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Stacking-based and improved
convolutional neural network:
a new approach in rice leaf
disease identification

Le Yang*, Xiaoyun Yu*, Shaoping Zhang, Huanhuan Zhang,
Shuang Xu, Huibin Long and Yingwen Zhu

School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
Rice leaf diseases are important causes of poor rice yields, and accurately

identifying diseases and taking corresponding measures are important ways to

improve yields. However, rice leaf diseases are diverse and varied; to address the

low efficiency and high cost of manual identification, this study proposes a

stacking-based integrated learning model for the efficient and accurate

identification of rice leaf diseases. The stacking-based integrated learning

model with four convolutional neural networks (namely, an improved AlexNet,

an improved GoogLeNet, ResNet50 and MobileNetV3) as the base learners and a

support vector machine (SVM) as the sublearner was constructed, and the

recognition rate achieved on a rice dataset reached 99.69%. Different

improvement methods have different effects on the learning and training

processes for different classification tasks. To investigate the effects of different

improvement methods on the accuracy of rice leaf disease diagnosis,

experiments such as comparison experiments between single models and

different stacking-based ensemble model combinations and comparison

experiments with different datasets were executed. The model proposed in

this study was shown to be more effective than single models and achieved

good results on a plant dataset, providing a better method for plant

disease identification.

KEYWORDS

ensemble learning, stacking, convolutional neural network, machine learning,
rice diseases
1 Introduction

Crop diseases are primary agricultural issues worldwide because they occur often and

can lead to significant crop yield reductions. Recently, automatic crop disease image

recognition has received much attention because of food security concerns. This is a

challenging research issue due to the complex natures of crop disease images, such as their

cluttered field backgrounds and irregular illumination intensities (Chen et al., 2021). The
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appearance of various crop diseases adversely influences plant

growth; when these crop diseases are not discovered early, they

may have disastrous food security consequences (Picon et al., 2019).

Especially in the case of rice, which is one of the world’s important

grains, it is important to prevent diseases as an important means of

improving rice production. However, there are many types of rice

diseases, and disease symptoms possess complex and variable

information. These diseases can only be accurately identified and

diagnosed by visual inspections performed by professionally trained

plant specialists, and although this method can suppress some

disease epidemics, it requires a large workload, is costly and is not

easy to promote. Therefore, a fast, inexpensive and effective method

for crop disease identification is needed due to its important

practical significance.

With the rapid development of computers and digital

technology, a new generation of crop disease identification is on

the horizon. Computer vision technology offers an interesting and

attractive alternative for the serial monitoring of crop diseases

because of its low price and visual and noncontact nature (Wells,

2016). Many works have used machine learning for the purpose of

recognizing and classifying crop diseases (Pawiak et al., 2019;

Hammad et al., 2020; Tuncer et al., 2020). For example, Singh

et al. (2015) proposed a classifier using a support vector machine

(SVM) for identifying rice leaf diseases by using a k-means

clustering algorithm to segment leaf infection sites as classifier

inputs; this approach eventually achieved a recognition rate of

82%. Gharge and Singh (2016) proposed a backpropagation

neural network to classify soybean frog eyes, downy mildew and

bacterial pustules with 93.3% accuracy using image enhancement

techniques to separate infected clusters from leaves via a k-means

segmentation algorithm. Kaur et al. (2018) used k-means to

distinguish diseased leaves from healthy leaves and trained

models using SVM classifiers to implement a semiautomatic

system for identifying three soybean diseases, where a maximum

average accuracy of 90% was achieved. Zhong et al. (2019) proposed

a method based on FPCA and an SVM for solving the difficult

problem potato disease localization and identification, and

experiments showed that their method achieved great success

with a recognition rate of 98%. Garcia et al. (2020) used an SVM

classifier and the CIELab color space to identify the ripeness of

tomatoes via a machine learning method using a 5-fold cross-

validation strategy and achieved a recognition rate of 83.39% across

900 images.

