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Lisboa, Portugal
Heavy metal concentrations exceeding permissible limits threaten human life,

plant life, and all other life forms. Different natural and anthropogenic activities

emit toxic heavy metals in the soil, air, and water. Plants consume toxic heavy

metals from their roots and foliar part inside the plant. Heavy metals may

interfere with various aspects of the plants, such as biochemistry, bio-

molecules, and physiological processes, which usually translate into

morphological and anatomical changes. They use various strategies to deal

with the toxic effects of heavy metal contamination. Some of these strategies

include restricting heavy metals to the cell wall, vascular sequestration, and

synthesis of various biochemical compounds, such as phyto-chelators and

organic acids, to bind the free moving heavy metal ions so that the toxic

effects are minimized. This review focuses on several aspects of genetics,

molecular, and cell signaling levels, which integrate to produce a coordinated

response to heavy metal toxicity and interpret the exact strategies behind the

tolerance of heavy metals stress. It is suggested that various aspects of some

model plant species must be thoroughly studied to comprehend the approaches

of heavy metal tolerance to put that knowledge into practical use.

KEYWORDS

heavy metal stress, plant defense mechanisms, genomics and transcriptomics, cell
signaling pathways, plant structural and functional biology
1 Introduction

Anthropogenic and natural activities have resulted in the vast concentration of heavy

metals in the atmosphere, which affects humans and other living organisms (Rathoure,

2020; Khalid et al., 2021; Yan et al., 2022). Rapid industrialization, intensive mining

processes, and extensive agricultural activities plays crucial role in contaminating the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1154571/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1154571/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1154571/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1154571/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1154571&domain=pdf&date_stamp=2023-05-12
mailto:shujaqau@gmail.com
mailto:heeelho@gmail.com
mailto:heesup.han@gmail.com
https://doi.org/10.3389/fpls.2023.1154571
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1154571
https://www.frontiersin.org/journals/plant-science


Ejaz et al. 10.3389/fpls.2023.1154571
environment with heavy metals (Pant and Tripathi, 2014). Heavy

metals polluted soils and water bodies have far ranging effects on

various aspects of plant life (Parmar et al., 2013), which include but

are not only limited to morphology (Chatterjee and Chatterjee,

2000; Smeets et al., 2013), anatomy (Liza et al., 2020; El-Shabasy,

2021), physiology (Asai et al.), and cell signaling (Calderini et al.,

1998; Bartels and Sunkar, 2005). Several plants can cope with high

levels of heavy metals, which are generally termed as tolerant

species, for example, Erigeron Canadensis, Arundo donax L,

Populus alba and Morus alba (Ahmad et al., 2019b) Sporobolus

diander, Cynodon dactylon, Brachiaria mutica, Digitaria

ischaemum, Digitaria longiflora, Eragrostis cynosuroides, Launaea

asplenifolia, Stylosanthes scabra and Parthenium hysterophorus

(Gautam and Agrawal, 2019) can grow, survive, and exhibit

greater tolerance to heavy metals but some species show

detrimental symptoms of heavy toxicity, like Malvestrum

coromandelianum, Alternanthera paronychioides, Cyperus

rotundus, Ambrosia chamissonis, Hyptis suaveolens Xanthium

strumarium and Portulacca olearcea (Gautam and Agrawal,

2019). Many studies are available on the impacts of heavy metals

toxicity on plants, and various strategies that were used to overcome

the negative impacts of this toxicity such as using biochar can

reduce the bioavailability of heavy metal ions in soil environments

as well as retain, stabilize, and inactivate toxic heavy metals. (Wang

et al., 2020; Mansoor et al., 2021; Yang et al., 2022d; Elkhlifi et al.,

2023). Another such example of using chelating agents like EDDS,

EDTA, organic and synthetic chelators in soil to reduce the toxic

effect of heavy metals in plants (Chen et al., 2020; Gluhar et al.,

2020; Yang et al., 2021; Ejaz et al., 2022; Gavrilescu, 2022). There are

several review papers available on this subject, most of them focused

on one or two aspects of the plants but this review provides deep

insight on various aspects from structural and functional biology to

genetics, molecular, and cell signaling levels, which integrate to

produce a coordinated response to heavy metal stress. It is necessary

to study various aspects of plant life under heavy metals stress to

decode the exact mechanism of the tolerance in plants. This review

provides suggestions for future research on the subject as well as the

practical uses of the knowledge we have obtained thus far.

The word heavy metal is usually controversial, and various

authors have tried to define it by referencing the density of the

metals that are involved (Duffus, 2002). We will define heavy metals

in this paper based on their density, which ranges between 5.0g/cm3

and atomic weight above 23 units for convenience (Koller and

Saleh, 2018). Some heavy metals are fundamental components of

biological systems, but most are toxic in higher concentrations

(Asati et al., 2016). Some heavy metals are required, within

permissible limits only, for plant growth, and these types of

elements are called essential heavy metals. These include Zinc

(Zn), Iron (Fe), Manganese (Mn), Cupper (Cu), Nickel (Ni)

(Asati et al., 2016; Anum et al., 2019). The threshold range of

heavy metals in plants, below which they are beneficial and above

which they become toxic, varies depending on the specific heavy

metal and the plant species. Zn is an essential micronutrient for

plants and is beneficial for growth and development at low

concentrations. However, excessive uptake of Zn can lead to

toxicity, which may manifest as reduced growth and yield,
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chlorosis, and reduced root and shoot biomass. The threshold

range for Zn in plants is generally considered to be between 20-

100 ppm (Alloway, 2012). Fe is also an essential micronutrient for

plants and is involved in a wide range of physiological processes,

including photosynthesis, respiration, and nitrogen fixation. The

threshold range for Fe in plants is generally considered to be

between 50-500 ppm (Barker and Pilbeam, 2015). Mn is an

essential micronutrient required for photosynthesis, enzyme

activity, and nitrogen metabolism. The recommended range for

Mn in plant tissues is between 15-100 ppm (Nagajyoti et al., 2010).

Cu is required in small amounts for plant growth and development,

but excessive uptake can lead to toxicity. Symptoms of Cu toxicity in

plants include reduced growth, leaf curling, chlorosis, and necrosis.

The threshold range for Cu in plants is generally considered to be

between 4-15 ppm (Awashthi, 1999; Nagajyoti et al., 2010). Ni is an

essential micronutrient required for urease enzyme activity and

seed germination. The recommended range for Ni in plant tissues is

between 0.1-1 ppm (Allaway, 1968; Awashthi, 1999; Nagajyoti

et al., 2010).

These essential heavy metals are required in some biological

roles as they act as co-factor of enzymes, part of enzymes, while

others are required for redox reactions in plants. Whereas some

heavy metals have no known biological functions in plants;

therefore, they are not required by the plants, known as non-

essential heavy metals, Mercury (Hg), Cadmium (Cd) and

Chromium (Cr) are some non-essential heavy metal examples

(Wuana and Okieimen, 2011). The threshold levels for non-

essential in plant tissue are typically lower compared to the

essential heavy metals. The recommended maximum limit for

mercury in edible plant tissue is 0.01 mg/kg for cadmium is 0.3-

1.0 mg/kg and for chromium is 0.1-1.0 mg/kg, depending on the

plant species (Organization, W. H, 2009). Heavy metal

concentration limits in cereal crops according to the World

Health Organization (FAO/WHO, 2017), European Union (EU)

(Regulation, 2006), and United States Environmental Protection

Agency (EPA, U. S, 2019) for various heavy metals can be seen

in Table 1.

Both natural and anthropogenic activities expose heavy metals

in the environment, but anthropogenic activities are the core cause

of most of the heavy metal pollution in the atmosphere (Smiljanic

et al., 2019). Weathering different types of rocks and minerals found

in the Earth’s crust results in various heavy metals but usually

within acceptable limits (Chatterjee and Chatterjee, 2000). There

are two types of soil in which heavy metal pollution is produced,

including point and non-point sources. Point sources are pollution

from discrete source, such as pipes or effluent outfalls. Non-point

sources are sources with no discrete source, and the pollutants enter

the environment via many pathways (Rehman et al., 2008). Both

natural and anthropogenic sources may be point or non-point in

nature. Natural elements from a parent substrate reach the soils

during pedogenetic processes. Heavy metals in soil depend on the

parent substrate’s geology (Öncel et al., 2000). Fuel consumption

with transportation, homes, and industries usually releases Zinc

(Zn), Lead (Pb), Cadmium (Cd), and Chromium (Cr). Relatively

high levels of Cadmium (Cd), Arsenic (As), Lead (Pb), and Nickel

(Ni) are observed in the exhaust and non-exhaust releases from
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vehicles (Lee et al., 2021). The burning of coal releases Arsenic (As),

Cadmium (Cd), and Lead (Pb) (Ali et al., 2019). A number of

industries release their effluents that contain heavy metals directly

into various water bodies from where the heavy metals enter soil

and food chains (Rehman et al., 2008). Zinc (Zn), Iron (Fe), Lead

(Pb), and Manganese (Mn) are released due to the burning of hair

and effluents of the tanning industries (Hashem et al., 2017). Heavy

metals can accumulate in plants when they are grown in

contaminated soils or exposed to polluted air and water. When

humans consume these contaminated plants, they can be exposed to

high levels of heavy metals, which can lead to serious health

problems. Heavy metals such as lead, cadmium, arsenic, and

mercury are particularly concerning due to their toxicity and

ability to accumulate in the body. When humans consume plants

containing these heavy metals, they can experience a range of

adverse health effects. For example, lead can cause neurological

damage and developmental delays in children, while cadmium can

damage the kidneys and increase the risk of cancer. Arsenic
Frontiers in Plant Science 03
exposure has been linked to skin, lung, and bladder cancer, and

mercury can cause neurological damage and developmental delays

in children (Mudgal et al., 2010; Gall et al., 2015).

