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Introduction: The increasing use of cerium nanoparticles (CeO2-NPs) has made

their influx in agroecosystems imminent through air and soil deposition or

untreated wastewater irrigation. Another major pollutant associated with

anthropogenic activities is Cd, which has adverse effects on plants, animals, and

humans. The major source of the influx of Cd and Ce metals in the human food

chain is contaminated food, making it an alarming issue; thus, there is a need to

understand the factors that can reduce the potential damage of these heavymetals.

Methods: The present investigation was conducted to evaluate the effect of

CeO2-10-nm-NPs and Cd (alone and in combination) on Zeamays growth. A pot

experiment (in sand) was conducted to check the effect of 0, 200, 400, 600,

1,000, and 2,000 mg of CeO2-10 nm-NPs/kg-1 dry sand alone and in

combination with 0 and 0.5 mg Cd/kg-1 dry sand on maize seedlings grown in

a partially controlled greenhouse environment, making a total of 12 treatments

applied in four replicates under a factorial design. Maize seedling biomass, shoot

and root growth, nutrient content, and root anatomy were measured.

Results and discussion: The NPs were toxic to plant biomass (shoot and root dry

weight), and growth at 2,000 ppm was the most toxic in Cd-0 sets. For Cd-0.5

sets, NPs applied at 1,000 ppm somewhat reverted Cd toxicity compared with the

contaminated control (CC). Additionally, CeO2-NPs affected Cd translocation, and

variable Ce uptake was observed in the presence of Cd compared with non-Cd

applied sets. Furthermore, CeO2-NPs partially controlled the elemental content of

roots and shoots (micronutrients such as B, Mn, Ni, Cu, Zn, Mo, and Fe and the

elements Co and Si) and affected root anatomy.
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1 Introduction

The rapidly increasing use of nanoparticles in diverse fields of

electronics, pharmaceuticals, cosmetics, agriculture, and

remediation technologies has created some serious concerns

regarding their fate in the environment (Moraru et al., 2003;

Ayub et al., 2022; Umar et al., 2022). The widespread application

of nanoparticles has created many point and non-point sources of

pollution, which can become a concern if they continue to be

unchecked as metallic nanoparticles are a major class of these

potential pollutants (Kurwadkar et al., 2015; Sohail et al., 2021).

Agricultural land can become a major sink of these nanomaterials

and very little information is known about their transformation in

soil. Among metals, lanthanides are an important class of elements

and cerium (Ce) is an abundant rare earth element (lanthanide) that

has many proven beneficial roles (Yin et al., 2009; Shyam et al.,

2012) and toxicities in plants (Zhang et al., 2015; Barrios et al.,

2016), largely depending on source and concentration of

application. Cerium is a non-essential element for plants but in

lower concentrations has been proven to have beneficial effects for

cowpea (Shyam and Aery, 2012) and rice (Ramıŕez-Olvera et al.,

2018). However, at higher concentrations, it has shown toxicity in

maize (Ayub et al., 2023). Cerium NPs are important as they are

used in energy storage, polishing, personal care, cosmetics,

biomedical industries, and as catalysts, and their market is

projected to reach $2.1156 billion by 2030 (Allied Market

Research Report A01390, 2021). As cerium and its nanoparticles

are widely used in various industrial activities (Dahle and Arai,

2015; Rajeshkumar and Naik, 2018; Ayub et al., 2019), it has

become an attractive topic of discussion due to the increasing risk

of an influx into the human food chain via agriculture. CeO2-NPs

have been categorized as a top 13 engineered nanomaterial

(Organization for Economic Cooperation and Development,

2008) and have physical and chemical properties that make them

suitable for a wide range of applications due to their crystal lattice

oxygen chemistry (Rzigalinski et al., 2006; Korsvik et al., 2007; Jiao

et al., 2012; Dowding et al., 2013).