Although the above methods have achieved good results, it is

difficult to extract many features from images solely using machine

learning methods, resulting in low accuracy, until a new technique,

deep learning, was proposed; deep learning overcomes most digital

image processing challenges and promises to identify a wide range

of crop diseases. Currently, deep learning is also becoming

increasingly used in the field of agriculture (Jiang et al., 2019;

Jahanbakhshi et al., 2020; Pardede et al., 2020; Sugathan et al., 2020;

Xie et al., 2020). Various studies have shown that deep learning

networks can achieve good plant disease identification and

classification results. Kawasaki et al. (2015) proposed a novel

plant disease detection system with convolutional neural networks

that achieved 94.9% accuracy in terms of cucumber disease
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identification using 4-fold cross-validation. Brahimi et al. (2017)

used convolutional neural networks as learning algorithms to train

on a dataset containing nine tomato diseases and used visualization

methods to locate the disease sites with good results, yielding an

accuracy of 99.18%. Cai et al. (2019) used convolutional neural

networks to extract features such as the sizes, colors, textures and

roundness of apples and then implemented an SVM to classify the

ranks of Yantai apples, verifying the effectiveness of the

convolutional neural network-SVM combination. Jiang et al.

(2020) combined convolutional neural networks with SVM to

identify rice leaf diseases using 10-fold cross-validation, achieving

an average accuracy of 96.8%. Li et al. (2022a) ResNet and Inception

V1 extracted the global features of the image, and then added

WDBlock to the DCGAN generator. At the same time, SeLU

activation function was used to improve the training stability of

the network. Experiments have shown that FWDGAN can generate

higher quality data and reduce the number of model parameters

without compromising network performance. In the same year, Li

et al. (2022b) proposed a tree image recognition system based on the

Caffe platform and dual task Gabor. The Gabor kernel was

introduced into CNN to extract frequency domain features of

images with different scales and directions, thereby enhancing the

texture features of leaf images and improving recognition

performance. The training accuracy in complex backgrounds is

96%, achieving the goal of efficient and accurate recognition of

quantities. Shundong Fang et al. (2022) used MFF blocks as the

main structure, adopted a multi-channel feature fusion module of

LC Block and RCblock, and added a hard coordination attention

mechanism module to improve the recognition accuracy of the

network. The final proposed HCA-MFFNet network for corn

diseases has a recognition rate of 97.75%.

The network performance proposed in the above references is

good, but there are similarities between some rice leaf diseases,

making it difficult for neural networks to recognize them. Therefore,

this study using the stacking integrated learning method, the

proposed base learner integrates four convolutional neural

networks, an improved AlexNet, an improved GoogLeNet,

ResNet50 and MobileNetV3, for extracting rice leaf disease

features, and an SVM is selected as the sublearner for disease

classification and prediction; the accuracy of the proposed

approach reaches 99.69%. Compared with the existing method,

this method has the following four main contributions:
1. In this study, a stacking-based ensemble learning model is

proposed for efficient and accurate identification of rice leaf

diseases.

2. Combine convolutional neural network with support

vector machine (SVM) to improve the disease

identification effect of rice leaves.

3. Help improve model performance by increasing attention

mechanisms and inserting residual networks into the

model as convolutional layers.

4. The Leaky function is used instead of the RELU function to

improve the extraction of disease characteristics of rice

leaves by the model and reduce the sparsity of the RELU

function.
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The rest of this article is structured as follows. In Section 2,

image acquisition and image preprocessing are mainly introduced.

Section 3 introduces the construction process of the proposed

model in detail, mainly discussing the method of the proposed

model. These experiments are described in detail in Section 4,

providing a large number of experiments to probe the performance

of the proposed method and analyze the experimental results.

Finally, section 5 summarizes the document and presents

future work.
2 Materials and methods

2.1 Image acquisition

In this study, images of diseased rice leaves were taken with a

Canon EOS 6DMarkII digital camera at the Agronomy Experiment

Station of Jiangxi Agricultural University, and 36 images were

identified and screened by experts. An additional 1086 images

were obtained through search engines as well as from the public
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dataset Kaggle, for a total of 1122 rice leaf disease images. These

images contained eight kinds of diseases, Aphelenchoides besseyi,

bacterial leaf blight, red blight, leaf smut, rice sheath blight, bacterial

leaf streaks, brown spots and rice blasts, and some of these rice leaf

disease images are shown in Figure 1. Among them, ACB is

Aphelenchoides besseyi, BLB is bacterial leaf blight, RB is red

blight, LS is leaf smut, RSB is rice sheath blight, BLS is a bacterial

leaf streak, BS is a brown spot, and RL is a rice blast.
2.2 Image processing

The scales of the images obtained from different sources were

inconsistent, so this experiment first unified the images to a size of

224×224. In addition, deep learning generally requires a large

amount of data for model training; otherwise, overfitting and

poor accuracy may occur. However, under the existing

conditions, a large number of rice leaf disease images could not

be obtained, so the collected small dataset needed to be expanded.

