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Arbuscular mycorrhizal fungi (AMF) are ubiquitous in soil and form nutritional

symbioses with ~80% of vascular plant species, which significantly impact global

carbon (C) and nitrogen (N) biogeochemical cycles. Roots of plant individuals are

interconnected by AMF hyphae to form common AM networks (CAMNs), which

provide pathways for the transfer of C and N from one plant to another,

promoting plant coexistence and biodiversity. Despite that stable isotope

methodologies (13C, 14C and 15N tracer techniques) have demonstrated

CAMNs are an important pathway for the translocation of both C and N, the

functioning of CAMNs in ecosystem C and N dynamics remains equivocal. This

review systematically synthesizes both laboratory and field evidence in interplant

C and N transfer through CAMNs generated through stable isotope

methodologies and highlights perspectives on the system functionality of

CAMNs with implications for plant coexistence, species diversity and

community stability. One-way transfers from donor to recipient plants of 0.02-

41% C and 0.04-80% N of recipient C and N have been observed, with the

reverse fluxes generally less than 15% of donor C and N. Interplant C and N

transfers have practical implications for plant performance, coexistence and

biodiversity in both resource-limited and resource-unlimited habitats. Resource

competition among coexisting individuals of the same or different species is

undoubtedly modified by such C and N transfers. Studying interplant variability in

these transfers with 13C and 15N tracer application and natural abundance

measurements could address the eco physiological significance of such

CAMNs in sustainable agricultural and natural ecosystems.
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Highlights

• Plants interconnected by arbuscular mycorrhizal (AM) fungi

form common AM networks

• 13C and 15N labeling can trace the amount of AM-mediated

interplant C and N transfers

• 0.02‒41% C transfers are from a donor to a receiver, but< 10%

in the reverse route

• 0.04‒80% N transfers are from a donor to a receiver, but< 15%

in the reverse route

• Interplant C and N transfers should enhance plant survival

under nutrient-limitations
1 Introduction

1.1 Arbuscular mycorrhiza

Arbuscular mycorrhizas (AM) are formed between arbuscular

mycorrhizal fungi (AMF) and roots of ~70% of ~391,000 higher

plant species (Wang and Qiu, 2006; Smith and Read, 2008;

Brundrett, 2009; Brundrett, 2017; Brundrett and Tedersoo, 2018).

Currently 25 genera and ~338 fungal species belonging to the sub-

Phylum Glomeromycota form AMF globally (Schüßler and Walker

2010). AMF acquire soil nutrients, such as nitrogen (N),

phosphorus (P) and other mineral nutrients, and transport them

to their host plant in exchange for up to 20% of photosynthetically

fixed carbon (C) (Smith and Read, 2008; Roth and Paszkowski,

2017). In an arbuscular mycorrhiza, the intraradical mycelium

(IRM) often penetrates root cortical cells to form arbuscules,

while the extraradical mycelium (ERM) extends into soil, far

beyond the root zone. The ERM forages for N, P, potassium and
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other soil nutrients, and translocates them to the IRM, where they

are exchanged for C from the host (Smith et al., 2009). The ERM is

extensive enabling plant access to nutrient resources well beyond

the root depletion zone (Li et al., 1991). In addition, several findings

revealed that sources of carbon for mutualistic AMF include fatty

acids exported from the host plants, as well as lipids and sugars

(Pfeffer et al., 1999; Keymer et al., 2017; Jiang et al., 2017).
1.2 Common arbuscular
mycorrhizal networks

AMF are ubiquitous components of most soil ecosystems,

where they grow through soil, colonize plant roots, and can form

links between plants (Newman et al., 1992; Newman et al., 1994; He

et al., 2003; He et al., 2009; Molina and Horton, 2015). The plants

suppling AMF with labile carbon often grow close together,

primarily in multiple species communities. Because AMF exhibit

little host specificity (Smith and Read, 2008), and plant roots can

thus be linked by a common AM network (CAMN) (Wipf et al.,

2019). Such CAMNs, being formed among individual plants of the

same species or genus, or from different genera or families

(Ronsheim and Anderson, 2001; Southworth et al., 2005), are

usually woven into an even larger network of fungi and roots in

natural communities (Smith and Read, 2008; Wipf et al., 2019). In

this way, plant species within CAMNs may be joined together as a

functional guild and become pathways for movement or transfer of

nutrients (Figure 1), including C (Francis and Read, 1984; Martins,

1992; Martins, 1993; Watkins et al., 1996; Fitter et al., 1998;

Mikkelsen et al., 2008; Voets et al., 2008; Walder et al., 2012), N

(Hamel et al., 1991a; Hamel et al., 1991b; He et al., 2003; He et al.,

2009; Frey and Schüepp, 1993; Rogers et al., 2001; Moyer-Henry
FIGURE 1

Milestones in nutrient transfers through common mycorrhizal networks (CMNs) (Note that the year of a reference pointing to the green arrow bar is
not to scale).
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et al., 2006), P (Tuffen et al., 2002; Smith and Smith, 2011; Merrild

et al., 2013), arsenic (P analog, Meding and Zasoski, 2008),

cadmium (Ding et al., 2022), K (Gao et al., 2021), cesium

(Meding and Zasoski, 2008; Gyuricza et al., 2010), rubidium (K

analogs) and strontium (Ca analog) (Meding and Zasoski, 2008,

and zinc (Cardini et al., 2021). Water (Egerton-Warburton et al.,

2007) and genetic material (Giovannetti et al., 2004) can also move

within these networks. Movement of these materials can thus

promote coexistence and biodiversity among plants (Read, 1991;

Smith and Read, 2008).