Plants possess a significant ability to absorb and store pollutants

in their tissues. The mechanisms of metal uptake and transfer to

different parts of plants have been the subject of various researchers

(Ma et al., 2010; Rastogi et al., 2017; Ul Haq et al., 2020; Ihtisham

et al., 2021). Heavy metals are usually present in the state of ions or

precipitates in the soil that plants facilitate to induce the pH change

of the soil and the production of chelators (Adamczyk-Szabela et al.,

2015; Yang et al., 2022b). Essential and non-essential heavy metals

have similar structural characteristics, which makes it difficult for

plants to distinguish between the two metal classes. Thus, the root

hairs ingest essential and non-essential metals from soil sap, where

their concentration is usually higher than the epidermal cell sap.

The soil sap enters the epidermal cells using a symplast pathway,

which crosses into cortical cells via the plasmodesmata. The sap

enters from cortical cells through the apoplast pathway to the stele
TABLE 1 Recommended concentration limit of heavy metals in different crops and plant species.

Heavy
metal

Crop/plant species WHO maximum limit (mg/
kg)

EU maximum limit (mg/
kg)

EPA maximum limit (mg/
kg)

Arsenic (As) Rice 0.2 0.2 0.01

Leafy vegetables (spinach, lettuce,
etc.)

0.1 0.1 0.4

Root vegetables (carrots, potatoes,
etc.)

0.1 0.1 0.4

Cadmium
(Cd)

Rice 0.2 0.05 0.4

Leafy vegetables (spinach, lettuce,
etc.)

0.1 0.1 0.3

Root vegetables (carrots, potatoes,
etc.)

0.1 0.1 0.3

Chromium
(Cr)

Leafy vegetables (spinach, lettuce,
etc.)

N/A 0.5 1.1

Copper (Cu) All crops N/A 50 15-250

Mercury (Hg) Rice 0.02 0.02 0.1

Leafy vegetables (spinach, lettuce,
etc.)

0.02 0.02 0.1

Root vegetables (carrots, potatoes,
etc.)

0.02 0.02 0.1

Lead (Pb) All crops 0.3 0.1 0.1

Zinc (Zn) All crops N/A 100 N/A

Iron (Fe) Wheat – – 500

Rice – – 500

Barley – – 500

Manganese
(Mn)

Wheat 100 – –

Rice 50 – –

Barley 50 – –
Provided by: WHO; FAO, Food and Agriculture Organization; EC, European Union Standards.
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through the plasmodesmata. The cell sap can move through the

plasmodesmata and enter the root’s xylem cells (Meers et al., 2009;

Tangahu et al., 2011). The plasma membrane of epidermal cells has

several channel proteins and pumps for the uptake. These include a)

proton pumps, which are special ATPases that use energy to

generate electrochemical gradients, b) co and anti-transporters

that uptake metals using electrochemical gradients that are

generated by proton pumps, and c) carrier proteins that transfer

ions into the cells (Ardestani and Van Gestel, 2013).

Heavy metals move upwards from the roots to the other

sections of the plant along the xylem stream. Atmospheric heavy

metals are usually released as aerosols, and vapors are filtered by the

leaves from the atmosphere (Shahid et al., 2017). There are

morphological traits, such as cuticle thickness, the stomatal, and

the surface area of leaf (Barber et al., 2004; Larue et al., 2014) and

physicochemical traits of the heavy metals, such as the density, size

of the ion, and solubility of the metal ion (Xiong et al., 2014). A

report shows that vegetables that grow near heavy industries have a

higher content of heavy metals in their leaves (Shahid et al., 2013).

The uptake of heavy metals occurs through the stomatal pores,

which are cracks in the cuticle, ectodesmata, which are special

channels in between the auxiliary cells and guard cells of the

epidermis, and aqueous pores (Fernández and Brown, 2013).

Many studies show that the foliar absorption of heavy metals is

dose dependent, and there is a linear relationship between many

heavy metals concentration in the air and their concentration inside

the leaves (Kozlov et al., 2000; Bondada et al., 2004; Fernández and

Eichert, 2009).
2 Impact of heavy metal on plant’s
structural and functional biology

Plants undergo different morpho-physiological and anatomical

changes during oxidative stress (Li et al., 2021; Li et al., 2022a; Noor

et al., 2022; Sun et al., 2022). Heavy metals interact with plants in

two ways. First, heavy metals compete with essential nutrients

during root uptake from the soil, preventing plants from growing

normally. Second, heavy metals enter the plant, disrupt its

metabolism, and have toxic effects on its internal and external

structure (Liza et al., 2020). Heavy metal concentrations above the

permissible level will negatively affect plants directly and indirectly

(Blaylock, 2000). The direct negative effects include inhibiting

enzymatic activities via binding to the sulfhydryl group or a

deficiency of certain metals in metalloproteins or metal protein

complexes (Van and Clijsters, 1990). Another direct effect is the

damage to cellular structures, such as chloroplast and

mitochondria, due to oxidative stress (Jadia and Fulekar, 2009).

High doses of certain heavy metals slow down the process of

photosynthesis, transpiration, and the growth rate in various

plants (Yadav, 2010). We will discuss the impact of heavy metal

stress on plants’ structure and functional biology in detail in

this review.
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2.1 Morphological changes in plants

Heavy metals in plants can visualize themselves via visible

damage to the epidermal tissues of the roots, stems, and leaves. A

study noted a reduction in the leaf thickness because of the

increased size of the bulliform and endodermis cells, which forced

a decline in the size of the parenchyma cells (Alfaraas et al., 2016).

Another study recorded a reduction in the leaf lamina size, root, and

shoot length of Shorea robusta due to Cd, As, and Pb contamination

(Pant and Tripathi, 2014). A reverse effect was observed with Cd

and Pb in some plants. The plant length of different parts increased,

but the volume of these organs decreased (Zhang et al., 2020; Wu

et al., 2021). Heavy metals are toxic to plants, which causes

chlorosis, slows down plant growth, and a reduces yield (Singh

and Kalamdhad, 2011). A previous study, which assessed the

micromorphological changes in Taraxacum officinale due to

heavy metal toxicity, observed a reduction in the leaf thickness

and many more spaces among the cortex and other cells compared

to the control group (Bini et al., 2012). An increase in the diameter

of the root and shoot, the enlarged trichomes and salt glands, and a

variation in the number of stomata are some of the morphological

changes observed in Catharanthus roses grown in heavy metals

contaminated soil (Soumya et al., 2022). Zn and Cd phytotoxicity in

Brassica juncea and Phaseolus vulgaris causes a reduction in growth

and development (Prasad et al. , 1999). Morphological

characteristics, fresh and dry weights, shoot/root length, leaf area,

and leaf count of Parthenium hysterophorus were reduced due to the

negative impact of Pb and Cd (Ejaz et al., 2022). Higher levels of Cr

negatively impact the plant’s total biomass, root and shoot growth

(Alsafran et al., 2022). Dandelion (Taraxacum officinale) growing in

contaminated soil, showed reduced leaf thickness and poor

structural pattern of leaves and roots (Maleci et al., 2014).
2.2 Anatomical modifications in plants

The researchers studied dissimilarities in the internal structures

of the plant’s roots, stems, and leaves in response to heavy metals

(Gomes et al., 2012; Noreen et al., 2019; El-Shabasy, 2021). A

detailed overview of heavy metal’s effects on the anatomy of various

organs of plants is provided below.

