1 vaN−1,b2 ⋯ vaN−1,bN−1
vaN−1,bN−1

vaN ,1 vaN ,2 ⋯ vaN ,bN−1
vaN ,bN

0
BBBBBBBB@

1
CCCCCCCCA

Note that the above GEBV matrix V is actually realized by a

specified predictor so that all the values within cell of V̂ would

be v̂ ak ,bl .

Given the results of test cross, genomic selection aims to identify

individuals from one population that have exhibited promising

combining ability with those from the other population. Therefore,

the compromise of dominance effects in addition to additive effects

is the concern for genomic selection. Based on the two populations

A and B and their hybrid GEBV matrix V̂ , our goal is to select

2K   (2K < N) individuals from each to get two groups A0
and B0

featuring good hybrids with high GEBVs.

We describe here two common strategies for practical

applications and show the difference in their focus on hybrid

breeding in optimization, i.e., the different ways of evaluating the

V̂ matrix. Note that the following formulations are based on

genomic selection on A so that we focus on the rows of matrix V̂

. The formulations can be adjusted to apply to the genomic selection

on B when switching to the columns of V̂ .

* General combining ability (GCA). GCA is designed to

measure the average performances of test cross as evaluation over

the row-wise (or column-wise) means of GEBV matrix V̂ . It

can reflect the general combining pattern between inbred lines

from two populations.

maximizeo
N

k=1

xko
N

l=1

v̂ ak ,bl

N
(18)

subject to o
N

k=1

xk = 2K , (19)

xk ∈ 0, 1f g, k = 1,…,N : (20)

* Specific combining ability (SCA). SCA is designed as the

evaluation of the row-wise (or column-wise) maximum of GEBV
Frontiers in Plant Science 05
matrix V̂ , which focuses more on the top performer contributed by

dominance effects. To give the formulations, we define decision

variables yk,l ∈ f0, 1g in the form of a matrix Y with the same

dimensions as the test cross GEBV matrix V̂ , and it represents

whether the crossing between ak and bl would be chosen (=1) or

not (=0).

maximize o
N

k=1
o
N

l=1

yk,l v̂ ak ,bl (21)

subject to o
N

k=1

xk = 2K , (22)

o
N

l=1

yk,l = 1, k = 1,…,N , (23)

yk,l ≤ xk, k = 1,…,N , (24)

yk,l ≤ xk, k = 1,…,N , (25)

yk,l ∈ 0, 1f g, k = 1,…,N , l = 1,…,N : (26)
2.7 Mating and cross

After the identification of homogeneous candidates that have

the satisfying ability to reasonably compensate with individuals

from the other genetically different population, the breeders need to

cross the candidates by certain mating designs to improve their

current GEBVs. We useA0
as an example and the same strategy can

be generalized to B0
. Assume the set fA0

= fa0
(1), a

0
(2),⋯, a

0
(2K)g

denotes the sorted individuals in decreasing order of GEBVs, then

two designs are to be discussed.

* Adjacent. One direct way to produce progeny with high

GEBV based on two superior parents, i.e., a
0
(1) pairs with a

0
(2), a

0
(3)

pairs with a
0
(4), and so on until a

0
(2K−1) pairs with a

0
(2K). Each pair is

crossed to produce S heterozygous progeny.

* Complementary. Consider the possible complementary

desirable alleles from parents so that mating with inferior ones

may produce progeny with even higher GEBV, i.e., a
0
(1) pairs with

a
0
(K), a

0
(2) pairs with a

0
(K+1), and so on until a

0
(K−1) pairs with a

0
(2K).

Each pair is crossed to produce S heterozygous progeny.
2.8 Conversion to homozygotes

The last step of one breeding cycle is the conversion from

heterozygous individuals to homozygous so that another cycle of

hybrid breeding could be initialized. Doubled haploid, which is

the replication of one gamete, and self-cross can both achieve

the goal.
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3 Results

3.1 Simulation setting

This paper uses the same dataset as Moeinizade et al. (2019),

which contains diploid SNP data for N = 369, L0 = 140, 6757 maize

inbred lines. Recombination rates r are based on the genetic map

developed from maize nested association mapping and is

considered as “ground truth” for simulation and that errors of

estimation have an equal effect on all selection methods (Yu

et al., 2008).