Despite the considerable evidence of the functional role of

CAMNs, they have not been directly visualized in natural

ecosystems due to their cryptic, fragile, and microscopic nature

(Newman et al., 1994; Ronsheim and Anderson, 2001; Southworth

et al., 2005; Wipf et al., 2019). Plants invest photosynthetic products

to feed their fungal partners, which, in return, provide mineral

nutrients foraged in soil by their intricate hyphal networks (Bever

et al., 2010). The Driver (AMF partners drive plant communities)

and Passenger (AMF community dynamics follows changes in the

host plant community) hypotheses were suggested to explain the

mutual relationships of plant and AMF communities (Zobel and

Öpik, 2014). Research into this complex system of plant-fungus

interactions indicates that plants and fungi can choose their trading

partners (Kiers et al., 2011; Walder et al., 2012).

An understanding of the stoichiometry of C, N, or other

nutrients mediated by CAMNs could better elucidate the

potential roles of CAMNs in C and N functioning in plant-soil

systems (Figure 2), although at present CAMNs have not been

directly visualized in natural ecosystems due to their fragile
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and microscopic nature. Application of high-throughput genome

sequences or all sorts of omics and BONCAT-FACS (bioorthogonal

non-canonical amino acid tagging + fluorescence-activated cell

sorting, Couradeau et al., 2019) could have an in situ observation

of these underground cryptic microorganisms. Meanwhile, the

employment of other emerging technologies, such as cryo-

scanning electron microscope (Cryo-SEM), DNA stable isotope

probing (DNA-SIP), quantitative multi-isotope imaging mass

spectrometry (MIMS), nanoscale secondary ion mass

spectrometry (NanoSIMS), single-molecule electronic device and

synchrotron radiation facility, could enable the mapping the

interplant flow of 13C and 15N through CAMNs. Given this

demonstrated autonomy and the key role that CAMNs play in

interplant nutrient transfers and biodiversity in ecosystems, it is

crucial to understand how nutrient resources (e.g., C, N, P, other

elements, see Figure 1) are shared among plants through CAMNs.

And whether there may be a mechanism between CAMNs and

ecosystems by which a greater biodiversity is associated with a

greater productivity.
1.3 Application of isotopes of 13C
and 15N labeling

The abundance level of stable isotopes is theoretically expressed

as delta (d) in parts per thousand or per mil (‰), which is calculated

as d13C or d15N (‰) = [(RSample/RStandard) –1] × 1,000, where R is

the 13C/12C or 15N/14N (atom%) ratio of the sample and standard,

and “Vienna”-Pee Dee Belemnite (0.0112372) or atmospheric N2
FIGURE 2

A conceptual framework of roles played by common mycorrhizal networks (CMNs) in regulating carbon (C) and nitrogen (N) flow or transfer within
and between plants.
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(0.0036765) is their respective standard material. The 13C and 15N

isotopic composition (also expressed as d13C and d15N signatures)

of plant materials can provide information on (i) inputs of

photosynthetic C or uptake of fertilizer N, (ii) plant N derived

from N2 fixation by symbiotic microorganisms, (iii) C or N cycling

and (iv) the sources of N available for host plant growth (Dawson

et al., 2002). For instance, the d13C or d15N signatures in vegetation

could reflect the relative availability of C sources to fungi and N

sources to plants differing in isotopic composition (Querejeta et al.,

2003). Here we examine the unique and common characteristics of

CMN-mediated interplant C and N transfers that are demonstrated

by 13C and 15N labeling (sometimes referred to as 13C and 15N

enrichment) or variations in their isotopic composition for

exploring the beneficial functionality of CMNs in sustaining

managed and natural systems in a changing climate (Dawson

et al., 2002; He et al., 2003; Querejeta et al., 2003; Moyer-Henry

et al., 2006; He et al., 2009; Jalonen et al., 2009; Kurppa et al., 2010;

Walder et al., 2012; Ren et al., 2013; Meng et al., 2015; Wang et al.,

2016; Řezáčová et al., 2018; Wipf et al., 2019; Muneer et al., 2020a;

Alaux et al., 2021; Avital et al., 2022; Reay et al., 2022).
1.4 Calculation of carbon and nitrogen
transfer from a donor to a receiver plant

Estimates of C or N transfer from a donor to a receiver plant

are based on the assumption that an equal proportion of applied

and unapplied C or N are transferred. The percentage of total C

or N transferred to the receiver (% Ntransfer) is then assessed from

the ratio of applied C or N in the receiver and total applied C or N

in the receiver and donor. Based mostly on the calculations from

Giller et al. (1991); Ikram et al. (1994); Johansen and Jensen

(1996), the following equations are commonly employed by

almost all relevant studies to calculate C or N transfers.

%  Ctransferor Ntransfer

=13 Ccontentreceiveror
15Ncontentreceiver

� 100 = (13Ccontentreceiver

+13 Ccontentdonoror
15Ncontentreceiver

+15 Ncontentdonor) (1)

where 13Ccontentplant or
15Ncontentplant = atom%13Cexcessplant

or 15Nexcessplant ×

total Cplantor Nplant=atom%13 Cexcesslabeled Cor atom%15 Nexcesslabeled N

(2)

and atom%13Cexcessplant or atom%15Nexcessplant = atom

%13Cplant or

atom%15 Nplantafter labeling

− atom%13 Cplantor
15Nplantbackground (3)

The amount of C or N (mg plant−1) transferred from the donor

(Ctransfer or Ntransfer) is calculated as:
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Ctransferor Ntransfer =  %  Ctransferor  %  Ntransfer�

total Cdonoror total Ndonor= (100 −%  Ctransfer) or (100

−%  Ntransfer) (4)

The % of C or N in the receiver derived from transfer (% CDFT

or % NDFT) is calculated as:

%  CDFT  or  %  NDFT  

=  Ctransferor Ntransfer � 100 = total Creceiveror total Nreceiver (5)
2 Carbon transfer between plants
through common arbuscular
mycorrhizal networks

2.1 Arbuscular mycorrhizal fungi
and carbon

In the AM associations, C is the major flux from plant to fungus

while P, and possibly N, are the primary fluxes from fungus to plant

(Smith and Read, 2008). In general, 5–20% of plant assimilated net

C was transferred between linked plants via the CAMNs (Pearson

and Jakobsen, 1993). Using 13CO2 to label Hypochaeris radicata

growing in Danish coastal grasslands and tracing that labeled C for

one growing season, Lekberg et al. (2013) concluded that plants

allocated C to AMF even at temperatures close to freezing and that

fungal structures persisted in the roots during periods of little C-

allocation. Plants could release 13C into rhizosphere soil through

AM mycelia. These results suggest that the host plant maintained a

supply of C to its AMF symbionts to ensure its own ability to obtain

soil mineral nutrition from the AMF’s mycelia (Fitter et al., 1998;

Lekberg et al., 2010). On the other hand, C transfer via an AM

network does not allow resource sharing among linked plants

(Robinson and Fitter, 1999). The mycocentric view is that fungal

structures within roots are parts of extended mycelia through which

fungi move C according to their own C demands, not those of their

autotrophic hosts (Fitter et al., 1998).