A variety of reported effects have been reported for the

application of CeO2-NPs in plants, ranging from nutrition

management (Peralta-Videa et al., 2014; Adisa et al., 2019),

disease and growth management (Servin et al., 2015), and abiotic

stress management (Rossi et al., 2016) to toxicity at higher

concentrations (Iftikhar et al., 2020). The complex surface

chemistry, fate in soil, and soil-NP-plant interaction have caused

a significant divergence in the results obtained from Ce-NP

application in plants, resulting in beneficial (Rossi et al., 2016),

toxic (Morales et al., 2013; Iftikhar et al., 2020), or minimal effects

(Corral-Diaz et al., 2014). CeO2-NP size (Lizzi et al., 2020;

Deshpande et al., 2005; Dinesha et al., 2021), surface chemistry

(Liu et al., 2019), contact time (Zhao et al., 2012), and application

dose (Singh et al., 2019) can alter the effect of cerium NPs in plants

(Hussain et al., 2019). The soil processes associated with cerium NP

application, such as soil aggregation, dissolution, and sorption,

control the fate of these nanoparticles in soil (Batley and

McLaughlin, 2010). The application of cerium NPs (8 ± 1 nm) can
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improve the antioxidant potential in Raphanus sativus L. applied at

250 mg kg-1 (Corral-Diaz et al., 2014) and alter the growth (applied

at 0−800 mg kg-1) of Helianthus annuus L. (Tassi et al., 2017), but

has resulted in toxicity at higher concentrations due to a

deterioration in the nutritional value in Oryza sativa (Rico et al.,

2013a; Rico et al., 2013b) and oxidative stress in Zea mays (Zhao

et al., 2012). Cadmium (Cd) is another pollutant that is added to

agroecosystems through various anthropogenic activities and has

well reported adverse effects on plants (Haider et al., 2021) and

humans (Kumar and Sharma, 2019). The co-existence of CeO2-NPs

and Cd in soil can lead to variable effects in plants depending on NP

source, dose, and exposure duration (Rossi et al., 2018; Sharifan

et al., 2020; Liu et al., 2021).

Maize (Zea mays) is an important cereal crop, and our previous

work has shown that pollutants such as CeO2-NPs and Cd can alter

its morphology (Fox et al., 2020). Divergent effects of Ce sources

exist (Ayub et al., 2023) but knowledge about the effect of high

concentrations of very fine CeO2-NPs (10 nm) alone and in

combination with Cd in maize is lacking. With this in mind, the

present investigation was conducted to evaluate the effects of CeO2-

10 nm NPs applied at 0, 200, 400, 600, 1,000, and 2,000 ppm in

sand alone and in combination with Cd (0 and 0.5 mg kg-1) on the

growth, nutritional distribution, and root anatomy of

maize seedlings.
2 Material and methods

2.1 Material collections, preparation,
and characterization

The cerium oxide nanoparticles (CeO2-NPs 10 nm powder)

were purchased from U.S. Research Nanomaterials, Inc.

(Houston, TX, USA) with 99.99% purity and in 100 g packing.

Cadmium salt (Cadmium sulphate CdSO4), nitric acid

(TraceMetal Grade, 67-70% HNO3), and H2O2 (JT Baker

Hydrogen Peroxide, 30% ULTREX II Ultrapure Reagent) were

purchased from Fisher Scientific Int. (Pittsburgh, PA, USA).

Sakrete sand (Atlanta, GA, USA) was used and Hoagland salt

mixture (Hoagland Complete Medium) from planmedia.com was

used as the nutrient source. The 50 g of sand and 5 g of

nanoparticles were sent to the Nanoscale Research Facility

(NRF) at the University of Florida Gainesville Campus for SEM

(FEI NOVA 430 Nano SEM; voltage 5kV; spot size of 3.0; and a

working distance of 4.6 mm magnification from 200 to 400 kX)

and energy disruptive X-ray spectroscopy (10 kEV; data collected

for 50 s for each sample at a working distance of 5 mm and a spot

size of 4.5). Plastic cups (volume of 500 ml) were filled with 600 g

of sand and spiked with 0, 200, 400, 600, 1,000, and 2,000 mg of

CeO2-NPs per kg dry sand along with 0 or 0.5 mg kg-1 of Cd.

There was a total of 12 treatment sets applied in 4 replicates under

a two-way factorial design. The treatment sets were prepared at

the Indian River Research and Education Centre (IRREC),

University of Florida (UF), Fort Pierce, FL, USA on July 24th,

2021, via solution (Cd) and dry mixing (CeO2-NPs).
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2.2 Plant growth and propagation