The original dataset was expanded using expansion methods such
FIGURE 1

Partial leaf disease map of rice.
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as flipping, rotation, cropping, color transformation, and blurring.

Figure 2 shows the effect of partially utilizing these data

enhancement methods, and Table 1 shows the numbers of images

possessed before and after expansion.

Finally, 80% of the expanded dataset was randomly selected as

the training set, and the remaining 20% was used as the test set. The

training set was used again to train the model via the 5-fold cross-

validation method, and the rice leaf disease image samples were

labeled with a two-dimensional one-hot coded label array, where 0,

1, 2, 3, 4, 5, 6 and 7 represented dry tip nematodes, white leaf blight,

bacterial streaks, hoary leaf spots, rice leaf black spikes, red blight,

rice blasts, and stripe blight, respectively.
3 Rice leaf disease identification
model construction

3.1 Improvement of the AlexNet model

The original AlexNet (Krizhevsky et al., 2012), a convolutional

neural network model, used the ImageNet (Deng et al., 2009)

dataset, and the rice leaf disease dataset used in this study differs

greatly from ImageNet. The direct application of the original model

to rice leaf disease recognition would lead to a lower recognition

rate. To improve the effective feature extraction and generalization

ability of the model, make the model more adaptable to the dataset

used in this experiment, and further improve its recognition effect

after repeated debugging and optimization, the original AlexNet

model was improved, and the new model is named AlexNet_G. The

specific improvements are as follows.

1) Activation function

In this study, the rectified linear unit (ReLU) activation function

(Liang and Xu, 2021) was replaced by the Leaky ReLU activation

function (Andrew et al., 2013), which prevented the output of the
Frontiers in Plant Science 04
ReLU function from being 0 when the neuron input was negative;

this might have caused that part of the neurons to not be activated

and the corresponding parameters to not be updated, i.e., a

“dead” neuron.

2) Network structure improvement

The original AlexNet model had five convolutional layers. To

make the model better fit the dataset of this study, the original

model was adjusted to reduce some of the convolutional layers, the

number of convolutional kernels, and the number of output nodes

without affecting the recognition accuracy, thus reducing the

computational complexity of the model, speeding up the training

process, and reducing the memory occupied by the model, as shown

in Figure 3.

3) Optimizer improvements

In this study, the SGD (Ruder, 2016) optimizer was changed to a

self-applicable learning rate-based Adam (Ruder, 2016) optimizer,

which automatically adjusted the parameter learning rate,

dramatically increasing the training speed and robustness of

the model.
3.2 Improvement of the GoogLeNet model

In 2014, the GoogLeNet model was proposed by Google

(Szegedy et al., 2014), which provided a structural innovation

while increasing the depth of the network by introducing a

structure called Inception to replace the previous classic

convolution-plus-activation component. The top-5 error rate of

GoogLeNet on the ImageNet classification competition was reduced

to 6.7%. In this study, the ECA mechanism and a residual network

were added to GoogLeNet, the new obtained model is named RE-

GoogLeNet (Yang et al., 2023); its structure is shown in Figure 4,

with the following improvements.

1) Activation function
FIGURE 2

Some data enhancement renderings.
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In this study, the Leaky ReLU activation function replaced the

ReLU activation function so that the extraction rate of rice leaf

disease features could be improved and the sparsity of the ReLU

activation function could be reduced.

2) Convolution kernel

The 7×7 convolutional kernels in the original GoogLeNet were

replaced with three 3×3 convolutional kernels to introduce

more nonlinearity.

3) Embedding the ECA attention mechanism in the

Inception module

The incorporation of attention mechanisms into convolutional

neural networks to improve the performance of plant leaf disease

recognition has become a major hotspot and has been shown to be

beneficial for improving model performance. In this experiment,

the ECA mechanism (Wang et al., 2020) was selected and added to

the Inception module in GoogLeNet, which is called the E-

Inception module, as shown in Figure 5. The specific structure

adds a fully connected layer after the Inception module, connects a
Frontiers in Plant Science 05
one-dimensional convolution with adaptive channels, and finally

uses the sigmoid activation function to output the feature map.