2.2.1 Root and stem anatomy
Heavy metals penetrate the plants from the soil via the roots. The

roots, therefore, receive more harmful effects than other parts of the

plant. Parenchyma collapsed in a paddy plant’s roots due to Pb and

Cd-Pb treated plants (Alfaraas et al., 2016). Cd caused damage to the

root’s endodermis, epidermis, and cortex on the tissue level in non-

resistive genotypes of rice plants, whereas no visible damage was

observed in the resistant plants (Li et al., 2014). There was a 20-30%

reduction in the root parenchyma and the size of parenchyma cells

with a combined treatment of Cd-Cu ((Kasim, 2005). The visible

negative consequences of Cd toxicity were noted on the lateral root,

stem primordia and, general root architecture (Ronzan et al., 2018).
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There are visible changes in the structure of various cell

organelles and the pattern of cell division in reaction to heavy

metals on the cellular levels. The researchers obtained the results for

reducing cell division in apical root meristems of Lamina minor

treated with Pb (Samardakiewicz and Woźny, 2005). Also, the

chromosome morphology, such as anaphase bridges and

chromosome stickiness, were affected similarly, which caused a

reduced cell division in apical meristems of the roots in Helianthus

annuus due to Cd toxicity (Jiang et al., 2000). A reduction in cell

division due to Ni and Pb toxicity was observed for various other

plants. The restricted cell division in the apical and lateral meristem

of the roots is the interaction of these metals with chromosomes

during the cell division (Kozhevnikova et al., 2007). They also

observed the structural modification in root hairs, cell walls, and the

vacuoles of the cells in the roots of cotton plants. Cell vacuoles

generally increase in size, probably for the accretion of heavy metals

that are absorbed by the roots (Daud et al., 2009). The researchers

also observed structural modifications in the cell walls, vacuoles,

and root hairs of the cell in the roots and stems of cotton plants. The

thickening of the cell wall in Vicia faba was recorded in the roots

and stem cells in heavy metal stress plants (Ronzan et al., 2018). The

thickening of the cell wall is a resistant mechanism against heavy

metal stress. The stems of some plants show xerophytic adaptations

due to heavy metal toxicity, such as a thick cuticle over their

epidermis, a thick cortex with a stone like an appearance, and

general structural modification in the vascular bundles (Raju and

Ramakrishna, 2021).

2.2.2 The anatomy of leaves
A leaf is the most fragile organ of the plant, which is severely

damaged by environmental pollution (Dickison, 2000). Heavy

metals can enter the leaf via the stomata or translocate from the

roots via the stem. Heavy metals in the interior of the leaves have

serious consequences for the leaf tissue as well as at the cellular level

(Dickison, 2000; Yabanli et al., 2014). Due to the Cd treatment, the

chloroplast was the most affected organ in Salix purpurea and

Phragmites australis at the cellular level (Hakmaoui et al., 2007).

Several grana and thylakoid membranes were negatively affected

due to the leaf’s heavy metal build-up. The cell showed a less

developed vacuolar system at a high absorption of Cd (Malik et al.,

1992; Ciscato et al., 1997; Hakmaoui et al., 2007). Heavy metal

exposure in high concentrations also negatively affects cell division

and the differentiation of newly developing leaves in addition to the

chloroplast and vacuolar system (Cheng, 2003; Li et al., 2014). The

leaf showed a thick cuticle with a wax deposition and expanded

mesophylls (Raju and Ramakrishna, 2021).
2.3 Physiological changes in plants

Heavy metal stress has a great impact on the physiology of the

plant. The researchers discovered that heavy metal accumulation in

plants reduced biomass, chlorophyll, and photosynthesis activity,

whereas proline and antioxidant enzymes increased. Various

studies showed that the plant’s soluble sugar content decreases as

the concentration of heavy metal stress increase, particularly in crops.
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(Hemalatha et al., 1997) (Rascio and Navari-Izzo, 2011). Heavy

metals influence many biological activities, including denaturing

several enzymes (Ghori et al., 2019). The hyper activity of many

enzymes, which include glucose-6-phosphate dehydrogenase and

peroxidases, are linked to heavy metal toxicity in plant leaves (Van

and Clijsters, 1987), which ultimately affects the stability of the cell

membrane. The heavy metal accumulation of Ni, Cd, Cr, Ar, Pb, Ni,

and others disturbs the plants’ metabolic processes and physiological

functions (Singh and Aggarwal, 2011). The proline amount in plant

species increases under heavy metal stress, but the chlorophyll

concentration decreases (Ahmad et al., 2021). Excess zinc inhibits

the germination of cluster beans (Cyamopsis tetragonoloba) and its

growth, sugar, amino acid, chlorophyll, and carotenoid content

(Manivasagaperumal et al., 2011). Zn causes phytotoxicity in plants

if it exceeds the required nutrient level (Vries et al., 2007). A high Zn

level in soil restrains numerous plant metabolic activities, which

results in fast growth (Choi et al., 1996). It has been demonstrated

that cadmium toxicity in plants decreases the ATPase activity in the

cell membranes of wheat and sunflowers (Fodor et al., 1995; Tang

et al., 2020). Under Cd stress, plants experience a decrease in

physiological activities such as stomatal opening, leaf moisture

content, and transpiration, which causes osmotically stressed

conditions due to which plants experience severe physiological

disorders (Alsafran et al., 2022; Javad et al., 2022). Cd also causes

symptoms, such as chlorosis, oxidative stress, and the darkening of

the roots, which can all be fatal (Di Toppi and Gabbrielli, 1999),

(Mohanpuria et al., 2007), (Mohanpuria et al., 2007). Cadmium

above the threshold level may cause quick death and disturb the

enzymes structure and function in plants and microorganisms

(Prasad et al., 1999; Yang et al., 2022c). A change in the efficiency

of the catalytic enzymes in Phaseolus vulgaris occurs due to a high

concentration of Cd and Zn (Van et al., 1988) (Romero‐Puertas et al.,

2004). Lead is a harmful metal that causes necrosis, chlorosis, limited

plant growth, and a low yield (Malar et al., 2014). A study on the rate

of cell division in heavy metals shows that when the concentration of

the heavy metals increased, the cell division exponent decreased,

demonstrating a negative effect of the heavy metal on cell division

(Duan and Wang, 1995). Nickel is very toxic at a high level and is

currently being studied due to its significant deposition in sediments

across the globe (Singh et al., 2017). Numerous physiological changes,

which include chlorosis and necrosis, are caused by too much Ni in

the soil in many plant species, which is most notable in rice (Zornoza

et al., 1999) (Rahman et al., 2005) (Das et al., 1997). Ni at toxic levels

adversely affects plants by interfering with a variety of physiological

processes, including nutrient deficiency, growth parameters, enzyme

activities, and photosynthesis. (Naz et al., 2022) Mercury at high

concentrations is highly toxic to plant cells. Different studies on

mercury (Hg) toxicity demonstrated that it could cause visible

damage and physiological issues in plants. It attaches to water

transfer proteins, which results in the stomata shutting and

blocking the water passage in plants. (Zhang and Tyerman, 1999)

(Zhou et al., 2007). According to a study, high mercury

concentrations slow mitochondrial activity by triggering reactive

oxygen species (Messer et al., 2005) (Sheetal et al., 2016). It was

observed that an excess amount of cobalt decreased the chlorophyll

content in plants by studying high concentrations of cobalt in
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cauliflower leaves. Manganese phyto-toxicity causes necrotic and

chlorosis on the leaves and stems. Another warning sign is a

crinkled leaf, which develops on young leaves, stems, and petiole

tissue. (Wu, 1994) (Wu, 1994) (Elamin and Wilcox, 1986). A high

concentration of Mn in plants shortens the shoot and root length

(Arya and Roy, 2011). Mn toxicity was examined in peas (Pisum

sativum), and it was discovered that chlorophyll a and b

concentrations, the relative growth rate, and the photosynthesis

rate decreased with an increased Mn level (Doncheva et al., 2005).

However, slower plant development and a decrease in the chlorophyll

content were observed in tomatoes (Lycopersicon esculentum), which

was recorded by (Shenker et al., 2004). Arsenic inhibits growth, and it

results in the discoloration and the wilting of plants (Cox et al., 1996).

Arsenic similarly inhibits the plant height and leaf area in Oryza

sativa (Marin et al., 1993; Abedin et al., 2002; Pan et al., 2023). Plants

that grow in polluted land produce more proline. which is a survival

mechanism towards heavy metal stress, but the amount of

carotenoids and chlorophyll decreased (Ahmad et al., 2023). Heavy

metal inhibits plant growth by altering its physiological and

biochemical processes. It is consequently obvious from several

research findings that heavy metal contamination has a severe

impact on the physiology of plants.
3 The role of plant genomics and
transcriptomics under heavy
metal stress

3.1 Genomics

Specific structural genes control plant tolerance, so it is

necessary to recognize, validate, and characterize the genes linked

to heavy metal stress. Plant stress genes are generally divided into

two groups: early functional and delayed functional. The early

functional genes become active rapidly but only briefly, whereas

the delayed functional genes are slowly and consistently induced.

The ATPase (HMA) gene family is linked to the accumulation of

heavy metals, transportation, and effective resistance in plants.