Since the growth of AMF completely depends on supply of

photosynthetically fixed C from their hosts, the C supply from the

plant can be regarded as an infinitely large benefit for AMF fitness

(Bago et al., 2000) (Figure 2). From the perspective of the plant, the

amount of C provided to the fungal symbiont represents the

symbiotic costs (Konvalinková and Jansa, 2016). The dynamics of

C exchange between plants and fungi in AM associations is

conceptualized as a biological market, in which C sources are

reciprocally exchanged in both directions, with preferential

allocation to the partner offering the best rate of exchange

(Dawson et al., 2002; Werner et al., 2014; Konvalinková and

Jansa, 2016). Previous studies have suggested that there is an

asymmetry in C-for-nutrient exchange between AMF and host

plants. AMF acquire C from their hosts not only as carbohydrates

but also as fatty acids (Pfeffer et al., 1999; Trépanier et al., 2005;

Jiang et al., 2017; Keymer et al., 2017; Luginbuehl et al., 2017). It is
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known that the extraradical hyphae and spores of AMF secrete a

special glycoprotein, glomalin into the soil, defined as glomalin-

related soil protein (GRSP) (Rillig, 2004). GRSP is released to cover

the surface of soil organic matter and aggregates, and can store C in

protein and carbohydrate subunits, forming a protective layer that

avoids the loss of nutrients (e.g., C) in soil aggregates (Schindler

et al., 2007; Wang et al., 2023).

AMF manage plant-soil interactions, suppling mineral

nutrients to host plants while providing a conduit of C to soil

microbial community. Field studies applying 13CO2 pulse labeling

have demonstrated that AMF ERM provides a rapid and important

pathway of C flux from plants to soil and the atmosphere (Johnson

et al., 2002). By tracing in situ flows of photo-assimilated C of
13CO2-exposed wheat (Triticum aestivum) through AMF into root-

and hyphae-associated soil microbial communities over an eight-

hour period, Kaiser et al. (2015) found that intraradical AMF

hyphae were significantly 13C-enriched compared to the root-

cortex area, suggesting an efflux of photosynthate C from the

plant to the mycorrhizosphere over time. In addition, they

showed that 13C photosynthate was delivered to general bacteria

and Gram-negative bacteria primarily through the AM pathway

rather than directly through roots. These results suggest that AMF

play a vital role in the translocation of new fixed plant C to soil

microbes (Kaiser et al., 2015).
2.2 Interplant carbon transfer through
common arbuscular mycorrhizal networks

In mixed-species communities connected through CAMNs,

plant species benefit differently depending on the AMF species

involved and plant coexistence can be significantly affected by these

differences (Wagg et al., 2011; van der Heijden et al., 2015).
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Differences in the natural abundance of 13C between plants of the

C3 and C4 photosynthetic pathways were used in several studies of

AMF-linked plants to quantify C transfer. In one study, C transfer

of AMF-linked Plantago lanceolata (C3) and Cynodon dactylon (C4)

was quantified. This varied from 0 to 41% with median at

approximately 5%for individual C. dactylon plants but was not

determined for P. lanceolata individuals (Watkins et al., 1996).

Walder et al. (2012) found that C3 flax (Linum usitatissimum)

contributed 30% of the CAMN carbon but gained up to 90% of N

from the CAMNs formed by R. intraradices, which highly facilitated

its growth, while the CAMN-interconnected neighboring C4

sorghum (Sorgum bicolor) contributed 70% of CAMN carbon

with little N but was barely affected growth. One possible

mechanism affecting these results could be the exchange of

“luxury goods” between plants and AMF symbionts (Kiers and

van der Heijden, 2006). Consequently, resource trading through

networks of plant-AMF assemblages could be weakly reciprocal,

depending on the sink strength and exchange efficiency at the

symbiotic interfaces, which should differ with different plant-fungus

combinations (Helgason et al., 2007). Walder et al. (2012)

demonstrated that plants transferred underground resources to

each other through such a mycelial network, so that nutrients

could be quickly transported between different plants.

Recent observations show that mycorrhizal fungi are important

regulators of C dynamics because of slow decomposition of fungal

residues (van der Heijden et al., 2015) and that C storage is

increased in AM-dominated ecosystems (Averill et al., 2014; van

der Heijden et al., 2015; Wurzburger et al., 2017). To quantify the

involvement of AMF in the intraspecific transport of C between

plants, Graves et al. (1997) fumigated a mycorrhizal Festuca ovina

turf with 13C-depleted CO2 for one week and found that 41% of the

newly fixed C that was exported belowground was subsequently

transported to neighbouring F. ovina (Table 1). Although Francis
TABLE 1 Transfer of C from one plant to another via CAMNs (see Section 1.4 for transfer calculations).