4) Addition of residual connections

Adding the attention mechanism after the Inception block

could enable the extraction of deeper feature information, but

after adding the ECA mechanism, the obtained E-Inception had

more network layers than the previous module. This increase in the

number of network layers would increase the information loss and

gradient loss. In 2015, Kaiming He et al. proposed the ResNet

network (He et al., 2016), and the increase in the number of

network layers increased the information loss and elevation loss.

Therefore, this study added a residual network between each pair of

E-Inception layers and added a bypass between layers with the same

performance to linearly superimpose the feature information of the

previous E-Inception layer and the feature output of this layer to

mitigate the degradation of the weight matrix when training the

deep neural network. This approach is named the Res-ECA-

Inception module, and the specific connection method is shown

in Figure 6.
3.3 Ensemble learning

Ensemble learning involves constructing and combining several

learners to complete a learning task; this approach is sometimes

referred to as a multiclassifier system, committee-based learning, etc.

Figure 7 shows a generalization of the idea of integrated learning. The

learning task is accomplished by training several individual learners

with certain combination strategies to eventually form a strong learner.

The main ensemble learning methods include bagging,

boosting, and stacking, and the stacking method was used in this

study. The stacking method, first proposed by Wolpert (Wolpert,

1990), is a serially structured hierarchical stacking ensemble
A B

FIGURE 3

AlexNet improved structure before and after. (A) Original AlexNet structure, (B) AlexNet_G structure.
TABLE 1 Dataset of rice leaf diseases.

Species Before expansion After expansion

Aphelenchoides Bessyi 82 1200

Bacterial Leaf Blight 200 1200

Bacterial Leaf Streak 120 1200

Brown Spot 200 1200

Leaf Smut 200 1200

Red Blight 95 1200

Rice Blast 125 1200

Rice SheathBlight 100 1200
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framework that is popular in major data mining competitions. It

consists of two levels of classifiers, called base learners and

secondary learners, using a learning strategy for model fusion; i.e.,

the secondary learners are retrained and predicted using the outputs

of the base learners as features to obtain complete predictions for

correcting several base learner errors, thus actively improving the

integrated model performance and reducing the risk of overfitting.

Ensemble learning is widely used in education, medicine, social

sciences, etc., but it has been less used in agriculture. The stacking

model fusion process is shown in Figure 8. C1,…, Cm are the base

classifiers (base models), and each base classifier’s training set is the

complete original training set. For each base classifier, N epochs are

used for training, and after the training process, all outputs (P1,…,

Pm) of (C1,…, Cm) for the original training set during the N epochs
Frontiers in Plant Science 06
are combined as a new training set for the second training stage of

the model-meta classifier.

In the actual use of the stacking method, to avoid the risk of

overfitting, it is often accompanied by a cross-validation operation,

and this study used a 5-fold cross-validation. The specific process is

shown in Figure 9. The original dataset is first divided into a

training set (the training data in Figure 9) and a test set (the test

data in Figure 9) using 5-fold cross-validation; i.e., the original

training set is divided into five folds, among which four folds are

recorded as the base learner training set (“learn”), and the

remaining one fold is recorded as the validation set (“predict”).

The cross-validation process consists of two parts, i.e., a stable

model is obtained by training on the dataset, and then the model is

used for prediction.
FIGURE 5

E-Inception structure.
FIGURE 4

RE-GoogLeNet structure.
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Fron
1) The base learner is used to train on the learning folds and

perform prediction on “predict” to output the feature

column predict1; the test set is used to train this

stereotyped parameter learner, and the prediction result

test1 is output.

2) The above steps are repeated 5 times to generate predict1,

predict2,…,predict5 from the training data, and these

results are merged vertically to obtain A1. The test data

generate test1, test2,…, test5, and these are averaged them

to obtain B1.

3) The same operation is performed for the other base learners,

i.e., repeating steps 1 and 2. Suppose we have four base

learners; then, A1, A2, A3, and A4 and B1, B2, B3, and B4

are generated.