HMAs can be divided into two main subgroups: the Pb/Zn/Cd/

Co P1B-ATPase and the Ag/Cu P1B-ATPase, based on their

preference for specific metal substrates (Axelsen and Palmgren,

2001). Eight P1B-ATPases were discovered in A. thaliana (Williams

and Mills, 2005). P1B-type ATPases was additionally discovered in

Triticum aestivum, Hordeum vulgare, Arabidopsis halleri, and

Thlaspi caerulescens (Deng et al., 2013). Different HMA gene

expressions in different tissues protect Populus trichocarpa from

the heavy metal stress of Ag, N, Cd, Cu, Zn, Pb, Mn, and Co (Li

et al., 2015). HMA8 genes have been expressed in high levels in

heavy metal stress conditions, in HMA1 and HMA4 leaves, and in

the HMA5.1 roots. Heavy metal uptake and more expression of the

genes have a direct correlation. For instance, HMA3 overexpression

causes improved Cd accretion in plant parts (Morel et al., 2009).

Over expression of HMA5 has similarly been found in Oryza sativa

growing under high Cu contaminated soil (Deng et al., 2013).

Aeluropus littoralis regulates the H+-ATPase gene to control its

potential for the remediation of Pb and Hgmetals. (Jam et al., 2014).
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High concentrations of Cd resulted in overexpression of the gene

family serine acetyltransferase (SAT) in Arabidopsis thaliana

(Howarth et al., 2003).
3.2 Transcriptomics

Numerous studies have been conducted on transcriptomics to

understand gene expression in heavy metals. Transcription factors

(TFs) come from multigenic groups and control the expression of

numerous genes, known as the main regulators (Hu et al., 2022).

TFs attach to the distinct locations of cis-acting elements in gene

promoters to control gene expression (Wray et al., 2003). Many TFs

groups have been identified that control how plants react to heavy

metal stress, which includes E2F-DP, E2F-DP, AREB/ABF,

CCAATDR1, MYB, CCAAT-HAP3, DREB1/CBF, EMF1, MADS,

AP2/EREBP, C2C2-Dof, CCAAT-HAP5, bHLH, C2H2, C3H,

C2C2-YABBY, C2C2-Gata, ABI3VP1, ARF, C2C2-CO-like,

ARID, CPP, CCAAT- HAP2, SBP, WRKY, bZIP, HSF, MYC, HB,

AtSR, TUB, and NAC (Singh et al., 2002; Shameer et al., 2009;

Noman et al., 2017). The basic leucine zipper (bZIP) in Arabidopsis

thaliana and Brassica juncea transcription factors are activated in

response to Cd stress (Ramos et al., 2007). TFs were additionally

discovered in Arabidopsis halleri under Cd stress (Weber et al.,

2006). A. thaliana exposed to Cd toxicity had two additional TFs,

ERF1 and ERF5, induced by the AP2/ERF superfamily (Herbette

et al., 2006). Brassica napus under Cd stress induced different

transcripts, such as miR156, miR171, and miR396a (Zhou et al.,

2008). Various levels of Cd stress may carry on the differential TF

expression in these plants. miR166 was discovered to be

downregulated in modified miRNA due to Cd stress, whereas

miR171, miR529, miR319, and miR393 were observed to be

highly expressed in Medicago truncatula (Zhou et al., 2008).

miR529, miR319, MiR171, and miR393 were discovered to be

upregulated under high Hg stress in Medicago truncatula (Zhou

et al., 2008). Other researchers reported that miR398 is

downregulated in plants under Hg and Cd (Kuo and Chiou, 2011;

Min Yang and Chen, 2013). 18 different miRNAs were discovered

in Oryza sativa under As stress due to differential expressions (Liu

and Zhang, 2012). A scientist reported 69 miRNAs in Brassica

juncea (Srivastava et al., 2012). The plant’s growth was positively

influenced by altering the expression of miR167, miR319, and

miR854 via the artificial application of JA and IAA in another

study (Gupta et al., 2014). Rice similarly showed a differential

expression of seven miRNAs, which are encrypted genes for the

transportation of nutrients, transcription factors, induce apoptosis,

phytohormones equilibrium, and cell expansion under oxidative

stress (Li et al., 2010).
4 Molecular level response
mechanisms of plants

Heavy metal toxicity in plants results in the induction of cellular

defense strategies, such as transportation and detoxification of

heavy metals in the vacuole, which produces heavy metal
frontiersin.org

https://doi.org/10.3389/fpls.2023.1154571
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ejaz et al. 10.3389/fpls.2023.1154571
transporters, amino and other organic acids, antioxidants, and

phytochelatins (Noor et al., 2022). Plants need many metal ions

for various biomolecules in plants. Some heavy metals, which are

required in small quantities, are required by enzymes as co-factors

and other biomolecules. However, non-essential heavy metals

negatively affect plants by restricting vital functional groups or

displacing important metal ions in the biomolecules (Parmar

et al., 2013).
4.1 Heavy metal transporters

Heavy metal transporters are believed to play an important role

in plants, which implies that these types of transporters might be vital

in the resistance to heavy metals, induced toxicity. These metal ion

transporters include CPx-type ATPases, zinc-iron permeases (ZIP),

and macrophage protein (Nramp) (Williams et al., 2000). These

transporters are believed to be involved in obtaining heavy metals for

vital cellular functions and regulating them (Parmar et al., 2013).

Another family of proteins is Nramp-, which is involved in the uptake

of Fe and Cu-, and it has been discovered to increase the Cd

sensitivity if the related gene is overexpressed in certain heavy

metal stress conditions (Thomine et al., 2000). Many ZIP family

members have been identified so far, and at least 15 genes of the ZIP

family members are in the genome of Arabidopsis thaliana. The ZIP

family transporters help in Zn, Cd, and Co transportation. A study on

zinc transporters in Arabidopsis thaliana suggests that protein assists

the Zn sequestration (Van Der Zaal et al., 1999). Many intracellular

transporters, which include HMA, ABC, CDF, NRAMP, and CaCA,

participate in the compartmentalization of heavy metals. Chelated

metals inside the vacuole depend on the activity of the two families of

ABC transporters, known as multidrug resistance associated proteins

(MRP) and pleiotropic drug resistance proteins (PDR). In addition,

PC-Cd (phytochelatin-cadmium) complexes are transported by
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HMT1 transporters, found in the tonoplast, and tonoplasts contain

CaCA and NRAMP transporters, which help in the shift of heavy

metals from the cytosol to the vacuole. Many eukaryotes have CDF

transporters. They have been observed to transport Cd, Ni, Fe, Mn,

Co, and Zn metal cations from the cytoplasm to the vacuole,

illustrated in Figure 1 (Krämer et al., 2007; Montanini et al., 2007;

Peiter et al., 2007).
4.2 Amino and other organic acids

Certain other essential biomolecules have been discovered to

help with the resistance against heavy metal toxicity in addition to

heavy metal transporters. Some of these biomolecules comprise of

amino acids, organic acids, phytochelatins, and metallothioneins

(Grill et al., 1987; Kägi, 1991; Homer et al., 1997; Rauser, 1999).

Several amino acids in combination with other organic acids in

plants help in the chelation of heavy metals. The amino acids

include Ile and Trp (Pb), Leu and Gly (Cd), succinic, oxalic, butyric,

and citric acid (Hg), Ser (Hg), Glu and Trp (Ni), Gly, Leu, and Asn

(Se), Ser, Leu, and Asp (Cr), organic acids, malic acid and malonic

acid (Cd), citric and malonic acid (Se), malonic acid (Pb), Thr and

Asp (Sn), malic and oxalic acid (Cr), malic and malonic acid (Ni),

maleic, and malonic and malic acid (Sn) (Kocaman, 2022). The

accumulation of asparagine against Zn toxicity was observed in the

roots of Deschampsia cespitosa. The possible mechanism involves

the Zn-Asparagine complex formation to detoxify Zn (Smirnoff and

Stewart, 1987). A number of Brassicaceae members have shown

high concentrations of free histidine in the xylem response to an Ni

accumulation (Krämer et al., 1996; Kerkeb and Kramer, 2003). The

proline concentration rose in response to the Ni toxicity in three

plants, which included Walsura monophylla, Phyllanthus

palwanensis, and Dechampetalum geloniodes (Homer et al., 1997).

A major portion of Zn was observed to be bound by asparagine and
FIGURE 1

The biomolecules that are involved in uptake of heavy metals, chelation, and heavy metal sequestration/compartmentalization are shown. Many
metal ion transporters are involved in this process. A high concentration of heavy metals in the cell initiates a defense response whereby heavy metal
chelators are released, attached with heavy metals, and transferred in the vacuole.
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proline in tomato and soya bean xylem sap (White et al., 1981). The

plant releases particular amino acids in response to heavy metals, as

shown in Table 2.
4.3 Phytochelatins

Plants and fungi release unique metal binding peptides called

phytochelatins (PC) under heavy metal stress. PCs are an

oligomeric form of glutathione with the attribute reappearance of

the (-Glu-Cys)n-Gly [(PC)n], where n = 2–11 dipeptides of

glutamate and cysteine (Ahmad et al., 2019a). Several heavy

metals form PC complexes, but the most abundant ones are the

PC complexes that involve Cd+2 and Cu+2. Other relatively less

abundant PC complexes involve Pb, Hg, and Zn (Thumann et al.,

1991; Mehra et al., 1995; Maitani et al., 1996; Mehra et al., 1996).