Donor
Species A

Recipient
Species B

Linkage
direction*

Inoculum involved Substance
transferred

Ctransfer
%

Reference

Acer saccharum Erythronium
americanum

A ! B Field soil 14C 0.06 Lerat et al., 2002

Achillea millefolium Centaurea maculosa A ↔ B Field soil — — Zabinski et al., 2002

Allium cepa A. cepa A ! B Claroideoglomus
etunicatum

— — Hirrel and Gerdemann, 1979

Calamagrostis epigejos C. epigejos A ↔ B Funneliformis mosseae
C. claroideum

— — Malcova et al., 2001

Ceratonia siliqua Ce. siliqua A ! B R. fasciculatus,
R. irregularis

13CO2 6.35 Avital et al., 2022

Ce. siliqua Cupressus sempervirens A ! B R. fasciculatus,
R. irregularis

13CO2 4.41 Avital et al., 2022

Ce. siliqua Pistacia lentiscus A ! B R. fasciculatus,
R. irregularis

13CO2 29.01 Avital et al., 2022

Daucus carota D. carota A ! B Rhizophagus intraradices 13C / 14C
-glucose,

— Pfeffer et al., 2004

(Continued)
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TABLE 1 Continued

Donor
Species A

Recipient
Species B

Linkage
direction*

Inoculum involved Substance
transferred

Ctransfer
%

Reference

D. carota D. carota A ! B R. intraradices,
R. irregularis

13CO2 — Lekberg et al., 2010

Digitalis purpurea Dactylis glomerata A ↔ B Field soil — — Newman et al., 1994

E. americanum A. saccharum A ! B Field soil 14C — Lerat et al., 2002

Festuca idahoensis Centaurea maculosa A ! B Field soil — — Zabinski et al., 2002

Festuca idahoensis Centaurea maculosa A ! B Field soil 12C 15.00 Carey et al., 2004

Festuca ovina Briza media A ! B Septoglomus constrictum 14C — Grime et al., 1987

F. ovina Centaurea nigra A ! B S. constrictum 14C — Grime et al., 1987

F. ovina Centaurium erythraea A ! B S. constrictum 14C — Grime et al., 1987

F. ovina F. ovina A ! B AM root segments 13C 41.00 Graves et al., 1997

F. ovina F. ovina A ! B S. constrictum 14C — Grime et al., 1987

F. ovina Hieracium pilosella A ! B S. constrictum 14C — Grime et al., 1987

F. ovina Leontodon hispidus A ! B S. constrictum 14C — Grime et al., 1987

F. ovina Plantago lanceolata A ! B S. constrictum 14C — Grime et al., 1987

F. ovina Poa pratensis A ! B S. constrictum 14C — Grime et al., 1987

F. ovina Scabiosa columbaria A ! B S. constrictum 14C — Grime et al., 1987

Flaveria bidentis Setaria viridis A D B R. intraradices 13C 2.54‒2.67 Chen et al., 2021

Flaveria bidentis Eclipta prostrata A D B R. intraradices 13C 3.26‒3.37 Chen et al., 2021

Juglans nigra Zea mays A ! B Fileld soil and root 13C — van Tuinen et al., 2020

Lolium perenne
(Full light)

Pl. lanceolata
(Full light)

A ! B AM root segments 14C 0.09 Martins, 1992

L. perenne
(Dark)

Pl. lanceolata
(Dark)

A ! B AM root segments 14C 0.27 Martins, 1992

Lolium perenne L. perenne A ! B AM root segments 14C — Martins, 1993

Lotus corniculatus Lotus corniculatus A ↔ B Fileld soil and roots 14C 1.20 Waters and Borowicz, 1994

Medicago truncatula M. truncatula A ! B R. intraradices 13C — Voets et al., 2008

Oryza sativa O. sativa A ! B F. mosseae 14C — Ren et al., 2013

O. sativa Citrullus lanatus A ! B F. mosseae 14C — Ren et al., 2013

Plantago lanceolata Cynodon dactylon A ! B AM root segments d13C 10.00 Watkins et al., 1996

Pl. lanceolata C. dactylon A ! B F. mosseae d13C — Fitter et al., 1998

Pl. lanceolata F. ovina
(Full light)

A ! B C. caledonium or
Field root pieces

14C 0.02 Francis and Read, 1984

Pl. lanceolata F. ovina
(Half light)

A ! B C. caledonium or
Field root pieces

14C 0.05 Francis and Read, 1984

Pl. lanceolata F. ovina
(Dark)

A ! B C. caledonium or
Field root pieces

14C 0.11 Francis and Read, 1984

Pl. sativum cv. Frisson and
P2

Triticum × Secale A ! B AMF inoculum 13C-glucose 1.08 Hupe et al., 2021

Quercus calliprinos Cu. sempervirens A ! B R. fasciculatus,
R. irregularis

13CO2 15.09 Avital et al., 2022

Q. calliprinos Pi. lentiscus A ! B R. fasciculatus,
R. irregularis

13CO2 27.12 Avital et al., 2022

(Continued)
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and Read (1984) showed that transfer of C between plants

connected by AM mycelia occurred primarily by the direct

hyphal pathway, levels of C in whole receiver plants (F. ovina)

only reached to 0.058 ± 0.023% of that in donors (Plantago

lanceolata). In contrast, by labeling plants with 14CO2 in the field,

Lerat et al. (2002) reported that a direct 0.064 ± 0.049% transfer of
14C in the sugar maple (Acer saccharum) were from Erythronium

americanum, while 14C was detected in 7 of 22 E. americanum roots

from the sugar maple, with labeling in those 7 only 0.018 ± 0.021%

that of sugar maple. Both the enrichment and natural abundance of
13C methods show one-way transfer of C between mycorrhizal

plants to be 0 to 41%, in controlled or field conditions (He et al.,

2003; He et al., 2009; Table 1). For instance, such C transfers have

been detected between Allium cepa plants (Hirrel and Gerdemann,

1979), Festuca idahoensis and Centaurea maculosa (Carey et al.,

2004), F. ovina and F. ovina (Graves et al., 1997), Lolium perenne

and Plantago lanceolata (Martins, 1992), Oryza sativa and Citrullus

lanatus (Carey et al., 2004), and Trifolium subterraneum and P.

lanceolata (Nakano-Hylander and Olsson, 2007) (Table 1). Most

recently, by labelling 13CO2 to one of the four tree species growing

in “community boxes” using natural forest soil as fungal inoculums,

6.4 to 29.0% C transfers were facilitated by shared AMF of R.

fasciculatus and R. irregularis, with oak (Quercus calliprinos) being a

better donor, while pistacia (Pistacia lentiscus) and cypress

(Cupressus sempervirens) better recipients (Avital et al., 2022).