4) A1, A2, A3, and A4 are input as training sets into the

stacking sublearner for training, and then the trained fixed-

parameter models are tested against B1, B2, B3, and B4 to

obtain the final results.
This implements the stacking method in a 5-fold cross-

validation manner.
3.4 The experimental model

In this study, the AlexNet_G, RE-GoogLeNet, ResNet50, and

MobileNetV3 (Howard et al., 2019) models were used as the base
tiers in Plant Science 07
learners of the stacking ensemble learning framework so that the

fusion models could be optimized and improved from the base

models with large differences.
4 Experimental results and discussion

This experiment used a computer with an Intel(R) Xeon(R)

Silver 4112 CPU at 2.60 GHz, 64.0 GB of RAM, an NVIDIA Quadro

RTX 5000 graphics card; CUDA version 10.1; Cudnn version 7.6.5;

and the Windows 10 64-bit operating system. The utilized software

mainly included the OpenCV image processing software and the

TensorFlow 2.3 Python 3.7 deep learning framework, using the

Python language for program compilation.
4.1 Evaluation indicators

In this study, the precision, recall, accuracy, and F1 metrics were

used to measure the performance of the network model in terms of

rice leaf disease identification. The precision, recall, accuracy and F1

evaluation metrics were calculated as follows.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
  (4)
FIGURE 7

Ensemble Learning Overview.
FIGURE 6

Res-ECA-Inception module.
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 Accuray =
TP + TN

TP + FN + FP + TN
  (5)

F1 =
2TP

2TP + FP + FN
  (6)

where TP indicates that a positive sample was predicted as a

positive sample, that is, a correct prediction; FP indicates that a

negative sample was predicted as a positive sample, that is, an

incorrect prediction; FN indicates that a positive sample was

predicted as a negative sample, that is, an incorrect prediction;

and TN indicates that a negative sample was predicted as a negative

sample, that is, a correct prediction. The accuracy rate, also called

the check rate, aims to determine how many of the samples

predicted to be positive are actually positive and is used to

evaluate the correctness of the detector based on successful
Frontiers in Plant Science 08
detections. The recall rate, also called the check all rate, aims to

find how many of the actually positive samples are predicted to be

positive and is used to evaluate the detection coverage of the

detector for all targets to be detected. The accuracy rate aims to

know the probability of correct prediction among the total samples.

F1 is designed to reflect both the accuracy rate and recall rate as an

evaluation metric.
4.2 Experiments on open datasets

Considering the small size of the original rice leaf dataset, the

four varieties of disease images were selected from the PlantVillage

public dataset as the experimental subjects to verify the

generalization ability of the model proposed in this study. These
FIGURE 9

5-fold cross-validation process in stacking.
FIGURE 8

Stacking model fusion process.
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included apple black scab, apple black rot, apple rust, corn leaf spot,

corn rust, corn leaf blight, grape black rot, grape esca, grape leaf

blight, tomato leaf mold, tomato early blight, tomato late blight, and

tomato bacterial spot. Some of these are shown in Figure 10, with a

total of 15,866 images, and the numbers of images in various

categories are shown in Table 2. As in the experiments conducted

on the rice leaf dataset, we used 20% of the original dataset for

evaluating the model, and the other 80% was still used for training

and testing the model using fivefold cross-validation.
4.3 Comparisons before and after
improving the model

In this study, the improved AlexNet and GoogLeNet were used

for the model. To explore the performance of the improved models,

the single models were separately trained and tested on the rice leaf

disease dataset and plant disease dataset. Their performance was

measured using different evaluation metrics, such as the accuracy,

precision, recall and F1 measures, and the data here were the

average values in the fivefold cross-validation process. The results

are shown in Tables 3, 4. From the data in the tables, we can see that

the improved AlexNet had a better recognition ability than the

original model on both the rice disease dataset and the plant disease

dataset, with average accuracy improvements of 0.36% and 1.66%,

respectively, and the improved AlexNet had fewer parameters. The

improved GoogLeNet also achieved better performance on the rice

disease dataset and plant disease dataset, with average accuracy

improvements of 0.42% and 2.34%, respectively, over the original

model. The other metrics of both models were also improved.
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4.4 Comparison between
different sublearners