PCs are produced against heavy metals stress of Ag, Hg, Cu, Pb, Zn,

and As. Heavy metals stress boost the PCs genes (LsPCS1)

appearance in some plant species (He et al., 2005). The PCS1

gene in wheat was responsible for tolerance against Cd toxicity, and

this gene could be used in the preparation of transgenic crops for

heavy metal phytoremediation (Khan et al., 2020).
5 Heavy metal induced cell
signaling in plants

Plants interact with heavy metals in two ways. First, plants are

harmed by heavy metals. Second, they develop resistance
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mechanisms against them (Asati et al., 2016). Plants have many

defense mechanisms against heavy metals. The sensing of heavy

metal stress by plants initiates a number of responses on molecular

and biochemical levels (Jalmi et al., 2018). Plants have three

signaling pathways: the MAPK cell signaling pathway, calcium

signaling, and hormone signaling in heavy metals (Jalmi

et al., 2018).
5.1 MAPK pathway in heavy metal stress

A conserved evolutionary cell signal transduction module,

called mitogen-activated protein kinase (MAPK), is involved in

directing the extracellular cell signals to the nucleus to start suitable

cellular responses. There are three components in the MAPK

cascade, which include a) MAPK kinase (MAPKKK), b) MAPK

kinase (MAPKK), and c) an MAPK. These components are

connected through phosphorylation (Sinha et al., 2011). The

MAPK signaling pathway is involved in mitosis especially during

phragmoplast synthesis (Calderini et al., 1998; Yang et al., 2022a).

The MAPK signaling transduction is extremely important to basic

physiological functions, such as cell cycle regulation, abiotic stress

signaling, and the defense mechanism (Tena et al., 2001). The

accurate mechanism behind activation of this specific signaling

pathway required a lot of investigation, but the heavy metal ligands

and the reactive oxygen species (ROS) are the main factors that are

responsible among the abiotic factors (Jonak et al., 2004; Smeets

et al., 2013; Jalmi and Sinha, 2015). Heavy metals, such as Cd, Cu,

and As induce MAPK signaling activation (Jonak et al., 2004; Yeh
TABLE 2 shows a number of amino acids that are released by plants against a particular heavy metal.

Plants Heavy
metals

Amino acids

Proline Histidine Asparagine Aspartate Threonine Cysteine Lysine Ref.

Walsura
monophylla

Ni ✓ – – – – – – (Homer et al., 1997)

Nepeta cataria Pb ✓ – ✓ – – – ✓ (Zhou et al., 2020)

Solanum
lycopersicum

Cu – – – ✓ ✓ – – (White et al., 1981)

Phyllanthus
palwanensis

Ni ✓ – – – – – – (Homer et al., 1997)

Solanum
lycopersicum

Cu – – – ✓ ✓ – – (White et al., 1981)

Alyssum lesbicum Ni ✓ – – – – – – (Krämer et al., 1996)

Brassica juncea Ni – ✓ – – – – – (Parmar et al., 2013)

Deschampsia
cespitosa

Zn – – ✓ – – – –
(Smirnoff and Stewart,
1987)

Phyllanthus
palwanensis

Ni ✓ – – – – – – (Homer et al., 1997)

Solanum
lycopersicum

Zn – ✓ – – – – – (White et al., 1981)

Arabidopsis
thaliana

Cd – – – – – ✓ –
(Domıńguez‐Solıś
et al., 2004)
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et al., 2007; Ding et al., 2011; Rao et al., 2011; Smeets et al., 2013).

However, very limited literature is still available about the response

produced by other elements, such as Fe, Pb, and Zn. The exact

mechanism against particular heavy metals is not yet understood in

addition to this, but the researchers have investigated the pathways

that are involved in a number of species. The MAPK cell signaling

pathway is especially important in regards to mitigating heavy metal

stress in number of plants. The exposure of Medicago sativa

seedling, Cd, and Cu stress trigger four distinct MAPKs, which

include a) SIMK, b) MMK2, c) MMK3, and d) SAMK. All four

MAPKs increased their activities with an increase in the

concentration of CdCl2 and CuCl2 (Jonak et al., 2004). MPK6 and

MPK3 are the best known MAPKs in Arabidopsis that trigger

stimuli, such as CdCl2 and CuSO4 (Asai et al, 2002; Pitzschke et al.,

2009; Liu et al., 2010; Ahn et al., 2011; Beck et al., 2012). Oryza

sativa increases the transcription of OsWJUMK1 (OsMPK20-4

homolog), OsMSRMK3 (OsMPK7 homolog), and OsMSRMK2

(OsMPK3 homolog) when treated with Cd and Cu (Rao et al.,

2011; Beck et al., 2012). Other heavy metals also similarly induce

MAPK cascades in Cu and Cd, but their mechanism is still not very

widely investigated. For example, an Al ion sensitive yeast mutant

showed an over expression of the MAPK gene, which suggests an

alliance of the MAPK gene with an Al confrontation (Schott and

Gardner, 1997). Al resistance is achieved in wheat roots with the

induction of a 48kDa MAPK signaling transduction. This shows a

link between Al stress and MAPK activation (Mossor-

Pietraszewska, 2001). Myelin basic protein (MBP) was found to

be activated in rice by a 42kDa MAPK, which is due to iron stress.

Pre-treatment with glutathione (GHS) of the root apical cells in rice

decreased the apical cell’s death and reduced ROS-induced MAPK

signaling (Tsai and Huang, 2006). The SIMPAK3 gene was

significantly induced in tomatoes under Cd2+ stress. This strategy

would increase the leaf’s chlorophyll content and the root’s biomass

along with increased root activity, which all helped in Cd stress

(Muhammad et al., 2019). Several biomolecules activate the MAPK

pathway under heavy metal stress. These biomolecules include

nitrogen oxide (NO), reactive oxygen species (ROR), and various

plant hormones. such as auxins, ethylene, and abscisic acid (ABA)

(Li et al., 2022b).
5.2 Calcium signaling under heavy
metal stress

The Ca+2 signaling pathway is very complex in nature with

various biomolecules that have varied roles in this pathway. Let’s

first look into the components of this signaling pathway and then

the significance of this signaling pathway in heavy metal stress. The

sensor proteins, such as calcineurin B-like protein (CBL)-CBL,

calmodulin-like proteins (CMLs), calcium dependent protein

kinases (CDPKs), calmodulins (CaMs), Ca2+/CaM dependent

protein kinases (CCaMKs), and interacting protein kinase (CIPK)

modules identify the signatures of Ca. This results in physiological

responses, such as metabolic pathways, ion transport, and gene

regulation (Zeng et al., 2015; Kudla et al., 2018). The second phase

consists of the responding molecules, such as the CIPKs and
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CDPKs. This type of signaling helps develop tolerance towards

various stresses (Tripathi et al., 2009; Li et al., 2012; De La Torre

et al., 2013). Several researchers reported ease in heavy metal stress

in plants when Ca2+ was exogenously applied. Treatment with Cd

has been shown to enhance the antioxidant enzyme activity, which

includes the antioxidant enzyme activity of ascorbate peroxidise

and glutathione reductase, which a reduction in the activities of

these enzymes was achieved under exogenous application of Ca2+

(Ahmad et al., 2015). The application of Ca2+ to a sesame plant

induced the upregulation of the acquired systemic tolerance system,

such as antioxidant enzymes and lipid fractions to protect the

membrane integrity (Makadia and Siegel, 2011; Abd_Allah et al.,

2017; Chen and Wang, 2021). Some studies examined the effect of

the exogenous Ca2+ application on the toxicity of heavy metals in

plants, but the exact mechanism of the signal transduction through

the calcium signaling pathway is still not very clear. Researchers

have also identified potassium (K) as a regulator of calcium (Ca2+)

signaling pathways (Assaha et al., 2017; Johnson et al., 2022).
5.3 Hormone signaling under heavy
metal stress

Phytohormones are tiny molecules, usually derived from

secondary metabolities, used in biological processes like cell

division, cell differentiation, cell elongation, growth and

metabolism (Jaillais and Chory, 2010; Davies, 2012; Zluhan-

Martıńez et al., 2021). Several plant hormones are being produced

in various plant organs under different conditions in varied

concentrations. The most prolific of these hormones are auxin

(IAA), cytokinins, abscisic acid, gibberellin, ethylene and

brassinosteroid. A brief discussion of two of these hormonal

signaling pathways and their importance in heavy metal stress is

examined in the following passages.