Hybrid Bicolor Synergistic Corn seeds (Zea mays) were

purchased from Johnny’s Selected Seeds (Winslow, ME, USA)

and soaked (for surface sanitized) in 10% commercial bleach

solution prepared in distilled water for 5 min, followed by triple

washes with plenty of distilled water. From these surface sanitized

seeds, five healthy seeds were sown in pots (pre-irrigated and

pretreated) on July 28th, 2021, and after germination on July

31st, only one healthy seedling was retained in each pot and

irrigated with 10 ml of 50% Hoagland solution for the next few

days. From August 4th, pots were irrigated with 15 ml of 50%

Hoagland solution, followed by 100% Hoagland solution irrigations

(uniformly in each pot). After attaining a significant height, the

seedlings were harvested on August 26th and processed further for

root, shoot growth, and biomass data recording.
2.3 Growth data recording

The plants were harvested treatment wise, and roots were

separated from the shoot and washed with distilled water (first in

the greenhouse and then in the lab) to remove any residue. Roots

were scanned with an EPSON Perfection V800 photo scanner and

images were analyzed using WinRHIZO pro software to generate

root growth data, including growth parameters (number of tips,

number of forks, number of crosses, root length per unit volume of

sand [cm cm-3], average root diameter [cm], total root length [cm],

total root surface area [cm2], total root projected area [cm3] and

total root volume [cm3]). Additionally, the fresh weights of the roots

were recorded. Subsequently, the two or three best developed and

uniform root tips from each root were cut and placed in 15 ml of

methanol (in Falcon tubes) and kept at 4°C for the next few days

while the florescence root scanning setup was prepared (the

difference in root weights pre and post tip sampling was recorded

for later use in weight correction). Following this, shoot fresh

weight, height, and diameter were recorded using a digital

balance, scale, and caliper (Neiko 6” Stainless Steel Digital

Caliper, Neiko Tools USA, China), and all samples were labeled

and stored in paper bags and placed in the lab overnight. The next

day, the samples stored in the paper bags were placed in an oven at

65°C for 5 days until a constant dry weight was achieved.
2.4 Elemental analysis

The wet acid digestion method (with 70% HNO3 and 30%

H2O2) was used, for which a known mass of plant tissue was

placed in digestion tubes and mixed with 10 ml of nitric acid

(TraceMetal Grade, 67-70% HNO3, Fisher Chemical) and covered

with glass funnels to assist the collection of back flow. The samples

were kept overnight in a fume hood at the Soil and Water Science

Laboratory, Indian River Research and Education Center
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(IRREC). The next day, the digestion tubes were adjusted on a

temperature-controlled Digestion System 40 (model Tecator

Digestion System) 1016 digester placed in a fume hood and the

temperature was gradually raised to 75°C, which was maintained

1 h. Thereafter, a temperature of 95°C was maintained for 3 h and

then samples were cooled to room temperature at which 2 ml of

30% H2O2 solution was added; the temperature was subsequently

increased to 75°C to assist in the complete digestion. The

digestates were diluted to 50 ml in the same tubes, then filtered

through Whatman 42 filter paper and diluted again 10 times to

achieve a net 2% acid content for analysis by inductively coupled

plasma-mass spectrometry (ICP-MS). The elemental analysis was

performed at the Chemistry and Biochemistry Department,

Missouri State University using an ICP-MS Agilent 7900

equipped with a SP4 autosampler. The acquired concentration

of all elements (ppm and ppb) was converted to mg kg-1 dry shoot

mass using the following formula:

Element Concentration in Tissue ðmg kg−1)

= (ICP given concentration in ppb)
mass of tissue used for digestion

� 50 (final volum made)
1000 (conversion factor ppb to ppm)

�10 (Dillution to achieve 2% acid level)

The sand used in our experiment was play sand, of which 1 g

was added to 20 ml of distilled water, and the solution elemental

concentration was determined to estimate the potential of sand to

release elements and nutrients under investigation.
2.5 Qualitative and quantitative
identification of the root suberin
lamella barrier

The tips selected from the roots of each maize plant were

stained with fresh 0.01% w/v Fluorol Yellow solution (prepared in

lactic acid) at 70 °C for 30 min in the dark, followed by counter

staining with 0.5% w/v solution of Aniline Blue, as prescribed by

Lux et al. (2005). After the first staining, tips were washed three

times for 5 min each time. After the second staining, tips were

washed three times for 10 min each time. Once stained, tips were

mounted on labeled glass slides and visualized under a Leica DM

1000 LED (Wetzlar, Germany) florescence microscope equipped

with a UV chamber, filter, and ImageJ (NIH, Bethesda MD)

software. A digital caliper and ImageJ software were used to

quantify the total length of suberin barrier formation from the

root tip.
2.6 Statistical analysis

Twot-way ANOVA was used for the statistical classification of

factors (Ce NPs and Cd) and treatments. Statistix version 10 was

used for the statistical analysis and a correlation tree map was made

using R (https://www.r-project.org/).
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3 Results

