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Complete chloroplast genomes
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relationships, and
comparative analysis
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Wenlong Gou2, Xiong Lei2, Yi Xiong1, Yanli Xiong1,
Qingqing Yu1, Yao Ling1* and Xiao Ma1*

1College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China,
2Sichuan Academy of Grassland Sciences, Chengdu, China, 3College of Grassland Science and
Technology, China Agricultural University, Beijing, China
Hordeum L. is widely distributed in mountain or plateau of subtropical and warm

temperate regions around the world. Three wild perennial Hordeum species,

including H. bogdanii, H. brevisubulatum, and H. violaceum, have been used as

forage and for grassland ecological restoration in high-altitude areas in recent

years. To date, the degree of interspecies sequence variation in the three

Hordeum species within existing gene pools is still not well-defined. Herein,

we sequenced and assembled chloroplast (cp) genomes of the three species.

The results revealed that the cp genome ofH. bogdanii showed certain sequence

variations compared with the cp genomes of the other two species (H.

brevisubulatum and H. violaceum), and the latter two were characterized by a

higher relative affinity. Parity rule 2 plot (PR2) analysis illuminated that most genes

of all ten Hordeum species were concentrated in nucleotide T and G. Numerous

single nucleotide polymorphism (SNP) and insertion/deletion (In/Del) events

were detected in the three Hordeum species. A series of hotspots regions

(tRNA-GGU ~ tRNA-GCA, tRNA-UGU ~ ndhJ, psbE ~ rps18, ndhF ~ tRNA-UAG,

etc.) were identified by mVISTA procedures, and the five highly polymorphic

genes (tRNA-UGC, tRNA-UAA, tRNA-UUU, tRNA-UAC, and ndhA) were proved

by the nucleotide diversity (Pi). Although the distribution and existence of cp

simple sequence repeats (cpSSRs) were predicted in the three Hordeum cp

genomes, no rearrangement was found between them. A similar phenomenon

has been found in the cp genome of the other seven Hordeum species, which

has been published so far. In addition, evolutionary relationships were
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reappraised based on the currently reported cp genome of Hordeum L. This

study offers a framework for gaining a better understanding of the evolutionary

history of Hordeum species through the re-examination of their cp genomes,

and by identifying highly polymorphic genes and hotspot regions that could

provide important insights into the genetic diversity and differentiation of

these species.
KEYWORDS

Hordeum, chloroplast genome, parity rule 2, repeated sequences, hotpot,
phylogenic tree
1 Introduction

As secretory organs and active metabolic centers, chloroplasts (cp)

are considered the source of energy that drives the evolution of early

life (Liu et al., 2018). Although most of the genetic information is

provided by the nuclear genome, the cp genome is used to perform

variation analysis due to its small size and matrilineal inheritance

without gene recombination interference (Gumeni et al., 2017; Shen

et al., 2018). Therefore, sequence variation in cp genomes plays a key

role in studying plant evolution, and genetic diversity (Xiong et al.,

2020a). With the advent of high-throughput sequencing technologies,

especially Illumina sequencing, sequence and structure information

obtained from the whole cp genome has been elucidated in some vital

species (Ogihara et al., 2000; Sajjad et al., 2017). Cp genomes contain

several functional genes, such as photosynthesis-related genes,

expression-related genes, and biosynthesis-related genes (Bailey et al.,

2020). Differential gene detection and phylogeny analysis among

genera or families using cp genome sequences is another effective

method for studying evolutionary patterns due to the conservative

property of cp DNA, mainly in content and arrangement mode.

Generally, the structure of the cp genome is quadrantal, containing

two inverted repeat (IR) sequences divided by a large single-copy (LSC)

region and a small single-copy (SSC) region (Wu et al., 2021).

However, four specific Hordeum species, H. pubiflorum, H.

murinum, H. marinum, and H. bulbosum, were a noticeable

exception to this typical structure with IR loss or missing introns

(Bernhardt et al., 2017). It is noteworthy that this phenomenon was

rarely reported in plants in the Poaceae family but it was often found in

plants in the Leguminaceae family (Xue et al., 2019).

Derived from the Triticeae tribe of the Gramineae family,

Hordeum L. is composed of approximately 45 species or subspecies,

which are distributed in the southern and northern hemispheres,

with four species diversity centers, including Southwest Asia,

Central Asia, North America, and Southern America (Brassac and

Blattner, 2015; and Reinert et al., 2019). The genus Hordeum

consists of one cultivated species, namely H. vulgare, and

abundant wild species, such as H. vulgare subsp. spontaneum, H.

bogdanii, H. brevisubulatum, H.violaceum (H. roshevilzii), etc. Wild

species — which gradually undergo environmental selection —
02
often possess favorable genes such as disease resistance and insect

resistance genes and thus are considered important germplasms for

genetic improvement (Alyr et al., 2020). Investigation of the genetic

diversity and kinship between wild and cultivated species may

provide a perspective for the development and utilization of

advantageous genes and extension of the genetic basis of cultivars.

Previous studies have explored the phylogenetic relationships

between wild and cultivated and annual and perennial Hordeum

species, which mainly depended on the mitochondrial genome

sequences (Hisano et al., 2016) or partial nuclear single-copy

genome sequence analysis (Jonathan and Blattner, 2015).

However, there are relatively few reports on the phylogenetic

relationships using complete cp genomes of the genus Hordeum.

Particularly, large-scale phylogenetic analysis of wild perennial

species originating from North Central Asia (H. bogdanii, H.

brevisubulatum, and H. violaceum) and those distributed

elsewhere is still insufficient. Therefore, performing complete cp

genome sequencing of these three wild perennial Hordeum species

to identify some plastid key genes in interspecific genetic

differentiation between the wild and cultivated and/or perennial

and annual Hordeum species is of great significance, to further

improve the phylogenetic relationships and genome structure of the

genus Hordeum.