5.3.1 Auxins

Auxin (Indole-3-acetic acid; IAA) is a vital hormone in plant

growth and expansion. There are a number of important hormones

within the auxin family, such as Indole-3-butyric acid (IBA), IAA,

and NAA. Auxin helps plants in regards to creating a response to

heavy metal toxicity by regulating its biosynthesis, degradation,

signaling, and transport (Potters et al., 2007). Auxin plays

significant functions in the root development both in normal and

stress conditions. An important protein, PIN1, has been reported to

influence the redistribution of auxin under Cu stress both in

meristematic and elongation zones in the primary root of

Arabidopsis thialana (Yuan et al., 2013). Several studies show that

the endogenous synthesis of auxins is affected by heavy metals

stress. These reports showed heavy metals stress correlations with

auxin biosynthesis (Srivastava et al., 2013). It was observed that Cd

induced nitrogen oxide (NO) concentration inhibits auxin

transport under Cd stress, and it causes a reduction in the

meristem size of the root. NO is also important in the auxin

signaling pathway in Cd stress (Pető et al., 2011; Yuan and

Huang, 2016). Heavy metal accumulation is generally a main
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aspect in reducing endogenous auxin production. Brassica juncea in

heavy metal stress, which decreases the endogenous production of

three auxins, was noted (Srivastava et al., 2013). The IAA

production was similarly disturbed due to the Cd stress in barley

roots (Zelinová et al., 2015).

The exogenous application of auxin improved tolerance in aux1

As toxicity in transformed plants implies the vital function of auxin

transportation and signaling method in heavy metal stress

(Krishnamurthy and Rathinasabapathi, 2013). An increase in the

roots and stem growth of a sunflower was observed under moderate

Pb stress after the addition of IAA (Liphadzi et al., 2006). A

comparative study was conducted on the effect of L-TRP, which

is an ancestor of auxin, on the seedlings of oryza sativa grown in Cd

polluted soil. The study noted that better growth and yield was

obtained in the L-TRP treated seedlings compared to the control

group (Farooq et al., 2015). A number of other researchers noted

similar synergistic effects of exogenously applied auxins and their

precursors on heavy metals tolerance in plants and their possible

use in regards to enhancing the phytoremediation capacity of

plants, but the exact mechanism behind the better tolerance,

which is due to the exogenous application of the hormone, is still

not clearly understood. The possible mechanism may involve an

association between the miRNAs and auxins during heavy metals

stress (Srivastava et al., 2013). It is necessary to mention that a

complex interaction is concerned with the endogenous synthesis of

auxins under heavy metals stress with a possible crosstalk between

various signaling pathways. Further exploration of the subject will

help in regards to understanding the underlining mechanism of the

auxin signaling pathway and its role in heavy metals tolerance in

various plants.
5.3.2 Abscisic acid
The abscisic acid (ABA) hormone plays an important role in

different stages of plants, such as seed dormancy and ripeness

(Nambara et al., 2010). ABA also helps tolerate many

environmental stresses, such as drought (Leung and Giraudat,

1998). The ABA signaling pathway controls abiotic stress (Bartels

and Sunkar, 2005; Danquah et al., 2014). The concentration of

abscisic acid increases with an increase in abiotic stress, which

indicates that the plant cells can settle in the harsh environmental

conditions as necessary. ABA signal transduction comprises a core

signaling pathway that has Snf1-related protein kinases 2 (SnRK2s),

type 2C protein phosphatases (PP2Cs), and PYL ABA receptors (Ng

et al., 2014). The researchers show that ABA concentration

increases in response to heavy metal toxicity (Rauser and

Dumbroff, 1981; Poschenrieder et al., 1989). High amounts of

ABA were observed in Typha latifolia and Phragmites australis

due to heavy metal exposure (Fediuc et al., 2005). Similar results

were obtained by (Stroiński et al., 2010) for potato tuber and by

(Kim et al., 2014) for rice. A solution of Hg, Cd, and Cu was applied

separately during the growth of wheat seeds, and the ABA level

increased with a high accumulation of heavy metals (Munzuroğlu

et al., 2008). The cucumber seedlings observed a reduction in

growth and an increased level of ABA under Cu and Zn stress

(Wang et al., 2014). Contamination show the expression of ABA
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synthesis related genes in Oryza sativa, such as OsNCED3 and

OsNCED2, which is the directive of four ABA signaling genes. A

entire genome study of rice root bare to vanadium (V) showed a

strong demonstration of ABA signaling related genes (Lin et al.,

2013). The transcriptional control of ABA signals transduction

during cucumber seed germination under Cu and Zn stress

showed that in total nine PLY, two SnRK2, and three PP2C genes

were involved in the ABA signal transduction (Wang et al., 2014).

The above mentioned pathways can be seen in Figure 2.
5.4 Mechanism of tolerance against heavy
metals toxicity

We conclude that plants use the following mechanisms for

tolerance against heavy metals in light of the above discussion.

5.4.1 Role of plant’s roots in heavy metal uptake
Plants have evolved several mechanisms to create barriers and

reduce the uptake of heavy metals through their roots. One such

mechanism is exclusion, where plants restrict the entry of heavy

metals into the root system through the formation of Casparian

strips, which are suberin-like layers that surround the endodermal

cells of the root. This prevents the passage of heavy metals into the

vascular tissue. Plants can also release organic acids and other

compounds from their roots that can react with heavy metals in the

soil, forming insoluble complexes that are less available for uptake

by the plant (Fahr et al., 2013). Some plants can actively pump

heavy metals out of their roots using ATP-dependent transporters, a

process called active efflux. Additionally, plants can reduce the

uptake of heavy metals by competing with other nutrients for

absorption sites on the root surface.

5.4.2 Function of plant cell wall in
metal tolerance

It has been reported that bivalent and trivalent metal cations

bind to various functional groups, such as -OH, –SH, and –COOH

to restrict the heavy metal to the cell wall, which is due to the

presence of the carboxyl group in pectin of the cell walls (Mehes-

Smith et al., 2013). Several heavy metals are known to accumulate in

the cell wall of the epidermal cells of humilis and Silene vulgaris ssp,

and the metals usually bind to pectin or silicates (Bringezu et al.,

1999). The cell wall acts as a physical blockade to the entrance of

heavy metals in the cell. However, it is interesting to note that it is

still not clear how heavy metals are restricted in the cell wall.

5.4.3 Plasma membrane as a barrier towards
heavy metals entrance to the protoplast

The plasma membrane contains a number of heavy metal

transporters, which are very helpful with the tolerance against

heavy metal toxicity. They both act as channels for the intake of

essential and non-essential heavy metals as well as induce sensitivity

against heavy metals toxicity (Solioz and Vulpe, 1996; Williams

et al., 2000; Parmar et al., 2013). The metal transporters are of

practical importance for phytoremediation, and they are important
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for the tolerance against heavy metals toxicity (Ahmad

et al., 2019b).

5.4.4 Phytochelation
The excretion of phytochelatins by plants against heavy metals

is the best strategy that plants use. High affinity ligands, such as PCs,

bind to metal cations to immobilize them and restrict the metals

cations from interfering with the cells’ biochemical pathways and

cell signaling (Thumann et al., 1991; Maitani et al., 1996).

5.4.5 Compartmentalization/Detoxification of
heavy metals

The plants either transport a heavy metal out of the cell or

restrict it to the vacuole and then detoxification occurs once a heavy

metal enters the cytosol, a process called sequestration/

detoxification (Kanoun-Boulé et al., 2009; Singh et al., 2011).

Thus, heavy metals are restricted from interference with vital

metabolic pathways. This process allows plants to survive under

metal-contaminated areas without toxic effect. Several transporter

families are involved in this process, which includes ABC, CDF,

HMA, and NRAMP transporters. Several studies show high

concentrations of Cd and Zn in the vacuole of a cell. For

instance, the nickel hyperaccumulator Alyssum serpytllifolium

gathered up to 72% of Ni in the vacuole (Brooks et al., 1980;

Ernst et al., 1992).
6 Conclusion

Heavy metals contamination is one of the greatest threats to

human health and the survival of other living organisms, including

plants. This threat increases with increasing industrialization in

developed and developing countries. Heavy metals are non-

biodegradable, which remain in the environment. Decontaminating
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soils and water bodies from heavy metal contamination is an

economically expansive process. Thus, recent research is focused on

finding plants for the phytoremediation of heavy metals. However,

most of the plants are prone to the negative effects of heavy metals

toxicity, which affect their growth and yield and have far-ranging

impacts on various aspects of these plants. Some plants employ

certain strategies to cope with heavy metal toxicity. These strategies

may include anatomical changes within the plant organs, such as

thickening cell walls to inhibit heavy metals into the cells or

physiological adaptations, such as sequestration or molecular

responses. such as chelation. All these responses depend on cell

signaling within the plants. The cell signaling pathways adjust

according to the concentration and the type of heavy metal pollution.
7 Future prospects

It is recommended that the researchers should study some

model plants, including their plant morphology, anatomy,

physiology, molecular biology, cell signaling, and genetics under

heavy metal stress. It will further answer how heavy metals trigger

certain signaling pathways and how those signals are translated into

morphological, anatomical, physiological, and biochemical

responses. It is also necessary to recognize the genes that are

accountable for controlling all of these processes. The factors that

restrict or facilitate the uptake, translocation, and sequestration of

heavy metal ions in plants and that have been genetically modified

to have high biomass and rapid growth rate should be the focus of

future research. This will enable the practical application of

knowledge in forming transgenic types, which are more effective

at phytoremediation and have better capacities for tolerance against

the toxic heavy metals. We now have a better understanding of

stress tolerant mechanisms with the development of novel omics

technologies for cellular complexity research. Numerous stress-
FIGURE 2

Crosstalk of the signaling pathways and the response created under heavy metals stress. The figure shows a number of signaling components
working during heavy metal stress. Firstly, a high concentration of heavy metals is sensed, which initiates a cell signaling network that causes the
activation of various metal responsive transcription factors.
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related genes have already been discovered with this advanced

sequencing technologies. Unexpected outcomes have been

attained by genetically modifying metabolites, proteins, and heavy

metal stress responsive genes. The full potential of phenomics and

functional genomics must be utilized.

