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in southeast China with
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yields: Evaluation using
life cycle assessment
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Peter Christie2, Congyue Tou1, Weidong Xu3, Bingrong Shen3,
Jinxian Xu3 and Jiangzhou Zhang1*

1International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and
Forestry University, Fuzhou, China, 2College of Resources and Environmental Sciences, China
Agricultural University, Beijing, China, 3Soil and Fertilizer Station of Zhaoan County, Zhangzhou, China
Introduction: Intensive plum production usually involves high yields but also

high environmental costs due to excessive fertilizer inputs. Quantitative analysis

of the environmental effects of plum production is thereby required in the

development of optimum strategies to promote sustainable fruit production.

Methods: We collected survey questionnaires from 254 plum production farms

in Zhao’an county, Fujian province, southeast China to assess the environmental

impacts by life cycle assessment (LCA) methodology. The farms were

categorized into four groups based on yield and environmental impacts, i.e., LL

(low yield and low environmental impact), LH (low yield but high environmental

impact), HL (high yield but low environmental impact), and HH (high yield and

high environmental impact).

Results: The environmental impacts, i.e., average energy depletion, global

warming, acidification, and eutrophication potential in plum production were

18.17 GJ ha-1, 3.63 t CO2 eq ha-1, 42.18 kg SO2 eq ha-1, and 25.06 kg PO4 eq ha-1,

respectively. Only 19.7% of farmers were in the HL group, with 13.3% in the HH

group, 39.0% in LL, and 28.0% LH. Plum yields of the HL group were 109-114%

higher than themean value of all 254 farms. Additionally, theHL grouphad a lower

environmental impact per unit area compared to the overall mean value, with a

reduction ranging from 31.9% to 36.7%. Furthermore, on a per tonne of plum

production basis, the energy depletion, global warming potential, acidification

potential, and eutrophication potential of HL farms were lower by 75.4%, 75.0%,

75.6%, and 75.8%, respectively. Overall, the total environmental impact index of

LL, LH, HL, and HH groups were 0.26, 0.42, 0.06, and 0.21, respectively.
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Discussion: Excessive fertilizer N application was the main source of the

environmental impacts, the potential to reduce fertilizer N rate can be

achieved without compromising plum yield by studying the HH group. The

results provide an important foundation for enhancing the management of plum

production, in order to promote ‘green’ agricultural development by reducing

environmental impacts.
KEYWORDS

Prunus salicina Lindl., environmental impacts, nutrient efficiency, life cycle assessment
(LCA), nitrogen management
1 Introduction

Plum (Prunus salicina Lindl.), commonly known as Japanese or

Chinese plum, is an economically important fruit crop in China

with a cultivated area of 211×104 ha and an annual production of

700 × 104 tonnes, accounting for 55.6% of world plum production

in 2019 (FAO, 2021). During the past thirty years the yield of plum

per unit area has increased by 102.8% in China, mainly through the

application of synthetic fertilizers (Carranca et al., 2018). Orchard

fruits provide high economic returns and there is no guidance to

farmers on appropriate fertilizer application rates. The resulting

overuse of synthetic fertilizers is of great concern because of the

implications for agricultural sustainability and the health of the

environment (Li et al., 2019; Chen et al., 2020). Research by Zhang

et al. (2020) found that 97% of orchards exhibit nitrogen surplus,

which underscores the importance of proper fertilizer management

to achieve sustainable orchard production with minimal

environmental damage (Shah and Wu, 2019). Hence,

comprehending and mitigating the probable environmental

impacts of intensive plum production is crucial.