Here, complete cp genomes of three wild perennial Hordeum

species, H. bogdanii, H. brevisubulatum, and H. violaceum, were

sequenced and annotated, to determine the cp genome size,

nucleotide diversity (Pi), repeat sequences, insertions/deletions

(In/Dels), single nucleotide polymorphisms (SNPs). Sequence

synteny, relative synonymous codon usage, Parity rule 2 (PR2)

analysis, rearrangements, and IR expansions or contractions were

evaluated among 10 Hordeum species (H. bogdanii, H.

brevisubulatum, H. violaceum, H. jubatum, H. bulbosum, H.

marinum, H. murinum, H. pubiflorum, H. vulgare subsp.

spontaneum, and H. vulgare). In addition, phylogenetic

relationships of the sequenced Hordeum species from other whole

sequenced Poaceae species were revealed. Meanwhile, the degree of

variation between wild and cultivated and annual and perennial

Hordeum species was further evaluated. This study contributes to

the expansion of the cp genome database.
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2 Methods

2.1 Plant material, DNA extraction
and sequencing

ThreeHordeum species,H. bogdanii, H. brevisubulatum, andH.

violaceum, were from NPGS (National Plant Germplasm System of

the United States; Supplementary Table 1). In total, 100 mg leaves

were harvested at the three-leaf stage, and then total genomic DNA

was extracted using the plant DNA Extraction Kit (Tiangen, Beijing,

China) as per manufacture’s instruction. DNA concentration was

quantified using 0.1% agarose gel, libraries were established, and

DNA with good quality was selected and sequenced using the

Illumina NovaSeq platform with a read length of PE150.
2.2 Chloroplast genome assembly
and annotation

The complete circular genome sequence cannot be directly

obtained by one-time splicing because of the characteristics of

next-generation sequencing (NGS), genomic repeats, a specific

structure of the genome, and related factors. Therefore, a different

complicated strategy was performed: The kernel modules were

assembled using the SPAdes v3.10.1 (Saint Petersburg State

University, Saint, Russia) (Safonova et al., 2014) software for the

cp genome of three species, which is not dependent on the reference

genome. The contig was obtained using the kmer iterative extend

seed. The SSPACE v2.0 procedure was used (BaseClear BV,

Einsteinweg, Leiden, The Netherlands) (Boetzer et al., 2011) to

acquire scaffolds by connecting contig sequences. The gap of

scaffolds sequence was constructed using Gapfiller V2.1.1

procedure (BaseClear BV, Einsteinweg, Leiden, The Netherlands)

to assemble a complete pseudo sequence (Boetzer and Pirovano,

2012). The alignment-correction method was used to align the

sequencing sequence into the pseudo genome, which was later

rearranged according to the cp structure of the three species,

thereby obtaining a complete cp circular genome sequence.

Cp gene structure annotation plays an important role in cp

genome sequencing. Blast v2.2.25 (U.S. National Library of

Medicine 8600 Rockville Pike, Bethesda MD, 20894 USA) (Kent

and Brumbaugh, 2002) was used to align CDS sequences of cp

genome in NCBI. The gene annotation results of cp genomes for

three Hordeum species were acquired using a manual correction.

Moreover, to obtain gene annotation, rRNA and tRNA sequences of

cp genomes were aligned in NCBI (https://www.ncbi.nlm.nih.gov/)

database using HMMER v3.1b2 (HHMI/Harvard University,

Boston, USA; The European Bioinformatics Institute, Cambridge,

UK) (Finn et al., 2011) and Aragorn v1.2.38 programs (Murdoch

University, Western Australia, Australia; Lund University, Lund,

Sweden) (Dean and Bjorn, 2004). In addition, H. vulgare subsp.

spontaneum (KC912688.1) was used as a reference sequence for

quality control of the cp genome after assembly.
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2.3 Prediction of repetitive sequences

The Simple Sequence Repeats (SSRs) markers are a class of

tandem repeats with motifs consisting of several nucleotides group

(usually 1~6) as repeating units. The SSR marker is called cpSSR

marker on cp genomes. CpSSR were identified and analyzed using

the software MISA v1.0 (Leibniz Institute of Plant Genetics and

Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466

Seeland, Germany) (Beier et al., 2017). CpSSR parameters were

described as A-B, with A representing the number of repetitions

and B representing the total number of the base unit in a sequence.

For example, 1-8 indicates more than 8 repetitions of a single-base,

2-5 indicates more than 5 repetitions of a double-base, 3-3 more

than three repetitions of triple-base, 4-3, 5-3, 6-3 and so on.

Furthermore, the interspersed repeats sequences, which are a

different kind of repetitive sequences from tandem repeats and

have both forward and palindromic repeats (including reverse and

complementary) with a minimum size of 15 bp, sequence coherence

of more than 90% and are distributed throughout the genome, were

identified using the Vmatch v2.3.0 (http://www.vmatch.de/) program.
2.4 Relative synonymous codon usage and
parity rule 2 analysis

The degeneracy of codons show that each amino acid has one to

six codons. The heterogeneity of synonymous codon usage is called

Relative Synonymous Codon Usage (RSCU). To highlight the

relative biasness between amino acids and codons, the RSCU was

analyzed using the MEGA v10.1.8 program (Kumar et al., 2008).