3.1 Material characterization

The sand used in our study has shown the potential to release

significant amounts of elements under investigation given as mean

µg kg-1 dry sand ± SD. The elemental concentrations were B (27.55

± 2.41), Mn (24.45 ± 1 7.82), Ni (9.57 ± 4.97), Cu (112.84 ± 58.63),

Zn (394.03 ± 95.40), Mo (2.65 ± 0.41), Fe (562.87 ± 860.35), Si

(5728.20 ± 2946.46), Co (2.11 ± 0.85), Cd (0.38 ± 0.37), and Ce (7.92

± 5.66). The EC and pH (mean ± SD) of sand suspension (1:5 sand

to distilled water) was 5.88 ± 0.28 µScm-1 and 7.40 ± 0.10,

respectively. SEM revealed that the sand had a crystal-like

structure of grains, and EDX confirmed the presence of elements

such as Si, Al, and O (Figures 1A, C). SEM images confirmed that

nanoparticles do exist in the company given estimated diameter

(Figures 1B, D) and EDX revealed the presence of elements such as

Ce, O, and Cl in NPs.
3.2 Maize seedling biomass, height,
and diameter

CeO2-10 nmNPs at maximum dose (2,000 mg kg-1) showed net

toxicity with regard to maize seedling shoot and root biomass, with

a significant decrease of 52.51% and 77.89%, respectively, compared

with the uncontaminated control (UCC). Additionally, Cd (0.5 mg

kg-1) application resulted in a net toxicity with regard to seedling

shoot and root dry weights. When NPs were applied in combination
Frontiers in Plant Science 04
with Cd (0.5 mg kg-1), a net ameliorative effect on shoot and root

dry weights was observed (a respective net increment of 24.28% and

43.42% compared with the respective CC); however, compared with

the CC, this effect was non-significant. The 2,000 mg kg-1 NP dose,

which had a net toxic effect (29.37% and 42.18% decrease in shoot

and root fresh weight compared with the UCC) when applied alone,

showed a net increase in seedling shoot and root growth (compared

with only 2,000 mg kg-1 NPs applied sets) when applied along with

Cd, suggesting a somewhat ameliorative effect as well. Maize

seedling height and diameter were also found to be decreasing

with Cd toxicity and CeO2-NPs applied alone or in combination

with Cd, a net increment in both parameters was observed

(significant for diameter only) (Figure 2).
3.3 Maize root growth parameters

The application of CeO2-10-nm NPs had a significant effect on

root growth parameters for both the Cd-0- and Cd-spiked sets but

there was a divergence in effects. The UCC had maximum root

length, which decreased with CeO2 NPs applied alone, and Cd stress

also caused an overall decrease in root length. With the co-

application of CeO2-10-nm NPs and Cd, the toxicity was

enhanced with 200−600 mg kg-1 of NPs and 0.5 mg kg-1 of Cd,

whereas 1,000 mg kg-1 of NPs resulted in toxicity reversal with

maximum root length. The average root diameter was not affected by

the application of CeO2-NPs or Cd (alone), whereas in combination,

CeO2-NP application at 400, 600, and 1,000 mg kg-1 resulted in a

higher net root diameter compared with the contaminated control
A C

DB

FIGURE 1

Scanning electron microscope images (SEM) and energy disruptive X-ray (EDX) peaks of sand and cerium oxide nanoparticles (CeO2 NPs): (A) Sand
EDX peaks, (B) Sand SEM, (C) CeO2-NPs EDX, (D) CeO2-NPs SEM.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1151786
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ayub et al. 10.3389/fpls.2023.1151786
(CC). Additionally, root length per unit volume decreased with the

introduction of CeO2-NPs in normal sand pots, while a net

increment in toxicity was observed (as observed in root length)