Life cycle assessment (LCA) is a commonly used tool for

assessment of the potential environmental impacts of products,

processes, or activities (Loiseau et al., 2018). Energy depletion and

global warming potential are considered key factors related to

environmental impacts on agricultural production systems (Chen

et al., 2020; Ghasemi-Mobtaker et al., 2020). Energy depletion and

global warming potential caused by agriculture account for 6 and

17% of total Chinese energy depletion and global warming

potential, respectively (Dong et al., 2008; Lin and Fei, 2015). In

addition, a soil acidification and water pollution in agricultural

areas are topics of major concern (Conley et al., 2009; Guo et al.,

2010; Lee et al., 2020). LCA has been used to assess the net

environmental impacts of major cereal crops and greenhouse

vegetable production globally (Costa et al., 2020; Zhen et al.,

2020). For example, the energy depletion in sunflower and pepper

production systems are 27.0 and 20.3 GJ ha-1, respectively (Yousefi

et al., 2017; Wang et al., 2018) and, according to Narh et al. (2020)

the global warming potential from rice fields per season ranges from

0.86 to 1.71 t CO2 eq ha-1. Furthermore, surveys of citrus

production have found that the average values of environmental
02
risks indicated by acidification and eutrophication potential were

184 kg SO2 eq ha
-1 and 110 kg PO4 eq ha

-1, respectively (Yang et al.,

2020). Studies using LCA methods have investigated the

environmental impacts of fruit production systems but the

situation in plum production systems remains poorly understood.

Quantification of the environmental impacts of plum production

may provide important insights and a basis for the evaluation

environmental impacts of agriculture on a global scale.

The environmental impacts of agriculture production vary

greatly, depending on nutrient management (Lenka et al., 2017)

and farm size (Pishgar-Komleh et al., 2012). Recent robust evidence

also shows that changes in environmental impacts are strongly

responsive to different crop species and cropping systems (Zhang

et al., 2016; Meng et al., 2019). Nutrient management is a major

factor responsible for higher adverse environmental impacts.

Mohammadi et al. (2010) investigated kiwifruit production and

found that energy depletion of ~ 45% was generated by the total

chemical fertilizer application. Chen et al. (2020) found that

chemical fertilizers contribute > 90% of the total global warming

potential from Chinese pomelo production. In addition, excessive

chemical fertilizers are major pollutants that causes acidification

and eutrophication (Grados and Schrevens, 2019). Hence, judicious

fertilizer application is a fundamental step in ensuring high crop

productivity in the long term (Yan et al., 2021).

Some studies have found that rational fertilizer management

helps to achieve the “double-win” of increasing crop yields and

simultaneously minimizing environmental impacts (Chen et al.,

2014; Cui et al., 2018). However, traditional methods of

determining the optimum nutrient supply to crops is complex and

time consuming for farmers in developing countries, especially

smallholder farmers. Effective methods are available to account for

yield and environmental impacts, which can identify the most

progressive farmers in a given area. For instance, these methods

have been applied to pepper cultivation in southwest China and

pomelo production in southeast China (Wang et al., 2018; Chen

et al., 2020). Learning the management practices of the progressive

farmers is an important step in establishing new advanced

agricultural practices and reducing the environmental impacts of

agricultural production. This method has been widely used in

relation to pepper (Wang et al., 2018), citrus (Yang et al., 2020),
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and peach (Li et al., 2022) production. The use of farmer grouping

can achieve robust results in developing countries due to its

simplicity and low cost.

Smallholder farmers engaged in plum production often face

significant management challenges, including the determination of

optimal fertilizer application rates to achieve high fruit yields. To

improve their management practices, quantifying the

environmental impacts and estimating the total environmental

index of plum production is imperative. Therefore, this study

aimed to evaluate the environmental impacts of energy depletion,

global warming potential , acidification potential , and

eutrophication potential in plum production systems, and explore

a local strategy for producing sustainable and eco-friendly plums.
2 Materials and methods