The complete cp genomes of the three Hordeum species

sequenced in this study and seven other Hordeum species (H.

bulbosum, H. jubatum, H. marinum, H. murinum, H. pubiflorum,

H. vulgare subsp. spontaneum, H. vulgare) were downloaded from

the NCBI database and used for PR2 analysis to evaluate nucleotide

usage bias in the coding genes of them (Wei et al., 2014). Base A, T,

C and G content at the third site of synonymous codons were

calculated using the MEGA v10.1.8 software.
2.5 Analysis of sequences variation
and Ka/Ks

SNP (Single Nucleotide Polymorphism) refers to the DNA

sequence polymorphism caused by the variation (insertions or

deletions (In/Dels)) of a single nucleotide at the genomic level and

accounts for more than 90% of known polymorphisms. The cp

genomes of three Hordeum materials were aligned using MAFFT

program, version v7.310 (https://mafft. cbrc. jp/alignment/software/)

(Standley, 2013) to identify SNP and In/Dels. In addition, the

nucleotide diversity (Pi) and Ka/Ks in this study were calculated

using the conjunct genes and protein-coding genes of the three

Hordeum materials detected. Base mutation, including non-
frontiersin.org
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Synonymous mutations (Ka) and synonymous mutations (Ks) causes

changes in amino acids, which ratios > 1 is called a positive selection

effect and < 1 is named a purified selection effect. Pi is considered an

important tool that able to reveal the variation of size of nucleic acid

sequences, and a range of potential molecular markers can be

provided based on the regions of high variability for population

genetics (Meng et al., 2018). The Ka/Ks and Pi values were calculated

using KaKs_Calculator v2.0 (https://sourceforge.net/projects/

kakscalculator2/) (Zhang et al., 2006) and VCFTOOLS (Danecek

et al., 2011), respectively. Nevertheless, before achieving the above

tasks, the CDS sequences of the conjunct genes in each species were

globally aligned using MAFFT software.
2.6 Multiple Cp genomes alignment

Alignment and collinearity of 10 Hordeum species complete cp

genomes, H. bogdanii, H. brevisubulatum, H. violaceum, H.

jubatum, H. bulbosum, H. marinum, H. murinum, H. pubiflorum,

H. vulgare subsp. spontaneum, and H. vulgare, was analyzed using

Mauve (Darling et al., 2004) and Mvista tools (http://

genome.lbl.gov/vista/mvista/submit.html). The IRSCOPE online

software (https://irscope.shinyapps.io/irapp/) was used to evaluate

the expansion or contraction of IR and SC regions boundary for six

species (H. bogdanii, H. brevisubulatum, H. violaceum, H. jubatum,

H. vulgare subsp. spontaneum, and H. vulgare).
2.7 Phylogenetic analysis

A total of 28 Poaceae species published in NCBI (Supplementary

Table 2), and three hordeum species (H. bogdanii (CNS0491101),H.

brevisubulatum (CNS0491102),H. violaceum (CNS0491103)) that in

this study were sequenced to establish the phylogenetic tree.

Saccharum spontaneum (LN896360.1) and Sorghum bicolor

(NC008602.1) were the outgroups. MAFFT and RAxML v8.2.10

software (https://cme. h-its. org/exelixis/software. html) that follow

GTRmodel and Hill Climbing algorithm were carried out to achieve

the multi-sequence alignment and construction of the phylogenetic

tree for different species, respectively.
3 Results

3.1 Characteristics of Cp genomes of six
Hordeum species

Due to the loss of the IR region in the cp genomes of H.

pubiflorum, H. murinum, H. marinum, and H. bulbosum, cp

genome characteristics of only six Hordeum species, H. bogdanii,

H. brevisubulatum, H. violaceum, H. jubatum, H. vulgare subsp.

spontaneum, and H. vulgare were selected for comparison of cp

genome characteristics (Figure 1). This comparison also included IR

expansion and contraction. H. vulgare had the smallest cp genome

size (136,462 bp) compared with that of the other five species (H.
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bogdanii (137,141 bp), H. brevisubulatum (137,002 bp), H.

violaceum (137,032 bp), and H. spontaneum (136,536 bp), H.

jubatum (136,826 bp), while it also had the highest GC content

and total number of genes. Illumina paired-end sequencing yielded

26,262,890, 25,330,242, and 25,890,515 ReadSum (pair-end reads)

from H. bogdanii, H. brevisubulatum, and H. violaceum,

respectively. Q20 and Q30 (the percentage of bases with a mass

value ≥20 and ≥30, respectively) were both more than 85%. The

three perennial species (H. bogdanii, H. brevisubulatum, and H.

violaceum) belonged to a typical quadrantal model, consisted of two

copies of IR regions (IRs 21,573-21,587 bp), and were separated by

LSC (81,128-81,169 bp) and SSC (12,728-12,798 bp) regions, which

are the common feature of the majority of plants in the Poaceae

family (Figure 1, Table 1). The overall GC content in the cp

genomes of H. bogdanii, H. brevisubulatum, and H. violaceum

was 38.23, 28.28, and 38.27%, respectively, and the percentage

distributed in the IR regions was the highest than that in LSC and

SSC regions. A total of 129, 131, and 131 genes were located in the

complete cp genomes of H. bogdanii, H. brevisubulatum, and H.

violaceum, respectively. Thirty-eight ribosomal RNA (rRNA) genes,

8 transfer RNA (tRNA) genes, and 85 messenger RNA (mRNA)

genes were distributed in bothH. brevisubulatum andH. violaceum.

Interestingly, the annual cultivated species (H. vulgare) had the

largest number of genes compared with the other five species, but

these genes these genes were all attributed to tRNA.

Out of the 113 genes were shared by the five cp Hordeum

genomes (H. bogdanii, H. brevisubulatum, H. violaceum, H. vulgare

subsp. spontaneum, and H. vulgare) (Table 2). 46 were annotated to

photosynthesis-related genes such as the large subunit of rubisco, a

subunit of photosystem I, a subunit of photosystem II, a subunit of

ATP synthase, cytochrome b/f complex, c-type cytochrome

synthesis, and subunit of NADH dehydrogenase. Thirty-four

genes were involved in self-replication, of which 30 genes and 4

genes were related to tRNA and rRNA, respectively. In addition, 12

genes encoding ribosomal proteins, as well as 14 genes were

assembled into transcription. Interestingly, trnI-GAU, trnG-UCC,

rps12, and rps16 genes were unique to two annual species (H.

vulgare subsp. spontaneum and H. vulgare), while trnT-CGU and

trnS-CGA genes were specific to three perennial species (H.