They concluded that an asymmetric C exchange between co-

existing plant species could contribute to forest resilience.

However, the mechanism of C transfer and role of mycorrhizal

hyphae in the direct transfer of C are not well established (Robinson

and Fitter, 1999; Smith and Read, 2008). Therefore, more needs to

be done to lay out the arguments for why and how CAMN transfer

of C could contribute to the accumulation of C in ecosystems.

3 Nitrogen transfer between plants
through common arbuscular
mycorrhizal networks

3.1 Arbuscular mycorrhizal fungi
and nitrogen

In contrast to C, AMF were previously thought to play no roles

in organic N acquisition for their host plant (Read, 1991). In

ecosystems where decomposition and nitrification processes are

favored, although both poorly mobile ammonium (NH4
+) and

highly mobile nitrate (NO3
−, most available in non-waterlogging

habitats, compared to NH4
+) are the principal plant-available N

forms, the enhancement of plant N acquisition by AMF may be
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small (Read, 1991). However, studies have shown that AMF can

acquire N from both inorganic and organic N sources and transfer

some of this N to their host plant (Johnson et al., 2002; Leigh et al.,

2008; Hodge and Fitter, 2010; Hodge and Storer, 2015; Jansa et al.,

2019). Since N is a key limiting nutrient in terrestrial ecosystems, if

AMF enhance inorganic, organic or unspecified N uptake, this

could improve host plant fitness (Hodge and Storer, 2015). In 15N

labelling studies, inorganic (Johansen et al., 1993; Tobar et al.,

1994a; Tobar et al., 1994b; Hawkins et al., 2000) and organic

(Hawkins et al., 2000) N uptake by host plants is positively

correlated to AMF colonization rates. In a recent 15N natural

abundance study, 30% of total N in maize was AMF-mediated

when maize grew within 5 m of N2-fixing Faidherbia albida (Dierks

et al., 2021). Generally, inorganic N absorbed by the fungal ERM

could be incorporated into amino acids and then transported to the

fungal IRM (Johansen et al., 1996).

In most natural and productivity ecosystems most nutrient

inputs to soils are as organic materials. These materials vary widely

in their physical and chemical complexity, nutrient quality and

quantity, and source (Read and Perez-Moreno, 2003). Single 15N-

labelled organic materials have been used to trace the flow of N in

the soil-plant system, showing that plants, or their mycorrhizal

symbionts, acquired N in intact glycine (Näsholm et al., 1998).

Subsequently, Leigh et al. (2008) demonstrated that R. intraradices

could increase the N concentration of its host plant, apparently by

taking up N from a decomposing patch of organic matter. AMF can

obtain substantial amounts of N from decomposing organic

materials, thereby enhancing plant fitness (Hodge and Fitter,

2010). However, in the absence of other microbes, there is so far

no experimental evidence for any quantitative acquisition of N by

AMF hyphae from organic sources (Jansa et al., 2019). On the other

hand, there is partly equivocal evidence from experiments using

quantum dot technology indicating that organic N could be taken

up via AMF hyphae and that uptake of N in the form of certain

simple amino acids was enhanced in mycorrhizal compared with

non-mycorrhizal plant roots (Whiteside et al., 2012). A surprising

finding, revealed through feeding 13C-acetate or 15N-Arginine to the

ERM, showed that N is transported from fungus to plant as NH4
+,

not amino acid (Fellbaum et al., 2012). A possible mechanism to

explain these observations is that arginine delivered to the fungal

IRM was broken down and the NH4
+ was then released to the

symbiotic interface and transferred from fungus to plant ((Parniske,

2008). The external hyphae of AM fungi can directly take up
15NH4

+ or 15NO3
–, reduce nitrate to NH4

+, and then assimilate

NH4
+ into the pool of free amino acids. Understanding the link

between CAMN transfer of nutrient and accumulation of C and N

in ecosystems is crucial to clarify potential C-for-N trades between

symbionts (Hodge and Storer, 2015; Thirkell et al., 2016). Indeed,
TABLE 1 Continued

Donor
Species A

Recipient
Species B

Linkage
direction*

Inoculum involved Substance
transferred

Ctransfer
%

Reference

Trifolium subterraneum Pl. lanceolata A ! B R. intraradices Organic C — Nakano-Hylander and Olsson,
2007
*Symbols indicate the direction of nutrients transferred: ! unidirectionally, D bi-directionally, ↔ either direction. Updated from He et al. (2003; He et al., 2009).
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interplant nutrient exchanges could play a vital ecological role in

promoting plant coexistence in ecosystems under future climatic

and anthropogenic pressures with profound relevance to

restoration of plant communities (Figure 2).
3.2 Interplant nitrogen transfer through
common arbuscular mycorrhizal networks

Changes in plant d15N values may reflect N inputs, N outputs

and N isotope fractionation processes in ecosystems (Dawson et al.,

2002). Use of natural 15N variability to investigate the role of

mycorrhizae in N transfer is increasing (Dawson et al., 2002; He

et al., 2003; Moyer-Henry et al., 2006; He et al., 2009). Earlier studies

showed one-way AM-mediated N transfer from N2-fixing soybean

(Glycine max) to non-N2-fixing maize (Zea mays) (van Kessel et al.,

1985) and from N2-fixing Trifolium pratense to non-N2-fixing

Lolium perenne (Haystead et al., 1988), indicating that such N

transfers could be important for non-N2-fixing plants under N-

limited conditions. Transfers of both NH4
+ and NO3

– between N2-

fixing and non-N2-fixing plants were mediated by CMNs (Frey and

Schüepp, 1993; Johansen et al., 1996; Moyer-Henry et al., 2006).