To determine the effects of different sublearners on the

performance of the stacking-based integrated model, seven more

common classification algorithms in machine learning were

selected in this study, namely, an SVM, k-nearest neighbors

(KNN) (Tang, 2013), a random forest (RF) (Abeywickrama et al.,

2016), GNB, a decision tree (DT), a light gradient boosting machine

(LGBM), and LGR.With the same hyperparameters for each model,

the rice dataset and the plant dataset were used for training, and the

obtained accuracy rates are shown in Table 5. Finally, it was found

that the accuracy rates achieved on both datasets were maximized

when using the SVM, so in this study, the SVM was used as the

sublearner in the stacking ensemble learning model.
4.5 Single-model analysis

The model training and testing processes in this study were

performed under the TensorFlow framework, and the rice dataset

and plant dataset were used to train AlexNet_G, RE-GoogLeNet,

ResNet50 and MobileNetV3 separately. All hyperparameters were

kept consistent to ensure that the models were trained under the

same environment, and the training results are shown in Figure 11.

From (a) and (b) of Figure 10, it is observed that the model accuracy

improvement occurred gradually as the number of training sessions

increased and finally stabilized, which indicates that the model was

better trained. The final accuracies of AlexNet_G, RE-GoogLeNet,

ResNet50, and MobileNetV3 on the training set of the rice dataset
FIGURE 10

Plant disease pictures.
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were stable at 98.12%, 98.23%, 98.29%, and 92.89%, respectively,

and on the training set of the plant dataset, they were stable at

94.49%, 92.36%, 97.23%, and 93.31%, respectively.

Finally, the single models were validated with images from the

test set, and their classification accuracies were calculated by

calculating the numbers of correctly predicted rice leaf diseases

and plant diseases. In addition, the precision, recall and F1 values

were also calculated, and each value is shown in Tables 6, 7.
4.6 Combination models with different
base learners

In this experiment, the AlexNet_G, RE-GoogLeNet, ResNet50

and MobileNetV3 models were arbitrarily combined and fused into
Frontiers in Plant Science 10
new stacking-based integrated models to explore the performance

changes yielded by integrated models with different combinations,

and the sublearner was an SVM. Consistent with the previous

single-model validation method, the classification accuracy was

calculated according to the numbers of correct rice leaf disease

and plant disease classifications. Other model evaluation metrics

were also employed. The test accuracies of the stacking models with

different base learner combinations for the same rice leaf disease

and plant disease datasets are shown in Tables 8, 9, where A denotes

AlexNet_G, G denotes RE-GoogLeNet, R denotes ResNet50, and M

denotes MobileNetV3.

From the table, we can see that the results obtained using the

stacking ensemble models were at high levels; the accuracies

achieved on the rice leaf disease dataset were all above 99%

except for those of two combinations, AM and RM, which did
TABLE 3 Improved model for rice disease recognition results.

Model Accuracy% Precision% Recall% F1-score%

AlexNet 97.76 97.77 97.76 97.76

AlexNet_G 98.12 98.13 98.11 98.12

GoogLeNet 97.81 97.84 97.84 97.83

RE-GoogLeNet 98.23 98.22 98.23 98.22
TABLE 2 The number of different plant diseases.

Species No. Plant disease Number

Apple 1 Apple scab 1000

2 Apple black 1000

3 Apple rust 1000

Corn 4 Corn leaf spot 1000

5 Corn rust 1192

6 Corn leaf blight 1000

Grape 7 Grape black rot 1180

8 Grape esca 1383

9 Grape leaf blight 1076

Tomato 10 Tomato bacterial spot 2127

11 Tomato early blight 1000

12 Tomato late blight 1908

13 Tomato leaf mold 1000
fro
TABLE 4 Improved model for plant disease recognition results.

Model Accuracy% Precision% Recall% F1-score%

AlexNet 92.83 92.61 92.36 92.42

AlexNet_G 94.49 94.38 94.10 94.20

GoogLeNet 90.02 89.96 89.61 89.63

RE-GoogLeNet 92.36 92.11 92.24 92.08
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not reach 99% accuracy. All other combinations exceeded 99%

accuracy on the plant disease dataset. The stacking-based integrated

model also achieved good results, but not on the rice leaf disease

dataset. The reason for the lower accuracy yielded on this dataset

may be that there are few original pictures of rice, and the dataset

obtained via data expansion leads to high accuracy. However, the

stacking-based integrated model was more effective than a single

model on both datasets. On the rice leaf disease dataset, the

accuracy of AlexNet_G plus MobileNetV3 was 98.80%, making

this the least effective among all combined stacking models but still
Frontiers in Plant Science 11
0.51% more accurate than the best-performing single model

(ResNet50). This is because a single classifier can fall into local

optima and induce overfitting during training for various reasons,

resulting in a poor model generalization ability, while the stacking-

based integrated model integrates the performance of multiple

individual classifiers, effectively reducing or avoiding the

aforementioned risk, thus enhancing its generalization ability and

improving the accuracy of rice leaf classification recognition.