bogdanii, H. brevisubulatum, and H. violaceum). More mutations

may accumulate in introns because they are less constrained by

natural selection than exons (Xiong et al., 2020b). Ten genes that

contained a single intron in three cp genomes were collected

(Supplementary Table 3).
3.2 Repeat sequence analysis

Two different types of repeat sequences, which includes

scattered repetitive sequences (palindrome repeats and direct

repeats) and simple sequence repeats (SSR), were carefully

analyzed Using MISA v1.0 and Vmatch v2.3.0, respectively. A

total of 231 (forward type, 125 and palindromic type, 106), 220

(forward type 115 and palindromic type, 105), and 218 (forward
frontiersin.org
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type,115 and palindromic type 103) scattered repetitive sequences

were predicted in H. bogdanii, H. brevisubulatum, and H.

violaceum, respectively (Figure 2A). Their common characteristic

is the number of repeats reached the peak at a repeat length of 15 bp

(Figure 2C). SSR, a tandem repeat sequence of dozens of nucleotides

generally composed of a series of repeat units (1-6 bp in length), was

distributed throughout the genome. A total of 182 SSR in the cp

genome of H. bogdanii was detected, which was greater than that of
Frontiers in Plant Science 05
H. brevisubulatum (178) and H. violaceum (176) (Figure 2B). The

number of mononucleotides (primarily poly-A or poly-T)

accounted for the largest proportion of total SSR, which was

above 59% (Figure 2B). Interestingly, trinucleotide (AGC) and

tetranucleotide (AACA and AGAA) SSR were found only in H.

bogdanii, and other types of SSR nucleotides in the cp genome of the

three wild perennial Hordeum species were predicted with a fixed

distribution (Figure 2D), which warrants further investigation in
TABLE 1 Comparison of the six Hordeum chloroplast genomes.

Species Improvement
status

Size (bp) GC content (%)

tRNA rRNA mRNA GenesCp
genome LSC SSC IR Cp

genome LSC SSC IR

H. bogdanii Wild, perennial 137141 81169 12798 21587 38.23 36.20 32.10 43.87 38 8 83 129

H.
brevisubulatum

Wild, perennial 137002 81128 12728 21573 38.28 36.25 32.27 43.87 38 8 85 131

H. violaceum Wild, perennial 137032 81155 12731 21573 38.27 36.24 32.26 43.87 38 8 85 131

H. jubatum Wild, perennial 136826 80901 12665 21630 38.24 36.19 32.32 43.81 39 8 82 129

H. vulgare
subsp.
spontaneum

Wild, annual 136536 80612 12778 21573 38.30 36.30 32.25 43.84 39 8 83 130

H. vulgare Cultivate, annual 136462 81671 12701 21045 38.32 36.31 32.33 43.83 48 8 83 139
front
FIGURE 1

Gene maps of H. bogdanii, H. brevisubulatum, and H. violaceum cp genomes. Genes inside and outside the circle undergo clockwise and
counterclockwise transcription in the gene map. Dark gray and light gray color represent guanine and cytosine (GC) content and adenine and
thymine (AT) content, respectively.
iersin.org
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the future. The mononucleotide T was repeated 13 times and was

unique to H. brevisubulatum and H. violaceum (Figure 2D).

Furthermore, the majority of SSR were distributed in the LSC

region, of which the proportion of H. bogdanii was 75.6%, slightly

lower than that of H. brevisubulatum (76%) and H. violaceum

(76%) (Figure 2E).
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3.3 Relative synonymous codon usage and
PR2-plot analysis

RSCU, which is caused by the unequal usage of a synonymous

codon, was further analyzed (Figure 3). Each amino acid corresponds

to at least one codon and at most six codons owing to the redundancy
TABLE 2 List of genes annotated in the plastomes of the three wild perennial Hordeum species (H. bogdanii, H. brevisubulatum, and H. violaceum)
from Central Asia and two annual species (H. vulgare subsp. spontaneum and H. vulgare).

Category Function Name of gene

Self-replication (34) Ribosomal RNA genes rrn4.5 rrn5 rrn16 rrn23

Transfer RNA genes
trnR-
ACG

trnL-CAA trnV-GAC
trnH-
GUG

trnN-
GUU

trnA-
UGC*

trnT-
CGU*/bbv

trnS-
CGA*/bbv

trnM-
CAU

trnI-
GAU*/vul

trnG-
UCC*/vul

trnK-
UUU*

trnL-
UAA*

trnV-
UAC*

trnC-GCA trnG-GCC

trnS-
GCU

trnS-GGA trnT-GGU
trnY-
GUA

trnD-
GUC

trnL-
UAG

trnR-UCU trnS-UGA

trnP-
UGG

trnT-UGU trnE-UUC
trnQ-
UUG

trnF-
GAA

trnW-
CCA

Ribosomal proteins (12)
Small subunit of ribosome
(SSU)

rps2 rps3 rps4 rps7 rps8 rps11 rps12vul
rps14

rps15 rps16*/vul rps18 rps19

Transcription (14)
Large subunit of ribosome
(LSU)

rpl2* rpl14 rpl16 rpl20 rpl22 rpl23 rpl32 rpl33

rpl36

RNA polymerase subunits rpoA rpoB rpoC1 rpoC2

Translation initiation factor infA

Photosynthesis related
genes (46)

RubisCO large subunit rbcL

Subunits of photosystem I psaA psaB psaC psaI psaJ

Subunits of photosystem II psbA psbB psbC psbD psbE psbF psbH psbI

psbJ psbK psbL psbM psbN psbT psbZ

Subunits of ATP synthase atpA atpB atpE atpF* atpH atpI

Cytochrome b/f complex petA petB petD petG petL petN

C-type cytochrome synthesis
gene

ccsA

Subunits of NADH
dehydrogenase

ndhA* ndhB* ndhC ndhD ndhE ndhF ndhG ndhH

ndhI ndhJ ndhK

Other genes (6) Maturase matK

Protease clpP

Chloroplast envelope
membrane protein

cemA

Hypothetical open reading
frames

ycf1 ycf2 ycf3#/bvv ycf4bvv

Unknown function (1)
Plant protein of unknown
function

ycf15bbb
fr
*, gene containing a single intron; #, gene containing two introns; Genes in bold correspond to genes that are located in the IRs and hence are duplicated; bbv, genes that are particular for H.
bogdanii, H. brevisubulatum andH. violaceum; vul, genes that are particular for H. vulgare subsp. spontaneum, and H. vulgare; bvv, genes that are particular for H. brevisubulatum,H. violaceum,
H. vulgare subsp. spontaneum, and H. vulgare.
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of codons. RSCU values for the initial codon (AUG) were 1.987,