2.1 Survey region and data collection

The study area (23°35′-24°11′ N, 116°55′-117°22′ E) is in

Zhao’an county, Fujian province, southeast China (Figure 1). It is

characterized by a subtropical oceanic monsoon climate with an

annual average temperature of 14.9-28.9°C and annual precipitation

of ~ 1,148 mm. Here, twenty-four villages were randomly selected

from four main plum production townships. Overall, 254 farmers

were selected for a face-to-face interview in 2021. The survey aimed

to obtain information on plum production such as varieties, plant

densities, yields, fertilizer application rates, and pesticide and

herbicide use.
2.2 Life cycle assessment

While sustainable smallholder agriculture has been a topic of

extensive discussion and scientific exploration, there remains a lack

of consensus on standardized approaches for evaluating

sustainability (Guo et al., 2022). In this study, we quantitatively
Frontiers in Plant Science 03
assessed the environmental impacts of plum production systems

using the life cycle assessment (LCA) methodology, which follows

the four-step framework outlined by the International Organization

for Standardization (ISO 14040, 2006). This framework includes

goal and scope definition, inventory analysis, impact assessment,

and interpretation.

2.2.1 Goal and scope definition
Here, four scenarios were defined for evaluating LCA

environmental impacts, namely LL (low yield and low

environmental impact), LH (low yield but high environmental

impact), HL (high yield but low environmental impact), and HH

(high yield and high environmental impact), whose comparison was

one of the main objectives. The functional unit for the life cycle

assessment was defined as one hectare of farmland with plum

production for one year and a plum yield of one tonne.

The system boundary of the LCA was set using a cradle-to-

market approach that extended from upstream planting to plum

planting stage. The upstream stage of plum production comprised the

production and transportation of materials (such as chemical

fertilizers, farmyard manures, pesticides, and herbicides), and the

plum planting stage included N losses (such as volatilization, runoff,

and leaching losses) from farmyard manures and chemical fertilizers.

2.2.2 Inventory analysis
Primary data collected from the on-site farm survey are listed in

Table 1. Nutrient contents of farmyard manures are derived from

data from the National Agricultural Technology Promotion Service

Center (NATESC, 1999). Additionally, the equivalent coefficients of

the emissions inventory for environmental impact potentials were

obtained from data on energy consumption and pollutant emissions

during the upstream stages of plum production based on the study

of Wang et al. (2018). During the plum planting stage, N2O and

NH3 emission data, and nitrogen and phosphorus loss data from

farmyard manures and chemical fertilizers were collected from

extant studies (Zhang et al., 2013; Zhang et al., 2017; Wang et al.,

2018; Chen et al., 2020), and the mean values of the corresponding

pollutant emission factors in these studies were used.

2.2.3 Impact assessment and interpretation
Environmental impacts considered were energy depletion (GJ),

global warming (CO2 eq), acidification (SO2 eq), and

eutrophication (PO4 eq) potential per unit area (in hectares, ha)

in terms of the sum of the partial item equivalent of each input used.

The various environmental impacts were estimated using the

following equation (Wang et al., 2018):

EIj =o
n

i=1
(UPij + PSij)�  Ratei

Where EIj represents the impact category comprising GJ,

CO2eq, SO2eq, and PO4eq potential per unit area (in hectares,

ha). The emission potential of the j impact category per kg of i from

the upstream of plum production stage was represented by UPij,

while the emission potential of the j impact category per kg of i

application at the plum planting stage was represented by PSij. The
FIGURE 1

Geographical distribution of Zhao’an County, Fujian province,
southeast China. The size of the bars in the figure represents the
sample size.
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inputs used in plum production, such as chemical fertilizers,

farmyard manures, pesticides, and herbicides, were represented

by Ratei.

GJ, CO2 eq, SO2 eq, and PO4 eq potential per metric tonne (t) of

plum production were calculated by the following equation:

SEIj =
EIj

Plum yield

Normalization values are generally the average levels of global

energy consumption and environmental impacts. After

normalization, various environmental impacts are of different

importance to sustainable development, and need to be weighted.