Tables 10, 11 show the accuracy, recall and F1 values obtained for

each disease in the rice dataset and plant dataset, respectively.
A B

FIGURE 11

Accuracy variation of the four models on the training set. (A) Rice disease dataset, (B) Plant disease dataset.
TABLE 7 Comparison of results from different single models (Plant disease dataset).

Models Recognized quantity Correct quantity Mistake quantity Accuracy% Precision% Recall% F1-score%

AlexNet_G 3174 2999 175 94.49 94.53 94.54 94.52

RE-GoogLeNet 3174 2932 242 92.36 92.09 92.37 92.16

ResNet50 3174 3086 88 97.23 97.27 97.04 97.14

MobileNetV3 3174 2962 211 93.31 93.39 93.27 93.33
TABLE 6 Comparison of results from different single models (Rice disease dataset).

Models Recognized quantity Correct quantity Mistak quantity Accuracy% Precision% Recall% F1-score%

AlexNet_G 1920 1884 36 98.12 98.16 98.11 98.13

RE-GoogLeNet 1920 1886 34 98.23 98.21 98.23 98.21

ResNet50 1920 1887 33 98.29 98.30 98.21 98.22

MobileNetV3 1920 1784 136 92.89 92.92 92.86 92.86
TABLE 5 Comparison of results from different secondary learners.

Data set SVM KNN RF GNB DT LGBM LGR

Rice disease
dataset

99.69% 99.22% 99.58% 98.23% 98.49% 99.38% 99.53%

Plant disease dataset 99.15% 98.52% 98.99% 95.12% 97.95% 98.99% 99.09%
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TABLE 8 Comparison of results of different base learner combinations (Rice disease dataset).

Base learner combina-
tion

Recognized quan-
tity

Correct quan-
tity

Mistake quan-
tity

Accuracy
%

Precision
%

Recall
%

F1-score
%

AR 1920 1910 10 99.48 99.45 99.48 99.47

AG 1920 1901 19 99.11 99.12 99.11 99.11

AM 1920 1900 20 98.80 98.90 98.89 98.91

GR 1920 1909 11 99.43 98.17 98.16 98.17

GM 1920 1902 18 99.06 96.50 96.47 96.50

RM 1920 1899 21 98.90 98.12 98.11 98.12

AGR 1920 1913 7 99.62 97.22 97.23 97.22

AGM 1920 1907 13 99.32 97.15 97.14 97.15

GRM 1920 1910 10 99.47 98.16 98.19 98.16

AGRM 1920 1914 6 99.69 98.96 98.94 98.96
F
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TABLE 9 Comparison of results of different base learner combinations (Plant disease dataset).

Base learner combina-
tion

Recognized quan-
tity

Correct quan-
tity

Mistake quan-
tity

Accuracy
%

Precision
%

Recall
%

F1-score
%

AR 3174 3126 48 98.33 98.31 98.31 98.33

AG 3174 3072 102 96.68 96.60 96.62 96.68

AM 3174 3077 97 96.92 96.91 96.93 96.92

GR 3174 3121 53 98.19 98.17 98.16 98.19

GM 3174 3064 110 96.42 96.50 96.47 96.42

RM 3174 3120 54 98.15 98.12 98.11 98.15

AGR 3174 3086 88 97.23 97.22 97.23 97.23

AGM 3174 3086 88 97.17 97.15 97.14 97.17

GRM 3174 3123 51 98.30 98.16 98.19 98.30

AGRM 3174 3145 29 99.15 98.94 98.96 98.94
TABLE 10 The recognition results of different rice disease dataset.