1.983, and 1.987 inH. bogdanii,H. brevisubulatum, andH. violaceum,

respectively. RSCU values for termination codons, UAA, UAG, and

UGA, were 1.771, 0.651, and 0.578 in H. bogdanii, 1.730, 0.671, and
Frontiers in Plant Science 07
0.600 in H. brevisubulatum, and 1.730, 0.671, and 0.600 in H.

violaceum, respectively. Codons with RSCU values >1, which are

usually considered to be preferred codons, accounted for 51.61% (32/

62) of codons, and the third nucleotide of most codons was biased
D

A B

E

C

FIGURE 2

Simple sequence repeats (SSRs) and scattered repetitive sequences in the three Hordeum cp genomes. (A) frequency of repeat types; (B) compare
of the number of SSR type in the three Hordeum cp genomes; (C) frequency of repeats length; (D) motifs in the cp genome of Hordeum; (E)
Distribution region of repeating sequences of three Hordeum cp genome. IR, inverted repeat; LSC, large single-copy; SSC, small single-copy.
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towards either A or U. Notably, only one codon, UGG

(corresponding to tryptophan), showed no bias in the three

Hordeum species, and its RSCU was 1.00.

Forty-four coding sequences (CDS, ≥300 bp long) containing

start (ATG) and stop (TAG, TGA, TAA) codons were collected

from the 10 cp genomes, to carry out PR2-plot analysis to further
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understand codon bias (Figure 4). The results showed that the 44

genes of the 10 species were not evenly distributed within the four

regions, but mainly in G3/(G3+C3) > 0.5 and A3/(A3+T3) < 0.5

regions. This suggests that there may be a bias towards G and T

bases at the third position of synonymous codons, which needs

further investigation.
FIGURE 3

Relative frequency of synonymous codon for the twenty amino acids in the three Hordeum species chloroplast genomes.
FIGURE 4

PR2-plot analysis of cp genomes ten Hordeum species. Base A, T, C and G content at the third site of synonymous codons were replaced through
A3, T3, C3 and G3, respectively.
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3.4 In/Dels and SNPs

InDels and SNPs (mainly containing Tn (transition) and Tv

(transversion)) were detected among the three Hordeum cp genomes

using MAFFT software (Standley, 2013). A total of 109, 112, and 33

In/Dels were identified in H. bogdanii vs H. brevisubulatum, H.

bogdanii vs H. violaceum, and H. brevisubulatum vs. H. violaceum,

respectively, in which 4 InDels were discovered in the coding

sequence (Supplementary Table 4). There were similar quantities of

Tn and Tv in both H. bogdanii vs H. brevisubulatum (Tn = 61, Tv =

304) and H. bogdanii vs H. violaceum (Tn = 66, Tv = 298), most of

which were encoded in the noncoding sequence. However, 19 Tn (2

coding, 17 noncoding) and 60 Tv (23 coding, 37 noncoding) were

detected during H. brevisubulatum vs H. violaceum. Interestingly, we

found that both InDels and SNPs were mainly concentrated in LSC

and the intergenic region for each pairwise comparison, while InDels

did not occurred in the IR region of H. brevisubulatum vs H.

violaceum (Figure 5).

The non-synonymous/Synonymous mutation ratio (Ka/Ks)

ratio of 83 common protein-coding genes in cp genomes of the

three Hordeum species was calculated using Ka/Ks Calculator

software (Zhang et al., 2006) (Supplementary Table 3). Ka/Ks

values of H. bogdanii vs H. brevisubulatum, H. bogdanii vs H.

violaceum, and H. brevisubulatum vs H. violaceum were 16, 19, and

2, respectively. In addition, the Ka/Ks values of some genes (ropB,

atpI, psaB, etc.) could not be computed because Ka or/and Ka was 0,

which suggests that these genes were relatively conservative without

any Ka or Ks nucleotide substitution. Pi values were calculated

using VCFTOOLS software. A total of 101 common genes in the

three wild perennial Hordeum species were examined, whose Pi

values ranged between 0 to 0.1674 (Figure 6). It is noteworthy that

relatively higher Pi values (Pi ≥ 0.1) were detected in five genes,

including tRNA-UGC, tRNA-UAA, tRNA-UUU, tRNA-UAC, and

ndhA. Meanwhile, these genes were also among those with Ka/Ks >

1. Moreover, other genes with a Pi ≥ 0.1 were found in single-copy

(SC) rather than IR regions, except for tRNA-UGC.
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3.5 Whole Cp genomes comparison with
ten Hordeum species

To understand the sequence divergence between wild and

cultivated, as well as annual and perennial species in genus

Hordeum, and elaborate further on the evolutionary events that

occurred, including gene mutation, rearrangement and loss, we

analyzed and compared the cp genomes of two annual species (one

cultivated species,H. vulgare and one wild species,H. vulgare subsp.

spontaneum), and eight perennial wild species (H. bogdanii, H.

brevisubulatum, H. violaceum, H. bulbosum, H. jubatum, H.