when NPs were applied with Cd, except with a 1,000 mg kg-1 NP

dose, suggesting the efficacy of NPs at reversing toxicity, which

might be due to the lack of an effect of Cd adsorption in maize shoots

(discussed below). Furthermore, the number of tips, forks, and

crosses were at the maximum in the UCC and a net decrease was

observed with the introduction of Cd. The application of NPs alone

resulted in no significant increment in any of these parameters. The

application of Cd with NPs at 400 and 600 mg kg-1 resulted in

enhanced toxicity. Total root surface area was significantly affected

by the application CeO2-NPs in Cd-0 sets, with visible toxicity in the

200-, 400-, and 2,000-mg kg-1-spiked pots; in Cd-0.5 sets, this

toxicity was still visible but only with a 1,000 mg kg-1 dose of NPs

(in which a significant increase of 67.41% was observed compared

with the CC). A similar trend was observed in total root projected

area, in which a 1,000 mg kg-1 dose of CeO2-NPs only resulted in net

higher values compared with the CC in the Cd-0.5 set. The total root

volume of maize seedlings spiked with 200, 400, 600, and 2,000 mg

of CeO2-NPs per kg of sand was at a minimum for the Cd-0 set,

while no significant toxicity with 1,000 mg kg-1 was observed for Cd-

0.5, resulting in a net 94.02% increment in root volume compared

with the CC, as shown in Figure 3.
3.4 Shoot and root cerium and
cadmium distribution

NP application resulted in a significantly higher Ce uptake in

the shoots of maize seedlings, although NP doses of 200, 400, and

600 mg kg-1 did not result in a net difference in shoot Ce content in
Frontiers in Plant Science 05
both the Cd-0 and Cd-0.5 sets. Although a higher uptake

was observed with 1,000- and 2,000-mg kg-1-supplemented pot

sets, these two treatments did not result in significant variation in

either set (Cd-0 and Cd-0.5). For root Ce content, maximum

concentration was observed in Cd-spiked 2,000-mg kg-1-

supplemented sets, with a total value of 2,124 ± 1,414 (mean

concentration in mg per kg dry mass ± standard deviation). Cd

contamination in combination with 2,000 mg kg-1 of CeO2-NPs

resulted in higher Ce uptake in roots compared with NPs alone

application, suggesting that seedlings had a preference for

combined stress. For shoot Cd, doses of 200 or 600 mg kg-1 of

CeO2-NPs resulted in higher Cd accumulation in shoots compared

with the control, and only a 2,000 mg kg-1 dose of NPs resulted in a

net decrease in shoot Cd. However, the difference was not

significant compared with the control. For root Cd content, doses

of 200, 400, or 600 mg kg-1 of CeO2-NPs resulted in higher root Cd

content compared with the control, but higher NP doses (1,000 and

2,000 mg kg-1) had no significant effect Figure 4.
3.5 Shoot and root micronutrients and
beneficial elements

Variable CeO2-NP doses have shown divergent effects on some

micronutrients, which also differs from element to element. For shoot B

content (mg per kg dry weight), the highest values were observed in

Ce1000+Cd-spiked sets (49.20 ± 7.77; mean mg kg-1 dry weight ±

standard deviation), while in roots, a 2,000 mg kg-1 dose of CeO2-NPs

alone resulted in the highest B content (31.87 ± 15.13). Shoot Mn

content was highest for the control (UCC), while the lowest content

was observed in the Ce2000+Cd-spiked sets (9.27 ± 2.47). Similarly, for

root Mn content, Ce2000+Cd-spiked sets resulted in the lowest
A B

DC

FIGURE 2

Effect of CeO2-NPs applied at 200, 400, 600, 1000 and 2000 mg kg-1 dry sand, alone and in combination with 0.5 mg kg-1 Cd on maize growth.
(A) shoot dry weight (g), (B) root dry weight (g), (C) plant height (cm), (D) plant diameter (mm). The graphs are of mean (n = 4) ± standard deviation.
Letters shown pair wise comparison via Least Significant Difference (LSD) at p ≤ 0.05.
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concentration (6.31 ± 1.56). In non-Cd-spiked sets, NPs caused a

gradual increase in shoot Fe content, with the highest content (149.72 ±

43.56) observed in the 2,000-mg kg-1 CeO2-NPs sets; no significant

difference was observed in the Cd-spiked sets. For root Fe content,

again 2,000 mg kg-1 of CeO2-NPs alone resulted in the maximum Fe

content (645.29 ± 551.28), while other treatments varied non-

significantly, with the combination of Cd and 2,000 mg kg-1 of
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CeO2-NPs lowering Fe accumulation (193.65 ± 52.59), suggesting the