Type names Precision% Recall% F1-score%

AphelenchoidesBessyi 99.60 100 99.80

BacterialLeafBlight 100 100 100

BacterialLeafStreak 100 99.57 99.78

BrownSpot 100 100 100

LeafSmut 99.56 100 99.78

RedBlight 98.76 100 99.37

RiceBlast 100 98.76 99.38

RiceSheathBlight 99.15 98.72 98.93
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4.7 Comparison with other models

To validate the classification performance of the model

proposed in this study, the same approach as above was taken to

further train and test the model on the rice disease dataset and plant

disease dataset. The more influential convolutional neural networks,

wh i ch inc lude DenseNe t121 (Huang e t a l . , 2017) ,

InceptionResNetV2 (Szegedy et al., 2017), InceptionV3 (Szegedy

et al., 2016), ResNet34, and ResNet101, were selected in this paper,

and the performances achieved by the models on the rice dataset

and the plant dataset are shown in Tables 12, 13, respectively.

As shown in Tables 12, 13, the model proposed in this study

successfully achieved improved performance over that of other

advanced methods, with testing accuracies of 99.69% and 99.15% on

the rice dataset and the plant dataset, respectively. Among them,

DenseNet121 and InceptionResNetV2 are both deep convolutional

neural networks, but the model proposed in this paper still yielded

better results than these two techniques. In addition, Figures 12, 13

show the confusion matrices obtained from model training on both

datasets, and it is shown that our proposedmodel successfully identified

the majority of the crop disease types in each sample image. Among

them, As is apple black scab, AB is apple black rot, Ar is apple rust, Cs is
Frontiers in Plant Science 13
corn leaf spot, Cr is corn rust, CB is a corn leaf blight, GB is grape black

rot, GE is grape esca, Gb is grape leaf blight, TB is tomato bacterial spot,

TE is tomato early blight, Tb is tomato late blight, andTM is tomato leaf

mold. In summary, the superiority of the proposed method in terms of

performance has been demonstrated, and the method is also applicable

to disease identification for other crops.
5 Conclusion

Timely and accurate crop disease identification is essential for

improving the quantities and yields of crops. Deep learning techniques

can be effective for image classification as they address most of the

technical challenges associated with crop disease identification

(Barbedo, 2019). By exploring the functions of currently popular

convolutional networks, this study proposes a new network

architecture. Considering the high similarity between rice leaf

diseases, we use Stacking ensemble learning method to integrate

convolutional neural networks together and add attention

mechanism to make the model more focused on the disease part.

This enables the model to better extract global features of rice leaves,

andfinally uses SVMfor classification, with an accuracy rate of 99.69%.
TABLE 11 The recognition results of different plant disease dataset.

Type names Precision% Recall% F1-score%

Apple scab 100 100 100

Apple black 100 100 100

Apple rust 100 100 100

Corn leaf spot 92.48 96.31 94.36

Corn rust 100 100 100

Corn leaf blight 95.68 91.24 93.40

Grape black rot 100 100 100

Grape esca 100 100 100

Grape leaf blight 100 100 100

Tomato bacterial spot 100 99.76 99.88

Tomato early blight 98.07 100 99.02

Tomato late blight 100 99.20 99.60

Tomato leaf mold 100 100 100
TABLE 12 The recognition results of different models(Rice disease dataset).

No. Models Traing Accuracy% Test Accuracy% F1-score%

1 DenseNet121 98.79 98.91 98.80

2 InceptionReaNetV2 98.96 99.08 98.96

3 InceptionV3 98.62 98.78 98.63

4 ResNet34 97.74 98.10 97.74

5 ResNet101 98.07 98.52 98.08

6 This study 99.42 99.69 99.63
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The proposed method was shown to be remarkably effective in

identifying various crop diseases.

By applying this model to other plant datasets and achieving

good results, it indicates that our model has strong generalization

ability. Train the model using different sub learners to find the most

suitable classifier for this model, and further prove that the

combination of the proposed model achieves the best

performance by comparing models with different combinations of

base learners. In addition, compared to other most advanced

convolutional networks, it achieved competitive performance,

although the training process is slightly complicated. In the next

step, further simplification of the training process and improving

the efficiency of the model will be considered. In addition, we plan

to deploy the model on portable devices to automatically track and

identify a wide range of knowledge related to crop diseases. And

applied in other fields, such as classification and recognition in

animals, automobiles, and other fields.
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FIGURE 12

Confusion matrix for rice dataset.
FIGURE 13

Confusion matrix for Plant dataset.
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