The normalization and weighting values of the four environmental

impacts were obtained by Wang et al. (2014). The final total

environmental index was calculated by the following equation:

Total environmental impact index

  =o SEIj
RVj

�Wj

Where SEIj represents the environmental impact potential of

category j (in hectares, t). RVj is the relevant reference value of

environmental impact j, and Wj is the weighting value of

environmental impact j.
2.3 Fertilizer productivity

N partial fertilizer productivity (PFPN) is calculated as:

PFPN =
Plum yield

N fertilizer input
2.4 Data analysis

Data processing was conducted using Microsoft Office Excel

2016, and all statistical analyses was conducted using the SPSS 21.0

software package. One-way analysis of variance and the least

significant difference test (LSD) were used to check the differences

of plum yield and environmental impacts per unit among the

different groups.
3 Results

3.1 Inputs and yields in plum production

Plum production input and output data from the 254 farmers

were collected and analyzed. In the study area the average nitrogen

(N), phosphorus (P), and potassium (K) application rates in chemical

fertilizers were 187.2, 81.7, and 155.4 kg ha-1, respectively, and the

mean farmyard manure rate (range) was 59.9 kg ha-1 (0-3000 kg ha-

1). The average pesticide input was 0-9.0 kg ha-1 and herbicide inputs

were 7.5-78.8 kg ha-1. In addition, the average plum yield was ~ 20.1 t

ha-1, ranging from 1.7 to 97.5 t ha-1 (Table 1).
Frontiers in Plant Science 04
3.2 Environmental impacts of plum
production

Mean energy depletion, global warming, acidification, and

eutrophication potentials were 18.17 GJ ha-1, 3.63 t CO2 eq ha-1,

42.18 kg SO2 eq ha-1, and 25.06 kg PO4 eq ha-1, respectively. Fertilizer

N was a major locus of the environmental impact on plum production

andwas responsible for 52.06%, 85.67%, 98.99%, and98.24%of the total

energy depletion, global warming, acidification, and eutrophication

potentials, respectively (Table 2). In addition, the average energy

depletion, global warming, acidification, and eutrophication potentials

per tonne of plumproduction were 1.42GJ t-1, 0.28 t CO2 eq t
-1, 3.21 kg

SO2 eq t
-1, and 1.90 kg PO4 eq t

-1, respectively (Table 3).
3.3 Environmental impacts of four groups
of plum farmers

Overall, 19.7% of farmers were in the HL group, higher than in the

HHgroup (13.3%)but lower thanLL (39.0%)orLH(28.0%). Significant

differences in energy depletion, global warming, acidification, and

eutrophication potentials among the four groups were expressed

either in terms offield area or on a yield production basis (Figures 2–5).

Considering energy depletion, the yields of LL, LH, HL, and HH

groups were 10.02, 15.12, 42.15, and 27.03 t ha-1, respectively. When

expressed on an area basis the energy depletion value of the HL

group was 12.38 GJ ha-1 and was significantly lower than that of LH

(27.87 GJ ha-1) or HH (27.11 GJ ha-1) groups. When expressed

based on yield the energy depletion in the HL group was 0.35 GJ t-1

and significantly lower than in the other groups (Figure 2).

In terms of global warming potential, the yields of LL, LH, HL,

and HH groups were 10.15, 14.82, 43.06, and 27.52 t ha-1,

respectively. When expressed based on an area basis the global

warming potential of the HL group was 2.43 t CO2 eq ha-1 and was

significantly lower than that of LH (5.53 t CO2 eq ha-1) or HH

(5.37 t CO2 eq ha-1) groups. When expressed based on yield the

global warming potential in the HL group was 0.07 t CO2 eq t
-1 and

was significantly lower than in the other groups (Figure 3).
TABLE 1 Investigated inputs and outputs in the life cycle assessment of
plum production in southeast China.

Mean Range SD

Input

Nitrogen (kg ha-1) 187.2 7.3~450 113.5

Phosphorus (kg ha-1) 81.7 3.2~197 49.5

Potassium (kg ha-1) 155.4 6.1~374 94.2

Farmyard manure (kg ha-1) 59.9 0~3000 322.7

Pesticides (kg ha-1) 0.7 0~9.0 0.9

Herbicide (kg ha-1) 20.4 7.5~78.8 12.3

Output

Green plum yield (t ha-1) 20.1 1.7~97.5 15.3
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Similarly, acidification and eutrophication potentials were

divided into four groups. The HL group had acidification and

eutrophication potentials of 27.02 kg SO2 eq ha-1 and 15.94 kg

PO4 eq ha-1, respectively, when measured on an area basis. When

measured on a yield basis, the HL group had acidification and

eutrophication potentials of 0.78 kg SO2 eq ha
-1 and 0.46 kg PO4 eq

ha-1, respectively, as shown in Figures 4, 5.