It may be possible to lessen the load of heavy metals on

agriculture by using nano-particles for the adsorption and co-

adsorption of heavy metal ions from irrigation water. Another

crucial area that could aid in achieving environmental

sustainability is using bio-indicator plants to monitor heavy metal

hot spots. Further research investment is required to understand

better the interactions between plants and microbes under heavy

metal stress, as this information may help develop practical

strategies for recovering soils polluted with heavy metals.
8 Limitations

This review focuses on various genetic, molecular, and cell

signaling levels that work together to produce a coordinated

response to heavy metal toxicity and deduce the mechanisms

behind the tolerance. However, many important questions still

need to be clarified because not all heavy metals cause the same

physiological and biochemical reactions in plants. Similarly, how

different plants react differently to various heavy metals. Because of

these, it is challenging to determine a single stress-induced pathway

that protects plants from all heavy metals. Good basic knowledge of

the antioxidative mechanisms in plants is needed for much of the

in-depth study.
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Kanoun-Boulé, M., Vicente, J. A. F., Nabais, C., Prasad, M. N. V., and Freitas, H. (2009).
Ecophysiological tolerance of duckweeds exposed to copper. Aquat. Toxicol. 91, 1–9. doi:
10.1016/j.aquatox.2008.09.009

Kasim, W. A. (2005). The correlation between physiological and structural
alterations induced by copper and cadmium stress in broad beans (Vicia faba l.).
Egyptian J. Biol. 7, 20–32.

Kerkeb, L., and Kramer, U. (2003). The role of free histidine in xylem loading of
nickel in alyssum lesbiacum and brassica juncea. Plant Physiol. 131, 716–724. doi:
10.1104/pp102.010686

Khalid, N., Aqeel, M., Noman, A., Khan, S. M., and Akhter, N. (2021). Interactions
and effects of microplastics with heavy metals in aquatic and terrestrial environments.
Environ. Pollut. 290, 118104. doi: 10.1016/j.envpol.2021.118104

Khan, N., Bibi, K., and Ullah, R. (2020). Distribution pattern and ecological
determinants of an invasive plant parthenium hysterophorus l., in malakand division
of Pakistan. J. Mountain Sci. 17, 1670–1683. doi: 10.1007/s11629-019-5932-7

Kim, Y.-H., Khan, A. L., Kim, D.-H., Lee, S.-Y., Kim, K.-M., Waqas, M., et al. (2014).
Silicon mitigates heavy metal stress by regulating p-type heavy metal ATPases, oryza
sativalow silicon genes, and endogenous phytohormones. BMC Plant Biol. 14, 1–13.
doi: 10.1186/1471-2229-14-13

Kocaman, A. (2022). Combined interactions of amino acids and organic acids in
heavy metal binding in plants. Plant Signaling Behav. 18 (1), 2064072.

Koller, M., and Saleh, H. M. (2018). Introductory chapter: introducing heavy metals.
Heavy Metals 1, 3–11. doi: 10.5772/intechopen.74783

Kozhevnikova, A., Seregin, I., Bystrova, E., and Ivanov, V. (2007). Effects of heavy
metals and strontium on division of root cap cells and meristem structural
organization. Russian J. Plant Physiol. 54, 257–266. doi: 10.1134/S1021443707020148

Kozlov, M., Haukioja, E., Bakhtiarov, A., Stroganov, D., and Zimina, S. (2000). Root
versus canopy uptake of heavy metals by birch in an industrially polluted area:
contrasting behaviour of nickel and copper. Environ. Pollut. 107, 413–420. doi:
10.1016/S0269-7491(99)00159-1

Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J., and Smith, J. A. C.
(1996). Free histidine as a metal chelator in plants that accumulate nickel. Nature 379,
635–638. doi: 10.1038/379635a0

Krämer, U., Talke, I. N., and Hanikenne, M. (2007). Transition metal transport.
FEBS Lett. 581, 2263–2272. doi: 10.1016/j.febslet.2007.04.010

Krishnamurthy, A., and Rathinasabapathi, B. (2013). Auxin and its transport play a
role in plant tolerance to arsenite-induced oxidative stress in a rabidopsis thaliana.
Plant Cell Environ. 36, 1838–1849. doi: 10.1111/pce.12093

Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., et al. (2018).
Advances and current challenges in calcium signaling. New Phytol. 218, 414–431. doi:
10.1111/nph.14966

Kuo, H.-F., and Chiou, T.-J. (2011). The role of microRNAs in phosphorus
deficiency signaling. Plant Physiol. 156, 1016–1024. doi: 10.1104/pp.111.175265

Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., et al.
(2014). Foliar exposure of the crop lactuca sativa to silver nanoparticles: evidence for
internalization and changes in Ag speciation. J. Hazard. Mater. 264, 98–106. doi:
10.1016/j.jhazmat.2013.10.053

Lee, H.-G., Byun, Y. J., Chun, Y.-W., Noh, H.-J., Kim, D.-J., Kim, H.-K., et al. (2021).
Identification of metal contamination sources and evaluation of the anthropogenic
effects in soils near traffic-related facilities. Toxics 9, 278. doi: 10.3390/toxics9110278

Leung, J., and Giraudat, J. (1998). Abscisic acid signal transduction. Annu. Rev. Plant
Biol. 49, 199–222. doi: 10.1146/annurev.arplant.49.1.199

Li, J., Charles, L. S., Yang, Z., Du, G., and Fu, S. (2022a). Differential mechanisms
drive species loss under artificial shade and fertilization in the alpine meadow of the
Tibetan plateau. Front. Plant Sci. 13, 63. doi: 10.3389/fpls.2022.832473

Li, S., Han, X., Lu, Z., Qiu, W., Yu, M., Li, H., et al. (2022b). MAPK cascades and
transcriptional factors: regulation of heavy metal tolerance in plants. Int. J. Mol. Sci. 23,
4463. doi: 10.3390/ijms23084463

Li, B., Quan-Wang, C., Liu, H., Li, H.-X., Yang, J., Song, W.-P., et al. (2014). Effects of cd 2
+ ions on root anatomical structure of four rice genotypes. J. Environ. Biol. 35 (4), 751–757.

Li, W., Shi, Y., Zhu, D., Wang, W., Liu, H., Li, J., et al. (2021). Fine root biomass and
morphology in a temperate forest are influenced more by the nitrogen treatment
approach than the rate. Ecol. Indic. 130, 108031. doi: 10.1016/j.ecolind.2021.108031
frontiersin.org