To facilitate the simulation, we chose L = 1, 000 and �L = 10, 000

to extract markers and constructed haplotype blocks. The

transparent simulator used those L = 1, 000 markers for both

simulation and decision-making modules, whereas the opaque

simulator used the same L = 1, 000 markers in the decision-

making module but �L = 10, 000SNPs in simulation modules. The

comparisons are listed in Table 1. Vectors of recombination rates

r = frjg for j = f1,⋯, Lg and �r = f�rj0 g for j
0
= f1,⋯, �Lg can be

determined by either fixing the largest L − 1 and �L − 1 ones or using

the water pipe algorithm (Han et al., 2017). To obtain homozygous

individuals, for each individual within G and �G, one gamete is

randomly chosen and duplicated.

Vectors for the additive effects, a = fajg and �a = f�aj
0 g,

positive dominance effects, b(+) = fb(+)
j g and �b(+) = f�b(+)

j
0 g, and

negative dominance effects, b (−) = fb (−)
j g and �b(−) = f�b(−)

j
0 g, were

set to satisfy the following equations:

o
L

j=1
aj = o

�L

j
0
=1

�aj
0 = 30,

o
L

j=1
b (+)
j = o

�L

j
0
=1

�b(+)
j0 = 20,

o
L

j=1
b(−)
j = o

�L

j
0
=1

�b (−)

j
0 = −5:

and Figures 2 and 3 showed our settings for the assumed ground

truth genomic effects.

We designed 24 experiments and conducted simulations based

on these settings to test the performance of framework. The layout

for experiment settings is shown in Table 2, which traverses all

distinct combinations of simulator, predictor, mating strategy, and

genomic selection to compare the selection performances. Each

experiment was repeated 100 times. Note that the parameter
Frontiers in Plant Science 06
estimation of the Bayesian predictor was realized by using the

BayesA model and the R package “BGLR” (P´erez and de los

Campos, 291 2014). Each simulation consists of the following steps:
• Step 1. Randomly choose 200 individuals from the total of

369 and arbitrarily separate them into heterotic pool A and

B by the proposed heterotic separation algorithm.

• Step 2. Let A and B go through RRS as shown in Figure 1.

• Step 3. Mutually cross the two new heterotic pools, and

record and analyze the average GEBV of the top 100 hybrid

offspring C as an evaluation of hybrid breeding.

• Step 4. Repeat Step 2 and Step 3 until the pre-specified

cycle numbers are achieved. Here, we choose T = 6.
We actually presented the “ground truth” GEBVs for all the

results since all the authentic genomic effects are assumed and the

true GEBV reflects the true enhancement of breeding on

genomic effects.
3.2 GEBV comparisons for simulators,
predictors, and mating

We presented average GEBVs for two parental populations and

their hybrid children population during T = 6 breeding cycles

under different settings through the simulations. Figure 4 shows

trends of average GEBVs of heterotic parental pools A and B and

the hybrid children C for each of the combinations consisting of

three predictors, i.e., perfect, phenotypic, and Bayesian predicted;

two mating strategies, i.e., adjacent and complementary; and two

genomic selections, i.e., GCA and SCA, when the transparent

simulator is fixed. Figure 5 shows trends of GEBVs given the

simulator is opaque. To zoom in the comparison among C
specifically, Figure 6 shows the genetic gains for children

population C, which meant average GEBVs for each breeding

cycle were subtracted from the baseline value in T = 0.

From Figures 4 and 5 as a whole, we can conclude that the use of

RRS was able to accomplish the goal of hybrid breeding: the

trajectories of average GEBVs of A, B, and C showed an

increasing pattern in each experiment, and the GEBVs of hybrid

progeny C were higher compared to their parents. In addition, we

can see the overall influences of the transparent simulator and the

opaque simulator on hybrid breeding; i.e., the GEBV growth of the

three populations was much greater with the transparent simulator

than with the opaque simulator. We believe that this is reasonable

because the additive and dominance effects are orders of magnitude

smaller in the opaque simulator, and it would be more difficult to

accumulate the same amount of advantage during recombination

events. This serves as an important indication that computational

plant breeding is likely to overestimate breeding results.