Overall, the plum yields of the HL group were 109-114% higher

compared to the mean of all 254 farmer yields due to more advanced

managementpractices.Whenexpressedbasedonanareabasis theenergy

depletion, global warming, acidification, and eutrophication potentials

were 31.9, 33.1, 36.0, and 36.7% lower in this system. When expressed

based on yield the energy depletion, global warming, acidification, and

eutrophicationpotentialswere75.4,75.0,75.6,and75.8%lower(Figure6).
3.4 Environmental indices of plum
production

During the normalization step, the four environmental impacts

were ranked in descending order as eutrophication potential,

acidification potential, global warming potential, and energy

depletion. Eutrophication potential was identified as the primary

environmental impact associated with the production of 1 tonne of
Frontiers in Plant Science 05
plum fruit. During the weighting step the total environmental impact

index of the HL group was 0.06, and this was 76.9, 85.7, and 71.4%

lower than LL, LH, and HH groups, respectively (Table 4).
3.5 Factor analysis in plum production

The correlations between different agricultural inputs and each

environmental impact were analyzed. Figure 7 indicates that

chemical fertilizer was significantly positively correlated with

environmental impacts. The environmental impacts decreased as

a power function with increasing PFPN. For example, when the

PFPN value reached 200 kg kg-1 the environmental impacts per

tonne of plum production declined by ~ 61% compared with

current management practices. Energy depletion, global warming,

acidification, and eutrophication potentials per tonne of plum

production decreased to 0.60 GJ t-1, 0.12 t CO2 eq t-1, 1.19 kg

SO2 eq t-1, and 0.69 kg PO4 eq t-1, respectively (Figure 8).
4 Discussion

The environmentally sensitive development of agriculture is

crucial, and the environmental impacts of agriculture have been of
TABLE 3 Environmental impacts per tonne of plum production in southeast China.

Environmental impact category Nitrogen Phosphorus Potassium
Farmyard
manure Pesticides Herbicides Total

Energy
depletion

Mean (GJ t-1) 0.71 0.07 0.21 0.01 0.42 0 1.42

Percentage (%) 50.28 4.98 14.64 0.85 29.21 0.04 100.00

Global warming
potential

Mean (t CO2 eq t-1) 0.24 0.01 0.01 0 0.02 0 0.28

Percentage (%) 85.11 3.98 2.77 0.43 7.57 0.14 100.00

Acidification potential

Mean (kg SO2 eq t-1) 3.17 0.01 0.01 0 0.02 0 3.21

Percentage (%) 98.93 0.27 0.21 0.02 0.57 0 100.00

Eutrophication
potential

Mean (kg PO4 eq t-1) 1.87 0.03 0 0 0 0 1.90

Percentage (%) 98.23 1.54 0.04 0.01 0.18 0 100.00
frontie
TABLE 2 Environmental impacts per ha of land of plum production in southeast China.

Environmental impact category Nitrogen Phosphorus Potassium Farmyard manure Pesticides Herbicides Total

Energy
depletion

Mean (GJ ha-1) 9.46 0.94 2.75 0.14 4.86 0.02 18.17

Percentage (%) 52.06 5.16 15.13 0.77 26.75 0.11 100.00

Global warming
potential

Mean (t CO2 eq ha-1) 3.11 0.15 0.10 0.01 0.25 0.01 3.63

Percentage (%) 85.67 4.13 2.75 0.28 6.89 0.28 100.00

Acidification
potential

Mean (kg SO2 eq ha-1) 41.76 0.11 0.09 0.01 0.21 0 42.18

Percentage (%) 98.99 0.26 0.21 0.02 0.50 0 100.00

Eutrophication
potential

Mean (kg PO4 eq ha-1) 24.62 0.39 0.01 0 0.04 0 25.06

Percentage (%) 98.24 1.56 0.04 0 0.16 0 100.00
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FIGURE 2