marinum, H. murinum, and H. pubiflorum) were compared and

analyzed. It was found that the coding region is more conservative

than the non-coding region, as well as the divergence frequency was

higher in the LSC and SSC region than in IR region (Figure 7). The

two annual species (especially H. vulgare) had many conserved

regions compared with the other eight wild perennial species, this

was the case in the CNS (Conserved Noncoding Sequences) of LSC

and SSC regions. The highly variable regions are called hotspots

regions, and these regions were mainly concentrated in small RNA

molecules such as tRNA-GGU ~ tRNA-GCA, tRNA-UGU ~ ndhJ,

psbE ~ rps18, ndhF ~ tRNA-UAG. Furthermore, MAUVE software

revealed rearrangement events with scanty genes in the cp genomes

of 10 species (Supplementary Figure 1).
3.6 IR expansion and contraction

Expansion and contraction of IR regions, recognized as an

evolutionary event, are generally concentrated in the junction of IR/

SSC or IR/LSC.Moreover, this phenomenon is the primary cause of the

variation of cp genomes size. Therefore, the IR borders of six species in

the Hordeum genus were compared to explore their differences. The

species studied included two annuals (including one cultivated species,

H. vulgare and one wild species, H. vulgare subsp. spontaneum), and

four perennial wild species (H. bogdanii, H. brevisubulatum, H.
D
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FIGURE 5

Overview of single nucleotide polymorphisms (SNPs) and Insertions/Deletions (In/Dels). (A, B), (C, D), and (E, F) the differences between H. bogdanii
vs H. brevisubulatum, H. bogdanii vs H. violaceum and Hordeum brevisubulatum vs Hordeum. violaceum. Tv, transversion; Tn, transition; In/Del,
insertion/deletion; IR, inverted repeat; LSC, large single-copy; SSC, small single-copy.
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violaceum, and H. jubatum) (Figure 8). The results showed significant

differences in the junction sites between the annual and perennial

species. The genes ndhF-ndhH and rpl2-trnH-psbA-rpl22-rps19 were

found close in SSC/IR and LSC/IR boundaries, respectively. The ndhH

genes of the other five species ranged from 207 (H. bogdanii, H.

brevisubulatum, H. violaceum) to 216 (H. vulgare) bp in IRa region

throughout the SSC/IRa junction, with the exception of H. vulgare

subsp. spontaneum. Two genes, trnH and rpl2, were found near the

junction of LSC/IR region inH. vulgare, whereas the genes around this
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junction region of the other five species were rpl22 and rps19 genes.

Additionally, we observed that only e ndhH gene for H. vulgar was

separated from SSC/IRb boundary with 1 bp.
3.7 Phylogenetic relationships

The phylogenetic position of Triticeae was identified based on

the cp genomes sequences of three studied Hordeum species and
FIGURE 7

Alignment of the ten Hordeum species cp genome sequences. Exon, untranslated region (UTR), conserved noncoding sequences (CNS), and mRNA
were marked by different colors. The x-axis and level a clinic columnar strip express the paratactic and sequences stability in the cp genome and the
peaks represent hotspot regions.
FIGURE 6

The nucleotide diversity (Pi) calculated by 101 genes shared in three wild perennial Hordeum species. Genes with Ka/Ks value > 1 are highlighted in
red; The genes above the red line, green line and blue line were located in IR, LSC and SSR regions, respectively.
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other 28 species downloaded from NCBI (Figure 9). The structure

of this phylogenetic tree of these species conformed with the

classical botanical classification. Twelve Hordeum species were

divided into six sub-groups, among which H. brevisubulatum, and

H. violaceum were in the same sub-groups, and H. bogdanii is

further distant from them. Different accessions of the same species

are placed in the same subgroup. In addition, genus Hordeum was

more closely related to the species of Elymus, Aegilops, Triticum

than to Agropyron.
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4 Discussion

4.1 Characteristics of Cp genomes of
Hordeum species

The total size and GC content of cp genomes were not

significantly different among the three wild perennial Hordeum

species (H. bogdanii, H. brevisubulatum, and H. violaceum). These

results revealed that the cp genome size and GC content of Poaceae
FIGURE 9

ML phylogenetic tree of 31 Poaceae species, with Saccharum spontaneum and Sorghum bicolor as outgroups. The bootstrap values are shown at
the nodes; H. vulgare subsp. spontaneum, H. vulgare, H. brevisubulatum, and H. bogdanii species of different accession were represented by the
base color of red, green, blue, and orange, respectively.
FIGURE 8

IRscope analysis of the six Hordeum cp genomes. JLB, JSB, JSA, and JLA represent the junction of LCS and IRb, SSC and IRb, SSC and IRa, and LSC
and IRa region, respectively.
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are highly conserved, and the occurrence of variation may help us to

better understand the unique variation among species or subspecies

(Liu et al., 2019). A total of 129, 131, and 131 genes were detected in

the cp genomes of H. bogdanii, H. brevisubulatum, and H.

violaceum, respectively. Notably, two mRNA genes, ycf3 and ycf4,

which were detected in these transformants and have been shown to

contribute to the unstable accumulation of photosystem I

complexes in the thylakoid membranes (Boudreau et al., 1997),

were not found in H. bogdanii. This may be because two genes were

transferred from the cp genome of H. bogdanii to its nuclear

genome during the evolution of the species (Xiong et al., 2020).

Two transfer RNA genes (trnG-UUC and trnI-GAU) and two small

subunit of ribosome genes (rps12 and rps16) were found to be

unique to only two annual Hordeum species, including one wild

species (H. vulgare subsp. spontaneum) and one cultivated species

(H. vulgare). However, the functions of these four genes require

further validation in the future. Genes specific for cultivated species

(H. vulgare) in this study were not identified. This may be due to

genetic changes may not exist in the cp genome but rather in the

nuclear genome during plants domestication. Typically, cp genomes

of Poaceae species are highly conserved in structure, which is a

typical quadripartite (the IR region is separated by LSC and SSC).