Likewise, He et al. (2006) found that N moved quickly between AM

and EM mycorrhizal plant individuals in a California oak

woodland, indicating a CMN-mediated nutrient distribution

mechanism between plants, including the release and recapture of

N from the rhizosphere soil. By foliar 15NO3 labeling to quantify N

transfer between non-N2-fixation plants (Eucalyptus marginata,

ectomycorrhizal (EM) species; Melaleuca preissiana, AM/EM

species; Verticordia nitens AM species), Teste et al. (2015)

demonstrate that plants with cluster-roots (Banksia menziesii,
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non-mycorrhizal species) or ectomycorrhizal plants were more
15N enriched than with AM-only plants. Nitrogen transfer was

relatively high (4% of the donor plant N) among these non-N2-

fixation plants with contrasting N-acquisition strategies.

Montesinos-Navarro et al. (2016) found that CAMNs mediated N

transfer between facilitated plants, suggesting that nutrient transfer

through CAMNs might be a potential mechanism allowing

persistent benefits for their adult facilitated plants. The potential

pathways for CAMNs-mediated N transfer could be (1) direct

transfer of N via connecting hyphae across the symbiotic

interface, (2) increased root surface area and a reduced distance

for nutrient diffusion, and (3) increased assimilation or exudation of

N in the AM-colonized plants (Haystead et al., 1988; Trannin et al.,

2000; He et al., 2003; He et al., 2009).

Both 15N enrichment studies and natural abundance

measurements showed a one-way movement of 0 to 80% of

receiver N from N2-fixing mycorrhizal to non-N2-fixing

mycorrhizal plants, under controlled or field conditions (He et al.,

2003; He et al., 2009). For instance, one-way transfer through

CAMNs of ~0.09‒80% of plant N was reported in a white clover

(Trifolium repens) ‒ ryegrass (Lolium perenne) system with F.

mosseae (Haystead et al. , 1988), a berseem (Trifolium

alexandrinum) ‒ maize (Zea mays) or pea (Pisum sativum) ‒

barley (Hordeum vulgare) system with R. intraradices (Frey and

Schüepp, 1993; Johansen and Jensen, 1996), a soybean (Glycine

max) ‒ semen cassiae (Senna obtusifolia) and a peanut (Arachis

hypogaea) ‒ prickly sida (Sida spinosa) or sicklepod (Senna

obtusifolia) (Moyer-Henry et al., 2006), a Cinnamomum

camphora ‒ C . camphora system with Claroideoglomus

etunicatum (He et al., 2019), a Vachellia seyal ‒ Sporobolus

robustus system with R. irregularis (Table 2). In addition, N can
TABLE 2 Transfer of N from one plant to another via CAMNs (see Section 1.4 for transfer calculations).

Donor
Species A

Recipient
Species B

Linkage
direction*

Inoculum involved Substance
transferred

Ntransfer

%
Reference

Andropogon gerardii
Arachis hypogaea

An. gerardii
Sida spinosa

A ! B
A ! B

Seven AM fungi
Field soil with roots

15NH4

+15NO3
−

14NH4
+

27.00
30.00

Weremijewicz et al., 2016
Moyer-Henry et al., 2006

Ar. hypogaea Senna obtusifolia A ! B Field soil with roots 14NH4
+ 80.00 Moyer-Henry et al., 2006

Bromus hordeaceus Vitis vinifera A ! B Field soil with roots 15NH4
+ 24.80 Cheng and Baumgartner, 2004

Cleistogene squarrosa
Cl. squarrosa

Cl. squarrosa
Leymus chinensis

A ! B
A ! B

Field soil with roots
Root zone soil from A

15NH4
+

15NH4
+

45.70‒
55.30
16.00‒
61.00

Muneer et al., 2020a; Muneer et al.,
2020b
Muneer et al., 2022

Cinnamomum
camphora

Ci. camphora A ! B Claroideoglomus
etunicatum

15NH4
+ 0.09 He et al., 2019

Ci. camphora Bidens pilosa A ! B C.etunicatum 15NH4
+ 0.22 He et al., 2019

Ci. camphora Broussonetia
papyrifera

A ! B C. etunicatum 15NH4
+ 0.19 He et al., 2019

Cupressus goveniana Cu. goveniana A ! B Pygmy forest soil 15NH4
+ 0.99 Rains and Bledsoe, 2007

(Continued)
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TABLE 2 Continued

Donor
Species A

Recipient
Species B

Linkage
direction*

Inoculum involved Substance
transferred

Ntransfer

%
Reference

Eucalyptus marginata
Flaveria bidentis

Verticordia nitens
Setaria viridis

A ↔ B
A D B

Nursery soil and potting
media
Rhizophagus intraradices

15NO3
−

15NH4
+

2.90‒4.40
0.98‒2.14

Teste et al., 2015
Chen et al., 2021

Flaveria bidentis Eclipta prostrata A D B R. intraradices 15NH4
+ 2.99‒4.29 Chen et al., 2021

Leymus chinensis
L. chinensis

L. chinensis
Cl. squarrosa

A ! B
A ! B

Field soil with roots
Root zone soil from A

15NH4
+

15NH4

21.50‒
64.90
3.98‒5.98

Muneer et al., 2020a; Muneer
et al.2020b
Muneer et al., 2022

Gliricidia sepium Dichantium
aristatum

A ! B Field soil with roots 15NO3
− 0.70‒2.50 Jalonen et al., 2009

Glycine max G. max (non-
nodulated)

A ! B Field soil with roots 14NH4
+ 48.00 Moyer-Henry et al., 2006

G. max Senna. obtusifolia A ! B Field soil with roots 14NH4
+ 80.00 Moyer-Henry et al., 2006

G. max Sorghum bicolor A ! B F. mosseae 14NH4
+ 22.50 He, 2002

G. max Zea mays A ! B 3 Glomus species 15NH4
+ ~5.00 Hamel et al., 1991a; Hamel et al.,

1991b

G. max Z. mays A ! B Field soil with roots 15NH4
+ 3.00 Eissenstat, 1990

G. max Z. mays A ! B R. irregularis 15NH4
+ 11.40 Wang et al., 2016

G. max Z. mays A ! B R. fascculatus 15NH4
+ — van Kessel et al., 1985

G. max Z. mays A ! B Funneliformis mosseae 15NH4
+ 6.08 Meng et al., 2015

Gliricidia sepium Theobroma cacao A ! B Field soil with roots 15NH4
+ 0.40–0.85 Kurppa et al., 2010