Farmer grouping based on plum yield and energy depletion. (A), yield (B), energy depletion per hectare (C), and energy depletion per tonne of plum
production (D) across four farmer groups.
FIGURE 3

Farmer grouping based on plum yield and eutrophication potential (A), yield (B), eutrophication potential per hectare (C), and eutrophication
potential per tonne of plum production (D) across four farmer groups.
Frontiers in Plant Science frontiersin.org06
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FIGURE 4

Farmer grouping based on plum yield and global warming potential (A), yield (B), global warming potential per hectare (C), and global warming
potential per tonne of plum production (D) across four farmer groups.
FIGURE 5

Farmer grouping based on plum yield and acidification potential (A), yield (B), acidification potential per hectare (C), and acidification potential per
tonne of plum production (D) across four farmer groups.
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increasing concern in recent years (van der Werf et al., 2020).

However, the life-cycle environmental impacts of plum production

have not been extensively studied. This study evaluated a range of

environmental impacts (including energy depletion, global

warming potential, acidification potential, and eutrophication

potential) of plum production systems and designed a suitable

local strategy for the sustainable development of the plum industry.

The study revealed that the environmental impact of plum

production exceeded that of other orchard systems, such as

mango and olive (Jekayinfa et al., 2013; Pergola et al., 2013). To

mitigate these impacts, the effects of various nutrient management

practices adopted by farmers were evaluated. Based on a farmer

grouping method, the HL group implemented mitigation measures

that maintained high plum yields while reducing environmental

impacts. The most effective nutrient management practices were

identified, and integrated N management practices in plum

production were found to be feasible and necessary. It is worth

noting that the study was conducted in a specific geographic area,

and further research may be needed to determine if the findings are

generalizable to other regions.
4.1 Benchmarking with other agricultural
systems

Generally, fruit production exhibits higher environmental

impacts than other crops, particularly cereals. A study in

northeast Thailand by Soni et al. (2013) shows that the energy

depletion in fruit production was 48%, 64%, and 89% higher than in
Frontiers in Plant Science 08
rice, soybean, or maize, respectively. Previous studies also reveal

that the contributions of rice and wheat production to Chinese

agricultural GHG emissions decreased but those of fruits increased

from 2001 to 2018 (Chen et al., 2021). Similar trends were observed

in acidification and eutrophication potentials (Martin-Gorriz et al.,

2020). Fruit crops produce much higher environmental impacts

expressed on an area or yield basis than most other crops as a result

of high application rates of urea and NPK compound fertilizers (Wu

et al., 2021). Furthermore, summarizing previous studies on the

environmental impacts of orchard systems clearly shows that the

environmental impacts are higher in plum production systems than

in those of other fruits (Table 5). These differences are mainly due to

high application rates of fertilizers, especially fertilizer N (Chen

et al., 2020). Here, N was the major factor responsible for higher

environmental impacts and accounted ~ 83.74% of all

environmental indices in the current study (Table 2). The average

fertilizer N rate in plum production was ~ 187 kg ha-1, ~ 1.63 times

(range 66.1-230.0 kg ha-1) more than previously reported in fruit

orchards (Table 5). A rational fertilizer N management strategy is

therefore a priority in decreasing the environmental impacts of

plum product ion, espec ia l ly in intens ive ly managed

cultivation systems.
4.2 Changes required for sustainable
plum production

Optimal application rates of N in agriculture production can

provide economic and ecological benefits while also benefiting
TABLE 4 Normalization and weighting of plum production per tonne of in environmental impacts.