Genetic gains of the children population C are shown in Figure 6
to more clearly analyze the effect of different settings for hybrid

breeding. First, we can observe the impacts of the three predictors:

the perfect predictor brought the upper limit of the genetic gains,

followed by the Bayesian predictor and finally by the phenotypic

predictor. This ranking accentuated the need to use genetic
TABLE 1 Number of markers deployed in transparent and opaque
simulators in the experiment setting.

Transparent Opaque

Simulation
(phenotypes, meiosis)

1,000 10,000

Decision-making
(prediction, selection)

1,000 1,000
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prediction to aid breeding. Moreover, when we compare the first

column with the third column, and the second column with

the fourth column, we find that SCA boosted more genetic gains

for the Bayesian predictor, and GCA had greater benefits for the

phenotypic predictor. Furthermore, the responses of the

transparent and the opaque simulator to the two genomic

selections also differed in the first and second row, with the
Frontiers in Plant Science 07
advantages of SCA being only limited to the phenotypic predictor

given the transparent simulator. Nevertheless, SCA improved the

genetic gains of the Bayesian predictor, making the performance

closer to the perfect predictor when using the opaque simulator.

These differences underscored the observable benefits of more

subtle design of genomic selection and mating on the

opaque simulator.
FIGURE 3

Assumed ground truth dominant effects (red for positive dominant effects, b (+) and �b (+); blue for negative dominant effects, b (−) and �b (−)).
FIGURE 2

Assumed ground truth additive effects (green color, a and �a).
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3.3 Influences of environmental effect
through heritability

In real-life production, the influence of the environment on plants

cannot be ignored. We use broad-sense heritability H2 to adjust the

effect of environment on plant phenotypes in this article. Fluctuations in

plant phenotypes would affect the prediction accuracy of the Bayesian

predictor and the evaluation of the phenotypic predictor, while they

have no effect on the perfect predictor, so that we did sensitivity analysis

for H2 on experiments 5 to 12 and 17 to 24. Three values of H2   (0:2

,   0:5,   and   0:8) were chosen, and the average genetic gains of the

children’s population C were recorded as the results. As shown in

Figure 7 for the Bayesian predictor and Figure 8 for the phenotypic

predictor, each subplot showed the performance of the hybrid breeding

under the same predictor and different H2. The performance by the

perfect predictor was also given as the lower bound of the shaded area

in each subplot and was the same as the result from Figure 6.
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The results showed that genetic gains of both the Bayesian

predictor and the phenotypic predictor were amplified with

increasing H2. The boundaries between trajectories were clear,

and all of them fell below the performance of the perfect

predictor in Figure 8. For the Bayesian predictor, we noted that

the genetic gains given by the transparent simulator were initially

led by the case at H2 = 0:8, and after a few cycles, they were

overtaken by the performance at H2 = 0:5. The opaque simulator,

on the other hand, maintained the trend of greater genetic gains for

larger H2. Moreover, at H2 = 0:5 and 0.8, the genomic selection

SCA improved the genetic gains of the Bayesian predictor even

more than the perfect predictor, especially for the opaque simulator.

Both signals pointed to the fact that improved prediction accuracy

needed to be paired with appropriate and effective genomic

selection and mating strategies to improve breeding performance

even more. This was true even for imperfect predictions of the

opaque simulator.
TABLE 2 Each experiment represented different combinations of simulator, predictor, mating strategy, and genomic selection for offspring
performance comparison.