However, in some plants, cp genomes contain only one IR region

(alfalfa) (Tao et al., 2016) or lack the IR region (algae) (Xue et al.,

2019). H. bulbosum, H. marinum, H. murinum, and H. pubiflorum

also fall into this category, with linear cp genomes without the IR

region (Bernhardt et al., 2017). Therefore, the cp genome

characteristics of these four Hordeum species were not analyzed

and compared in the current study. However, cp genome

characteristics of only two annual species (H. vulgare, and H.

vulgare subsp. spontaneum) and four perennial species (H.

bogdanii, H. brevisubulatum, H. violaceum, and H. jubatum) were

analyzed and compared. The result demonstrated that the size and

GC content of cp genomes of the six Hordeum species ranged from

136,462 to 137,141 bp and 38.23% to 38.32%, respectively,

indicating that the cp genome length and GC content of

synanthropic species were not significantly different, while the

number of genes (139) in cultivated species were more abundant

compared with that in wild species. The reason may be that natural

selection has led to an accelerated rate of gene loss in wild species

(Vishwakarma et al., 2017). It is well known that gene degradation

and even loss occur because the cp genome of angiosperms evolves

relatively fast (Lei et al., 2016). Our study found no significant

difference in the total number of genes among the five wild

Hordeum species, which ranged from 129 to 131 (Table 1), which

was significantly lower than that of H. vulgare (139), with a

maximum gap of 10 genes and a minimum of 8 genes, such as

rps12, rps16, etc. There is evidence that these genes have been lost in

Ulmus (Zuo et al., 2017) and Orchidaceae (Jing et al., 2014).

Introns, which are located in the non-coding region, typically

have higher mutation rates than exons, as their functions are often

more restricted (Gan et al., 2018). Nevertheless, it is noteworthy

that introns play a crucial role in regulating gene expression (Ma

et al., 2016). Nine genes, including atpF, ndhA, ndhB, tRNA-CGA,
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tRNA-CGU, tRNA-UAA, tRNA-UAC, tRNA-UGC, and tRNA-UUU,

are shared by the three wild perennial Hordeum species and contain

only one intron, while one gene, ycf3, contains two introns, which is

unique to H. brevisubulatum and H. violaceum (Supplementary

Table 3). In addition, the ycf3 gene in the cultivated Hordeum

species contains two introns (Middleton et al., 2013). Therefore, we

contemplated that the absence of ycf3 gene introns in H. bogdanii is

unusual. Previous research has suggested that a species that a lack of

gene introns in a species may indicate that it has taken on additional

functions in diverse areas such as protease, RNA polymerase, and

ribosomal pathways (Hakobyan et al., 2021).

4.2 Repeat sequences, RSCU, and
PR2-plot analysis

Cp SSR in population genetics is considered a valuable

molecular marker owing to its traits of matrilineal inheritance

and low recombination frequency; gene insertion or deletion is

also frequent in Cp SSRs (Xiao et al., 2019; Zong et al., 2019).

Scattered repetitive sequences (SRS) and SSR of three wild perennial

Hordeum species were analyzed and compared in the present study.

The total number of SRS and cpSSRs in H. bogdanii, H.

brevisubulatum, and H. violaceum were 231, 220, 218 and 182,

176, 176, respectively. H. bogdanii showed significantly different

results from other two species, possibly due to their relatively close

phylogenetic relatedness. In addition, the results of the study of

Secale sylvestre (Skuza et al., 2022) and Spartina maritima

(Rousseau-Gueutin et al., 2015) suggested that related species

usually have similar SSR loci. Remarkably, most of the SSRs of

the three Hordeum species are mononucleotides repeats dominated

by poly-A or poly-T. This SSR phenomenon has not only been

reported in the cp genomes of the Poaceae family (Phalaris

arundinacea and P. aquatica) (Xiong et al., 2020) but also in

other angiosperm families, such as Hibiscus rosa-sinensis

(Abdullah et al., 2020), Firmiana (Abdullah et al., 2019), and

Taenia (Yang et al., 2014).

During the translation of mRNA into proteins, there is an

uneven frequency of synonymous codon usage called RSCU (Tyagi

et al., 2020). In our study, 90.62% of codons with RSCU > 1

preferentially select A/U as the third nucleotide site, which is much

higher than those ending with G/C, with similar results in many

angiosperms such as Nicotiana otophora (Asaf et al., 2016), Oryza

minuta (Sajjad et al., 2017), and Medicago sativa (Tao et al., 2016).

The preference for A/U-ending codons is a common feature among

most angiosperms and may be associated with certain evolutionary

processes (Wang et al., 2023). PR2-plot analysis is essential for

exploring codon bias. If the values of G3/(G3+C3) and A3/(A3+T3)

are equal to 1, codon bias is completely influenced due to base

mutation pressure; if both values are equal to 0, it is entirely because

of natural selection (Wen et al., 2016). The majority of genes in our

study had G3/(G3+C3) values greater than 0.5 and A3/(A3+T3) values

lower than 0.5, indicating a bias towards G and T nucleotides in the

third codon position, possibly due to a combination of natural

selection and base mutations (Chen et al., 2021).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1170004
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yuan et al. 10.3389/fpls.2023.1170004
4.3 Sequence divergence

In the process of natural mutation, the probability of point

mutation (SNP) is normally greater than that of frameshift (In/Del)

(Raes and Van de Peer, 2005). As previously stated, the results of the

cp genomes of the three Hordeum demonstrated that most

mutations supported this conclusion. Interestingly, these

mutation sites were concentrated in the intergenic or LSC region.

The number of SNPs and In/Dels was significantly higher between

H. bogdanii vs H. brevisubulatum and H. bogdanii vs H. violaceum

compared withH. brevisubulatum vs H. violaceum. The reason may

be that H. bogdanii was phylogenetically more distant from H.

brevisubulatum and H. violaceum. Notably, no In/Dels were

detected in the IR regions of H. brevisubulatum vs H. violaceum,

suggesting that IR regions were the most conservative in the four-

part structure (LSC, SSC, and IRa/IRb) of the cp genome, which

warrants further exploration (Ravi et al., 2008). Pi, which is one of

the standards that estimate the degree of nucleotide sequence

variation and provide greater insight into the genetic variation to

reflect complex changeable selection pressures in species and

population levels (Namgung et al., 2021). Five genes with

relatively high Pi values (Pi ≥ 0.1) were identified in the cp

genomes, including tRNA-UGC, tRNA-UAA, tRNA-UUU, tRNA-

UAC, and ndhA. These mutation hotspots can serve as a basis for

further development of barcode molecular markers and

phylogenetic analysis of the genus Hordeum.