Environmental
impact category Unit Reference

value

Normalization value
Weight

Total environmental index

LL LH HL HH LL LH HL HH

Energy depletion GJ t-1 2590 0.00064 0.00079 0.00014 0.00040 0.28 0.00018 0.00022 0.00004 0.00011

Global warming potential t CO2eq t-1 6.87 0.04488 0.06140 0.00981 0.02968 0.23 0.01032 0.01412 0.00226 0.00683

Acidification potential kg SO2eq t-1 52.26 0.06249 0.09838 0.01499 0.04871 0.26 0.01625 0.02558 0.00390 0.01266

Eutrophication potential kg PO2eq t-1 1.88 1.02207 1.63117 0.24596 0.80840 0.23 0.23508 0.37517 0.05657 0.18593

Total 0.26 0.42 0.06 0.21
front
iersin.or
FIGURE 6

Relative comparison among the four groups based on different indicators (A: per ha, B: per tonne).
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human health and welfare (Qiao et al., 2018). However, excessive

use of fertilizer N does not increase yields and poses a significant

environmental threat (Dong et al., 2020). Wang et al. (2020)

previously demonstrated a 52% reduction potential in N inputs

for pear orchards. A national survey conducted from 2005 to 2014

on N inputs and outputs showed that the N balance was positive in

97% of counties, with fruit production systems exhibiting the

highest N surplus values, up to 429 kg ha-1 (Zhang et al., 2020).

Lower fertilizer N application rates with high efficiency in fruit

production have high potential to reduce energy depletion, global

warming, soil acidification, and eutrophication potentials (Guo

et al., 2021). Other high environmental impacts could also be

achieved by lower N partial factor productivity (PFPN) values in

plum production. In the present study, the plum PFPN value was

determined to be 107 kg kg-1. Wang et al. (2018) reported a decrease

in mean energy depletion, global warming, acidification, and
Frontiers in Plant Science 09
eutrophication potential by 35.5%, 37.3%, 33.9%, and 34.4%,

respectively, when the PFPN rate was increased from 49 to 73 kg

kg-1.The current results also demonstrate that more efficient N

management is vital in minimizing environmental impacts.

The farmer groupingmethod based on farm survey data is a simple

method of identifying optimum N management strategies with high

yields and low environmental impacts (Chen et al., 2020). For example,

Ying et al. (2017) reported a 12% yield increase in wheat yields together

with a 54% decline in potential N losses based on the grouping method.

This method also performs well in the efficiency analysis of sugarcane

production systems in Thailand (Ullah et al., 2019). Here, the large

variation in yields and environmental impacts of plum production

raised the possibility of applying this grouping method. In the

cultivation of plums, previous experts recommended a nitrogen

fertilizer application rate of 191 kg ha-1 (Hu, 2019). Limited by the

socioeconomic situation, the previous recommendation system focused

only on the yield effects, but currently realizing sustainable

development has become a global priority. Irrational fertilizer

management occurs and further design schemes are necessary in

plum production. Integrated soil crop system management practices

and innovative management programme (integrated knowledge and

product strategies) have been investigated as potential approaches for

achieving more precise and efficient N management in agricultural

production, with promising results that demonstrate a “double-win”

situation. Chen et al. (2014) demonstrated higher fertilizer N efficiency

in cereals to produce more grain with low environmental costs, and the

optimum fertilizer N application rates for rice, wheat, and maize were

146, 192, and 214 kg ha-1, respectively. Wang et al. (2021) report that

integrated N management in vegetable production may also decrease

the N application rate by 38% compared with farming N management

practices. Consistent with previous studies, improved N management

strategies also mitigate the environmental impacts of plum production.
B

C D

A

FIGURE 8

Correlation of energy depletion (A), global warming potential (B), acidification potential (C), and eutrophication potential (D) per tonne with PFPN for
plum production.
FIGURE 7

Correlations between agricultural material inputs and each
environmental impact potential.
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Optimizing fertilizer N application rates may result in lower N losses

and pollution risks, and this is required to alleviate anthropogenically

induced environmental impacts in orchard systems.
4.3 Outlook and limitations

Continuing efforts are being made towards narrowing the yield

and efficiency gaps through the exploitation of sustainable

management strategies (Chen et al., 2014). However, the use of

farmer grouping is a direct and efficient way of determining the plum

management strategy from the local farmers in the HL group,

resulting in higher yields in plum orchards and decreasing

environmental impacts. The farmers in the HL group may be more

receptive to rapid acquisition, updating and application of innovative

N management practices than those in the other groups, as has been
Frontiers in Plant Science 10
found in previous studies of citrus-producing regions in southwest