Experiment Index Simulator Predictor Mating Genomic Selection

1 Transparent Perfect Adjacent GCA

2 Transparent Perfect Adjacent SCA

3 Transparent Perfect Complementary GCA

4 Transparent Perfect Complementary SCA

5 Transparent Phenotypic Adjacent GCA

6 Transparent Phenotypic Adjacent SCA

7 Transparent Phenotypic Complementary GCA

8 Transparent Phenotypic Complementary SCA

9 Transparent Bayesian Adjacent GCA

10 Transparent Bayesian Adjacent SCA

11 Transparent Bayesian Complementary GCA

12 Transparent Bayesian Complementary SCA

13 Opaque Perfect Adjacent GCA

14 Opaque Perfect Adjacent SCA

15 Opaque Perfect Complementary GCA

16 Opaque Perfect Complementary SCA

17 Opaque Phenotypic Adjacent GCA

18 Opaque Phenotypic Adjacent SCA

19 Opaque Phenotypic Complementary GCA

20 Opaque Phenotypic Complementary SCA

21 Opaque Bayesian Adjacent GCA

22 Opaque Bayesian Adjacent SCA

23 Opaque Bayesian Complementary GCA

24 Opaque Bayesian Complementary SCA
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FIGURE 4

Breeding performance of experiments 1 to 12, i.e., the simulator is fixed as a transparent simulator. Each subtitle above the subfigure represents the
experiment index. A and B are parental populations and they are denoted by yellow and blue lines. C is the hybrid progeny denoted by green lines.
The solid lines represent using Bayesian predictor, the dashed lines represent using perfect predictor, and the dot-dashed lines represent using

phenotypic predictor. Parameter settings include M = 40,  K = 10,   S = 20,  and H2 = 0:2.
FIGURE 5

Breeding performance of experiments 13 to 24, i.e., the simulator is fixed as an opaque simulator. Each subtitle above the subfigure represents the
experiment index. A and B are parental populations and they are denoted by yellow and blue lines. C is the hybrid progeny denoted by green lines.
The solid lines represent using Bayesian predictor, the dashed lines represent using perfect predictor, and the dot-dashed lines represent using

phenotypic predictor. Parameter settings include M = 40,  K = 10,   S = 20, and  H2 = 0:2.
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4 Conclusions

In this paper, we extended the concepts of transparent and

opaque simulators to RRS-based hybrid breeding and compared

the performances of various strategies for genomic prediction,

genomic selection, and mating. In previous genomic prediction
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and selection models, researchers mostly assumed transparent

simulators, in which the same set of markers were deployed in

both phenotype simulation and genomic prediction. Recently, the

concept of opaque simulators was defined in Amini et al. (2021),

and similar concepts were independently implemented in the

breeding simulation package AlphaSimR (Gaynor et al., 2021).
FIGURE 6

Genetic gain for the children group C computed from Figures 4 and 5. The orange solid lines represent using Bayesian predictor, the gray dashed
lines represent using perfect predictor, and the yellow dot-dashed lines represent using phenotypic predictor.
FIGURE 7

Sensitivity analysis on heritability H2 when Bayesian predictor was applied. In each subfigure, the lower bound of the gray shaded area represented
the genetic gains of C when using perfect predictor, and the solid lines represented the genetic gains when using Bayesian predictor. Colors

indicated the magnitudes of H2.
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Owing to the opacity and complexity of nature, we believe that

opaque simulators are more realistic and appropriate, where the

decision-making modules have access to a smaller genotype data

than what is used by the simulation modules to produce the

phenotype. As such, the use of opaque simulators is expected to

help researchers design genomic prediction and genomic

selection algorithms that better represent reality and have more

robust performance in real-world breeding programs.

The framework also incorporates broad-sense heritability

as an adjustment for environmental effects to bring it closer to

reality. A sensitivity analysis was performed on the environmental

effect H2 for both the phenotypic predictor and the Bayesian

predictor, which are the two predictors that would be impacted

by the varying phenotypic values. One important finding was

that even with imperfect genetic prediction results, genomic

selection and mating strategies would still potentially benefit

hybrid breeding. This may direct us to pay some attention

to more sophisticated selection and mating algorithms in

future research.

This study is not without its limitations. For example, the

proposed framework only considered dominance effects in the

simulation modules, but did not explicitly incorporate epistatic

effects or genotype-by-environment (G×E) interactions, which also

play critical roles in the breeding process. The purpose of this

omission was to avoid complex interactions between epistasis or

G×E and opaque simulators. After observing the differences
Frontiers in Plant Science 11
between the transparent and opaque simulators, a natural follow-

up direction is to introduce epistasis and G×E to make the breeding

simulator more realistic.
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