https://doi.org/10.1080/07352680902743069
https://doi.org/10.1016/S0176-1617(11)81418-5
https://doi.org/10.1007/s10661-015-4436-3
https://doi.org/10.1007/s10661-015-4436-3
https://doi.org/10.1016/j.apgeochem.2019.03.020
https://doi.org/10.1016/j.copbio.2021.10.024
https://doi.org/10.1007/s13762-019-02215-8
https://doi.org/10.1016/j.chemosphere.2020.127226
https://doi.org/10.1016/j.chemosphere.2020.127226
https://doi.org/10.4067/S0718-95162012005000010
https://doi.org/10.1073/pnas.84.2.439
https://doi.org/10.1007/s11103-013-0120-6
https://doi.org/10.1007/s10311-017-0634-2
https://doi.org/10.1016/j.plantsci.2004.07.001
https://doi.org/10.1016/j.biochi.2006.04.018
https://doi.org/10.1016/j.biochi.2006.04.018
https://doi.org/10.1023/A:1022349623951
https://doi.org/10.1038/s42255-022-00585-x
https://doi.org/10.1038/s42255-022-00585-x
https://doi.org/10.1038/nsmb0610-642
https://doi.org/10.3389/fpls.2018.00012
https://doi.org/10.3389/fpls.2015.00769
https://doi.org/10.3389/fpls.2015.00769
https://doi.org/10.1111/plb.13393
https://doi.org/10.1016/S0048-9697(00)00470-8
https://doi.org/10.1016/S0048-9697(00)00470-8
https://doi.org/10.1016/j.plaphy.2022.01.001
https://doi.org/10.1104/pp.104.045724
https://doi.org/10.1016/0076-6879(91)05145-L
https://doi.org/10.1016/j.aquatox.2008.09.009
https://doi.org/10.1104/pp102.010686
https://doi.org/10.1016/j.envpol.2021.118104
https://doi.org/10.1007/s11629-019-5932-7
https://doi.org/10.1186/1471-2229-14-13
https://doi.org/10.5772/intechopen.74783
https://doi.org/10.1134/S1021443707020148
https://doi.org/10.1016/S0269-7491(99)00159-1
https://doi.org/10.1038/379635a0
https://doi.org/10.1016/j.febslet.2007.04.010
https://doi.org/10.1111/pce.12093
https://doi.org/10.1111/nph.14966
https://doi.org/10.1104/pp.111.175265
https://doi.org/10.1016/j.jhazmat.2013.10.053
https://doi.org/10.3390/toxics9110278
https://doi.org/10.1146/annurev.arplant.49.1.199
https://doi.org/10.3389/fpls.2022.832473
https://doi.org/10.3390/ijms23084463
https://doi.org/10.1016/j.ecolind.2021.108031
https://doi.org/10.3389/fpls.2023.1154571
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ejaz et al. 10.3389/fpls.2023.1154571
Li, Z.-Y., Xu, Z.-S., He, G.-Y., Yang, G.-X., Chen, M., Li, L.-C., et al. (2012).
Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes
hypocotyl elongation in arabidopsis. Biochem. Biophys. Res. Commun. 427, 731–736.
doi: 10.1016/j.bbrc.2012.09.128

Li, D., Xu, X., Hu, X., Liu, Q., Wang, Z., Zhang, H., et al. (2015). Genome-wide
analysis and heavy metal-induced expression profiling of the HMA gene family in
populus trichocarpa. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.01149

Li, Y.-F., Zheng, Y., Addo-Quaye, C., Zhang, L., Saini, A., Jagadeeswaran, G., et al.
(2010). Transcriptome-wide identification of microRNA targets in rice. Plant J. 62,
742–759. doi: 10.1111/j.1365-313X.2010.04187.x

Lin, C.-Y., Trinh, N. N., Lin, C.-W., and Huang, H.-J. (2013). Transcriptome analysis
of phytohormone, transporters and signaling pathways in response to vanadium stress
in rice roots. Plant Physiol. Biochem. 66, 98–104. doi: 10.1016/j.plaphy.2013.02.007

Liphadzi, M., Kirkham, M., and Paulsen, G. (2006). Auxin-enhanced root growth for
phytoremediation of sewage-sludge amended soil. Environ. Technol. 27, 695–704. doi:
10.1080/09593332708618683

Liu, X.-M., Kim, K. E., Kim, K.-C., Nguyen, X. C., Han, H. J., Jung, M. S., et al. (2010).
Cadmium activates arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen
species. Phytochemistry 71, 614–618. doi: 10.1016/j.phytochem.2010.01.005

Liu, Q., and Zhang, H. (2012). Molecular identification and analysis of arsenite
stress-responsive miRNAs in rice. J. Agric. Food Chem. 60, 6524–6536. doi: 10.1021/
jf300724t

Liza, S. J., Shethi, K. J., and Rashid, P. (2020). Effects of cadmium on the anatomical
structures of vegetative organs of chickpea (Cicer arientinum l.). Dhaka Univ. J. Biol.
Sci. 29, 45–52. doi: 10.3329/dujbs.v29i1.46530

Ma, X., Geiser-Lee, J., Deng, Y., and Kolmakov, A. (2010). Interactions between
engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation.
Sci. total Environ. 408, 3053–3061. doi: 10.1016/j.scitotenv.2010.03.031

Maitani, T., Kubota, H., Sato, K., and Yamada, T. (1996). The composition of metals
bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by
various metals in root cultures of rubia tinctorum. Plant Physiol. 110, 1145–1150. doi:
10.1104/pp.110.4.1145

Makadia, H. K., and Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as
biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397. doi: 10.3390/
polym3031377

Malar, S., Vikram, S. S., Favas, P. J.C., and Perumal, V. (2014). Lead heavy metal
toxicity induced changes on growth and antioxidative enzymes level in water hyacinths
[Eichhornia crassipes (Mart.)]. Botanical Studies 55, 54–65. doi: 10.1186/s40529-014-
0054-6

Maleci, L., Buffa, G., Wahsha, M., and Bini, C. (2014). Morphological changes
induced by heavy metals in dandelion (Taraxacum officinale web.) growing on mine
soils. J. Soils Sediments 14, 731–743. doi: 10.1007/s11368-013-0823-y

Malik, D., Sheoran, I., and Singh, R. (1992). Lipid composition of thylakoid
membranes of cadmium treated wheat seedlings. Indian J. Biochem. Biophysics 29,
350–354.

Manivasagaperumal, R., Balamurugan, S., Thiyagarajan, G., and Sekar, J. (2011).
Effect of zinc on germination, seedling growth and biochemical content of cluster bean
(Cyamopsis tetragonoloba (L.) taub). Curr. Bot. 2, 11–15.

Mansoor, S., Kour, N., Manhas, S., Zahid, S., Wani, O. A., Sharma, V., et al. (2021).
Biochar as a tool for effective management of drought and heavy metal toxicity.
Chemosphere 271, 129458. doi: 10.1016/j.chemosphere.2020.129458

Marin, A., Pezeshki, S., Masschelen, P., and Choi, H. (1993). Effect of
dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice
plants. J. Plant Nutr. 16, 865–880. doi: 10.1080/01904169309364580

Meers, E., Qadir, M., De Caritat, P., Tack, F., Du Laing, G., and Zia, M. (2009).
EDTA-assisted Pb phytoextraction. Chemosphere 74, 1279–1291. doi: 10.1016/
j.chemosphere.2008.11.007

Mehes-Smith, M., Nkongolo, K., and Cholewa, E. (2013). Coping mechanisms of
plants to metal contaminated soil. Environ. Change sustainability 54, 53–90. doi:
10.5772/55124

Mehra, R. K., Kodati, V. R., and Abdullah, R. (1995). Chain length-dependent Pb
(II)-coordination in phytochelatins. Biochem. Biophys. Res. Commun. 215, 730–736.
doi: 10.1006/bbrc.1995.2524

Mehra, R. K., Miclat, J., Kodati, V. R., Abdullah, R., Hunter, T. C., and Mulchandani,
P. (1996). Optical spectroscopic and reverse-phase HPLC analyses of Hg (II) binding to
phytochelatins. Biochem. J. 314, 73–82. doi: 10.1042/bj3140073

Messer, R. L., Lockwood, P. E., Tseng, W. Y., Edwards, K., Shaw, M., Caughman, G.
B., et al. (2005). Mercury (II) alters mitochondrial activity of monocytes at sublethal
doses via oxidative stress mechanisms. J. Biomed. Materials Res. Part B: Appl.
Biomaterials 75, 257–263.

Min Yang, Z., and Chen, J. (2013). A potential role of microRNAs in plant response
to metal toxicity. Metallomics 5, 1184–1190. doi: 10.1039/c3mt00022b

Mohanpuria, P., Rana, N. K., and Yadav, S. K. (2007). Cadmium induced oxidative
stress influence on glutathione metabolic genes of camellia sinensis (L.) o. kuntze.
Environ. Toxicology: Int. J. 22, 368–374. doi: 10.1002/tox.20273

Montanini, B., Blaudez, D., Jeandroz, S., Sanders, D., and Chalot, M. (2007).
Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family:
Frontiers in Plant Science 15
improved signature and prediction of substrate specificity. BMC Genomics 8, 107. doi:
10.1186/1471-2164-8-107

Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A., et al.
(2009). AtHMA3, a P1B-ATPase allowing Cd/Zn/co/Pb vacuolar storage in
arabidopsis. Plant Physiol. 149, 894–904. doi: 10.1104/pp.108.130294

Mossor-Pietraszewska, T. (2001). Effect of aluminium on plant growth and
metabolism. Acta Biochim. Polonica 48, 673–686. doi: 10.18388/abp.2001_3902

Mudgal, V., Madaan, N., Mudgal, A., Singh, R., and Mishra, S. (2010). Effect of toxic
metals on human health. Open Nutraceuticals J. 3(1), 94–99. doi: 10.2174/
18763960010030100094

Muhammad, T., Zhang, J., Ma, Y., Li, Y., Zhang, F., Zhang, Y., et al. (2019).
Overexpression of a mitogen-activated protein kinase SlMAPK3 positively regulates
tomato tolerance to cadmium and drought stress. Molecules 24, 556. doi: 10.3390/
molecules24030556
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