Hordeum vulgare
(barley)

Pisum sativum A ! B R. intraradices 15NH4
+ 4.00 Eissenstat, 1990

Inga edulis T. cacao A ! B Field soil with roots 15NH4
+ 0.55–0.88 Kurppa et al., 2010

Kummerowa striata Solidago canadensis A ! B Acaulospora scrobiculata
Gigaspora margarita
F. geosporum

15NO3
− — Awaydul et al., 2019

Medicago polymorpha
Melaleuca preissiana

Vitis vinifera
V. nitens

A ! B
A ↔ B

Field soil with roots
Nursery soil and potting
media

15NH4
+

15NO3
−

5.50
2.90‒4.40

Cheng and Baumgartner, 2004
Teste et al., 2015

Oryza sativa
(Rice)

Vigna radiate
(Peanut)

A ! B Claroideoglomus
caledonium

15NH4
+ 1.40‒4.40 Li et al., 2009

Phaseolus vulgaris Zea mays A ! B F. mosseae 15NH4
+ 0.32 Giller et al., 1991

Pisum sativum
(pea)

Cichorium intybus A ! B R. irregularis + F. mosseae 15NH4
15NO3

− 52.50 Ingraffia et al., 2021

Linum usitatissimum A ! B 13.40

Triticum durum A ! B 34.00

Pi. sativum Hordeum vulgare
(barley)

A D B R. intraradices 15NH4

+15NO3
−

15.00 Johansen and Jensen, 1996

Pi. sativum cv. Frisson
and P2

Triticum × Secale A ! B AMF inoculum 15N-urea 0.67 Hupe et al., 2021

Plantago lanceolata Pl. lanceolata A ↔ B Filed soil 15NH4
+ 0.70 Eissenstat, 1990

Pl. lanceolata Pl. lanceolata A ↔ B Glomus hoi 15N organic
patch

— Hodge and Fitter, 2010

Pl. lanceolata Pl. lanceolata A ↔ B F. mosseae 15N organic
patch

— Hodge and Fitter, 2010

Pueraria phaseoloides Hevea brasiliensis A ! B C. clarum 15NO3
− 0.04‒0.20 Ikram et al., 1994

(Continued)
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also be transferred from non-N2-fixing mycorrhizal plants to N2-

fixing mycorrhizal plants via a CAMN, although N transfer is

generally less than 10% of plant N budgets (Johansen and Jensen,

1996; Li et al., 2009). For instance, the respective N transfer was

4.2% ‒ 9.9% of plant N budgets from the donor mung bean (Vigna

radiata) to its associated receiver rice (Oryza sativa) or from the rice

(O. sativa) to mung bean (Li et al., 2009). AM-mediated N transfer

can be from N2-fixing to non-N2-fixing plants or from non-N2-

fixing to N2-fixing plants, indicating bi-directional transfer.

Recently, 15N labeling demonstrated that CMNs increased 15N

enrichment of Trifolium pratense, but did not affect its biomass

production, when the holoparasite Cuscuta australis was absent

(Yuan YG. et al., 2021). In contrast, both 15N enrichment and

biomass production in T. pratense plants were increased by CAMNs

when the holoparasite was present. These results indicated that

CAMNs could preferentially distribute more N to a non-parasitized

neighboring T. pratense, while resulting in negative feedback on the

growth of the parasite C. australis (Yuan YG. et al., 2021).
4 Conclusions and future perspectives

A range of 0.02 to 41% (C) and 0.04 to 80% (N) of one-way

transfer have been observed from donor to recipient plants through

the determination of 13C and 15N signatures (Tables 1, 2). Interplant
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C and N transfers can affect not only the growth and competition

between donor and recipient plants but also ecosystem stability. For

example, Weremijewicz et al. (2016) observed that Andropogon

gerardii plants in intact CMNs under sunlight acquired 9% of their

N, but shaded plants (~35% photosynthetically active radiation)

acquired only 1% N, from their conspecific neighbors. They

suggested that AM fungi in CAMNs preferentially provide N to

conspecific hosts of with fixed C or presenting the strongest sinks,

thus potentially expanding asymmetric underground competition.

Castro-Delgado et al. (2020) showed that the mycelium could

transfer diverse compounds and signals among plants that would

modify plant behavior in favor of protection of the whole network.

In general, stable isotope tracing has provided an effective way to

study the exchange of mineral nutrients between plants through

CAMNs. Although 13C and 15N labeling techniques have

demonstrated that CAMNs are an important pathway for the

translocation of both C and N, the functioning of CAMNs in

ecosystem C and N dynamics remains equivocal. To make an

explicit link between nutrient transfer in CAMNs and nutrient

cycling in ecosystems new approaches are needed. For example, a

combination of high-throughput genome sequence techniques with

model-based assessments could further identify the extent of

CAMNs in interplant C and N translocation in natural and

managed ecosystems (Orwin et al., 2011; Zhou et al., 2021). The

following issues about the physiological and ecological functions of

AMF or CAMNs should be addressed.
TABLE 2 Continued

Donor
Species A

Recipient
Species B

Linkage
direction*

Inoculum involved Substance
transferred

Ntransfer

%
Reference

Sorghum bicolor Glycine max A ! B F. mosseae 15NH4
+ 28.50 He, 2002

Sesbania virgata Eucalyptus grandis A ! B G. macrocarpum,
G. etunicatum
Entrophospora
colombiana

15NH4
+ 0.06‒0.08 Rodrigues et al., 2003

Trifolium alexandrinum Malus domestica A ! B R. intraradices 15NH4
+ 4.70 Frey and Schüepp, 1993