China (Yang et al., 2020). Similar results have been obtained in peach

production, in which farmers in the HL group used 46% less fertilizer

than those in the LH group (Li et al., 2022). It is crucial to maximize

yields while minimizing associated environmental harm. However,

the popularization and application of this technology still faces many

challenges. It is not a simple task to change the habits of smallholder

farmers (Helmizar et al., 2019), and there is an opportunity for social

science research to contribute to agronomic efforts and help to

promote sustainable agricultural development.

Moreover, there were several limitations in the present study. First,

despite the use of site-specific empirical models to estimate N losses,

there are unavoidable uncertainties associated with the process.

N losses are influenced by various factors, including fertilizer N

application rate, soil type, climatic conditions, and type of fertilizer

N applied. Therefore, even when using empirical parameters,
TABLE 5 Environmental impacts of plum production (as determined in the current study) and of other fruit production systems (as determined by
literature search).

Item/Orchard
Eenvironmental impacts

(per ha)
Eenvironmental impacts

(per t)
N rate
(kg ha-1) Reference

Energy
depletion

Plum 18.17 1.42 187.2 This study (calculated)

Apricot 20.00 0.90 80.0 Gezer et al., 2003

Canola 2.15 0.12 111.4 Mousavi-Avval et al., 2011

Mango 7.50 0.50 – Jekayinfa et al., 2013

Peach 11.00 0.29 66.1 Royan et al., 2012

Tangerine 26.86 0.43 78.1 Mohammadshirazi et al., 2012

Global warming potential

Plum 3.63 0.28 187.2 This study (calculated)

Apple 2.60 0.12 91.0 Aguilera et al., 2013

Citrus 2.60 0.24 – Nemecek et al., 2012

Mango 0.40 0.04 – Graefe et al., 2012

Passion 1.80 0.11 – Graefe et al., 2012

Pineapple 2.30 0.06 – Graefe et al., 2012

Acidification
potential

Plum 42.18 3.20 187.2 This study (calculated)

Almond 27.19 8.24 180.0 Bartzas et al., 2017

Apple 30.78 0.95 80.0 Bartzas et al., 2017

Pistachio 21.78 8.71 230.0 Bartzas et al., 2017

Eutrophication potential

Plum 25.06 1.90 187.2 This study (calculated)

Almond 11.95 3.62 180.0 Bartzas et al., 2017

Apple 14.26 0.44 80.0 Bartzas et al., 2017

Pistachio 9.60 3.84 230.0 Bartzas et al., 2017
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accurately estimating N losses can be challenging due to the

heterogeneity of the region (Chien et al., 2009). Second, fertilization

based on the “4 Rs” (right rate, right source, right time, and right place)

is key nutrient management to sustaining crop productivity

(Mikkelsen, 2011). A rational fertilizer N application rate based on

the HL group in plum production can produce high yields and low

environmental impacts. However, the right source, right time, and

right place remain poorly understood and require further study.
5 Conclusions

The findings of this study highlight the significant

environmental risks associated with intensive plum production in

southeast China. The results showed that there were considerable

variations in the potential environmental impacts (such as energy

depletion, global warming potential, acidification potential, and

eutrophication potential) among the four farmer groups, which

were mainly attributed to differences in yields and environmental

impacts. The HL group achieved a significantly higher plum yield

than the mean of all 254 farmers, mainly due to better management

practices, resulting in a mitigation potential of > 70% for the total

environmental impact index. This achievement was mainly due to

lower fertilizer N rates. By adopting the optimal management

strategy of the HL group, farmers at the county level can narrow

the differences in yields and environmental impacts, resulting in

high yields and low environmental impacts simultaneously.

Therefore, this study provides valuable information for achieving

sustainable plum fruit production in southeast China.
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