The cp genomes of the 10 Hordeum species were analyzed for

sequence variant and collinearity of using mVISTA and MAUVE

procedures, respectively. The results indicated that the cultivated

species, H. vulgare, were relatively conservative compared with the

other wild related species. The wild plants undergo rapid molecular

evolution due to which they form hotspot regions more frequently

that are mainly located in the non-coding region of the LSC (Peng

et al., 2021). Similar observations have been reported with Morella

rubra (Liu et al., 2017) and three Cardiocrinum species (Lu et al.,

2016). Notably, a series of hotspots regions were discovered, which

mainly concentrated on tRNA-GGU ~ tRNA-GCA, tRNA-UGU ~

ndhJ, psbE ~ rps18, ndhF ~ tRNA-UAG, etc. Repeated conversions

of genes between IRa and IRb regions may be a key factor

responsible for generating these hotspots (Park et al., 2019).

Collinearity analysis is generally a crucial strategy to determine

the degree of cp genome variation (Liu et al., 2018). Collinearity

analysis demonstrated that no rearrangement was detected in the cp

genomes of the ten Hordeum species. However, there were

significant differences were observed based on the cp genomes

size, genotype, and expansion or contraction of IR boundaries.

As plants continue to evolve, the IR boundary can expand or

contract due to the insertion or deletion of certain genes in the IR or

SC region, which are the main factors contributing to cp genome

size variation (Li et al., 2020). Here, the junction sites of the IR/SC

region of the six cp genomes were analyzed using an online

IRSCOPE software. In addition to the two annual Hordeum

species (H. vulgare and H. spontaneum), no significant gene

expansion, contraction, or loss was detected in the LSC/IRs/SSC

boundary of the remaining four wild perennialHordeum species (H.

bogdanii, H. brevisubulatum, H. violaceum, and H. jubatum). This
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could be related to the fact that annual species have a more rapid

evolutionary rate compared to perennial species (Duchene and

Bromham, 2013). The length of the SSC region of H. vulgare was

relatively smaller, mainly because the ndhH gene spanned the SSC/

IRa region with 966 bp, which was the smallest compared with the

other four wild perennial Hordeum species, located in the SSC

region. Furthermore, the sites of genes trnH and rps19 of H. vulgare

changed significantly compared with those of the other Hordeum

species. Besides, the rpl22 gene only existed in the LSC region of H.

vulgare, suggesting that it was replicated. This phenomenon may be

attributed to the continuous domestication of the cultivated species,

H. vulgare, leading to genetic changes through natural selection

(Suoi et al., 2016). Therefore, the variation of the IR boundary and

can be useful for phylogenetic studies of Hordeum species.
4.4 Phylogenetic relationships

The cp genome is quite conservative in sequence and structure,

and the homology of molecular characters is easier to determine, thus

it is a useful tool for constructing plant phylogeny (Yang et al., 2022).

We conducted a phylogenetic analysis based on 31 Poaceae species

(28 have been published and cp genomes of 3 Hordeum species were

sequenced in the current study), with Saccharum spontaneum and

Sorghum bicolor as the outgroups. The result showed thatH. bogdanii

has a further distance from H. brevisubulatum and H. violaceum.

However, Jonathan et al. (Jonathan and Blattner, 2015) established a

phylogenetic tree of these three Hordeum species based on the

nuclear single-copy genome sequence analysis and demonstrated

that they are clustered into a group. There may be two possible

reasons for this difference. The first that the maternal ancestor of H.

bogdanii is quite different from that of H. brevisubulatum and H.

violaceum, and therefore it is hard to determine owing to relatively

few reports on their matrilineal inheritance information. Another

reason is the difference between the selected outgroups. In addition,

although H. brevisubulatum (MT386010.1) has been published, the

sequencedH. brevisubulatum in this study cannot be grouped into an

identical subgroup. This may be because the former is a diploid or

hexaploidy, while the latter is a tetraploid (Jakob and Blattner, 2006).

Our findings provide valuable information for further investigation of

the evolution trends of the cp genome in Hordeum species.

5 Conclusions

In summary, we sequenced and annotated the cp genomes of three

Hordeum species (H. bogdanii, H. brevisubulatum, and H. violaceum)

that exhibit a typical quadripartite structure. We then compared them

to the cp genomes of two annual species, including one cultivated

species (H. vulgare) and one wild species (H. vulgare subsp.

spontaneum), as well as other five wild Hordeum species have been

previously published. The results demonstrated that the cp genome of

H. vulgare was more conserved although it contains a greater number

of genes. Two mRNA genes, ycf3 and ycf4, were not identified in H.

bogdanii, of which ycf3 contains two introns. Genes trnG-UUC, trnI-

GAU, rps12, and rps16 that are specific to only two annual Hordeum

(H. vulgare, and H. vulgare subsp. spontaneum) and may be closely
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related to the regulation of Hordeum growth. Five highly polymorphic

genes (tRNA-UGC, tRNA-UAA, tRNA-UUU, tRNA-UAC, and ndhA)

and a series of hotspot regions, which mainly concentrated on tRNA-

GGU ~ tRNA-GCA, tRNA-UGU ~ ndhJ, psbE ~ rps18, ndhF ~ tRNA-

UAG, etc., were identified. These findings lay the foundation for further

development of barcode molecular markers and phylogenetic analysis

of Hordeum L. In addition, based on the phylogenetic tree analysis, H.

brevisubulatum and H. violaceum were classified into the same group

and were found to be relatively close phylogenetic relatives as

compared with H. bogdanii. Finally, the present study highlights the

degree of variation between wild and cultivated, as well as annual and

perennial Hordeum species, providing insights into phylogenetic

evolution and population genetics in the genus Hordeum.
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