Trifolium repens Citrus sinensis
Osbeck

A ! B R. intraradices 15NH4
+ 1.40‒1.70 Fang et al., 2021

T. repens
T. repens

Lolium perenne
l. perenne

A ↔ B F. mosseae
R. irregularis)

15NH4
+

15-urea
4.20–5.00
2.00–3.00

Haystead et al., 1988
Reay et al., 2022

Vachellia seyal Sporobolus robustus A ! B R. irregularis 15NH4
+ 13.90 Fall et al., 2022

Verticordia nitens Melaleuca preissiana A ↔ B Nursery soil and potting
media

15NO3
− 2.90–4.40 Teste et al., 2015

Vicia faba Triticum durum A ! B 8 AMF species 15NH4
15NO3 2.00‒2.70 Ingraffia et al., 2019

V. faba Triticum turgidum A ! B R. irregularis 15NH4
+ 32 Wahbi et al., 2016

V. faba T. turgidum A ! B R. irregularis 15NH4
+ 50 Wahbi et al., 2016

Vigna radiate
(Peanut)

Oryza sativa
(Rice)

A ! B C. caledonium 15NH4
+ 4.20‒9.90 Li et al., 2009

Vigna unguiculata Z. mays A ! B C. etunicatum 15NH4
+ 21.20 Martins and Cruz, 1998

Z. mays
Z. mays

M. sativa
T. alexandrinum

A ! B
A ! B

Field study
R. intraradices

15N-urea
15NH4

+
7-10
0.10

Zhang et al., 2019
Frey and Schüepp, 1993
*Symbols indicate the direction of nutrients transferred: ! unidirectionally, D bi-directionally, ↔ either direction. Updated from He et al. (2003; He et al., 2009).
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Fron
1. Can 13C and 15N natural abundance, like 13C and 15N

external labeling, be employed to detect C and N

transfer? Study have shown that plant d13C signatures

could reflect the d13C of the C sources of associated fungi

and d15N signatures could reflect the d15N of N sources to

plants (Querejeta et al., 2003). However, the reliability of

using 15N natural abundance to estimate AMF-mediated N

transfer has been recently questioned (Choi et al., 2020;

Jach-Smith and Jackson, 2020).

2. In what form are C and N transferred through CAMNs?

Amino acids, lipids, or carbohydrates for C, amino acids or

ammonium for N? Does a pollen development encompass a

mechanism that is shared with CAMNs symbiosis? What

may the two phenomena have in common (Nouri and

Re inhard t , 2015)? Can fluorescen t nanosca l e

semiconductors or quantum dots (Whiteside et al., 2012)

be combined with 13C and 15N labelling to trace the transfer

of organic nutrients through CAMNs (Govindarajulu et al.,

2005; Parniske, 2008)?

3. Can network theory and computer modeling (Southworth

et al., 2005; Wipf et al., 2019) simulate the direction and

distribution of interplant C and N transfer facilitated by

CMNs and thus predict both positive and negative effects of

CMNs in natural and managed systems (Alaux et al., 2021)?

4. 15N labeling showed that AMF could not directly decompose

organic matter, but the interaction between AMF and other

decomposers enhanced organic matter decomposition and

hence the absorption of N by AMF (Hodge and Fitter,

2010). However, how can CAMNs regulate the process of C

and N translocation and absorption between AMF mycelia

and host plants? In addition, a coupled concurrent C and N

movement through CAMNs has not been reported.

5. What determines the net effect of CAMN-mediated

interplant nutrient transfer on plant C assimilation and N

metabolism? Does the transferred C and N affect the

performance or fitness of the donor, receiver, or both?

What is the ecological significance of CAMN mediated

nutrient transfers in natural and managed ecosystems?

Whether AMF-mediated interplant C and N transferred

is agronomically important to managed ecosystems,

including agroforestry, forestry, croplands, and grasslands,

is debated (Rillig et al., 2019; Ryan et al., 2019). How do

modern agricultural practices, such as long-term organic

farming, no-till, or fertigation affect the establishment and

performance of CMNs and subsequent effects on fertilizer

use efficiency, crop agronomic characters and productivity?

6. How the abundance and function of soil bacterial and other

fungal communities could be manipulated and promoted

through a CAMN-mediated interplant C and N transfers

(Bonfante and Anca, 2009; Yuan MTM. et al., 2021)? Is

plant C investment in AM fungal growth related to soil N

acquisition within a CAMN? How is the N for C trade

between mycorrhizal symbionts regulated if plants are

linked through a CAMN? What determines the

magnitude and direction of such C and N transfer within
tiers in Plant Science 11
the same or different plant species in mono-species or

mixed-species systems, particularly along their complete

plant growth and development cycle? How exogenous and

endogenous factors can interplay with CAMNs, and how a

nutrient can impinge on AM symbiotic signaling and also

on a later cellular program in host plants (Nouri et al.,

2014).

7. Irrespective of photosynthetic capabilities or N2-fixation

characteristics of plant species, what the phylogenetic and

functional diversity of plant species can benefit from

nutrient transfer through CAMNs? These species would

be in a diverse range as C3, C4, C3-C4, CAM and parasitic

plants. Are there interactions between AM and EM

networks on C and N transfers since some plants do have

dual AM/EM associations (Wang and Qiu, 2006; Teste

et al., 2015)? How can technical problems be overcome in

demonstrating unequivocally that a C or N transfer directly

occurs through CMNs rather than indirectly through root

exudates or soils (Zhang et al., 2019; Fall et al., 2022; Reay

et al., 2022)?

8. How will drivers of global environment change including

elevated CO2 concentration, N deposition, drought and

temperature affect interplant C and N transfer through

CAMNs? Each can have substantial impacts on the

direction and magnitude of such C and N transfers and

ultimately on resource sharing or competition (Fellbaum

et al., 2014; Řezáčová et al., 2018; Mickan et al., 2021). To

answer these issues, it is important to keep in mind that

mycorrhizal symbiotic benefits are interactively formed

between plants and fungi under specific habitats and soil

properties.
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