accumulation of Fe was hindered in this instance. NPs applied alone

(without Cd spiking) resulted in no significant changes in shoot and

root Ni content, while in Cd-spiked sets, 200 mg kg-1 CeO2-NPs

resulted in the highest shoot (1.1 ± 1.04) and root Ni (4.80 ± 2.90)

content. The application of CeO2-NPs had no significant effect on

shoot and root Cu content; however, in Cd-0 sets, seedling Zn was
A

C D

E F

G

I

H

B

FIGURE 3

Effect of CeO2-NPs applied at 200, 400, 600, 1000 and 2000 mg kg-1 dry sand alone and in combination with 0.5 mg kg-1 Cd on maize root
growth. (A) total root length (cm), (B) average root diameter (mm), (C) root length per unit volume (cm per cm3 soil), (D) number of root tips,
(E) number of root forks, (F) number of root crosses, (G) total rot surface area (cm²), (H) total root projected area (cm3), (I) total root volume (cm3).
The graphs are of mean (n = 4) ± standard deviation. Letters shown pair wise comparison via Least Significant Difference (LSD) at p <0.05.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1151786
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ayub et al. 10.3389/fpls.2023.1151786
highest in the 2,000-mg CeO2-NPs per kg sand sets with the highest

shoot (87.26 ± 42.72) and root (388.80 ± 280.68) Zn content. The other

treatments did not significantly affect tissue Zn content. Shoot Mo

content was highest in the UCC (1.30 ± 0.24) and the CC (1.31 ± 0.16),

and the application of NPs resulted in significant decreases in shootMo

content. For root Mo, variable effects of NPs were observed (Figure 5).

Si and Co, important beneficial elements for plants, were not

applied exogenously but were found in plant tissues due to the

potential of sand to provide significant amounts of both nutrients

(described in the Material Characterization section). Shoot Si

content was highest in the control (CC), while for roots, the

highest content was observed in Cd-0 and Cd-0.5 sets

supplemented with 2,000 mg CeO2-NPs per kg sand. For shoot

Co, in Cd-0 sets, 200 mg kg-1 of CeO2-NPs resulted in a higher

content, while for roots, Co content was highest in the 2,000 mg kg-1

CeO2-NP-spiked sets. In Cd-0.5 sets, shoot Co did not vary

significantly, while for root Co, net decreases were observed when

NPs were added (Figure 6).
3.6 Root apoplastic barriers

Root apoplastic barrier formation was visualized using

florescence microscopy, and CeO2-NPs significantly affected the

development of root barriers (recorded as the length from the tip).

Cd stress (0.5 mg kg-1 of sand) resulted in a net decrease of barrier

length from the tip, which maize seedlings typically do to control

the uptake of pollutants. The nanoparticles alone and in

combination with Cd further reduced the length of the root

barrier from the tip, as presented in Figure 7C. Fully developed
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root barriers are shown in Figure 7A, presented in a cross-section of

a root, while categorical length measurement from the tip and a

visual representation of barrier formation (in green) is shown in

Figure 7B, C.
4 Discussion

The application of CeO2-NPs through difference sources and

concentrations has some beneficial effects on plants (Cao et al.,

2017; Fox et al., 2020; Lizzi et al., 2021), but the generalized effects

cannot be defined at once due to the divergence in the effects of bulk

and ionic parts of cerium (Zhang et al., 2015; Barrios et al., 2016;

Lizzi et al., 2021). The size of CeO2-NPs can limit their entry into

plant cells as membrane pore size can reduce the translocation of

NPs via cross root epidermal cell membranes (Ma et al., 2010a; Ma

et al., 2010b; Rico et al., 2011), where these NPs tend to adopt

apoplastic pathways. Within this pathway, the translocation of NPs

is controlled by various barriers, such as Casparian strips (Roppolo

et al., 2011), through which they can reach the xylem and

accumulate in the upper parts of the shoots (Lv et al., 2019). NPs

larger than 20 nm cannot pass through the cell wall pores easily,

while cuticular pathways can allow the uptake of solutes that are 0.6

−4.8 nm in size (Popp et al., 2005, Eichert et al., 2008, Eichert and

Goldbach, 2008). The uptake of CeO2-NPs smaller than 20 nm

might be higher in plants, which when coupled with surface

property variation may potentially increase their toxicity (Cresi

et al., 2017). CeO2-NPs smaller than 10 nm can alter a plant’s

physiology (Corral-Diaz et al., 2014) and growth parameters

positively (Tassi et al., 2017) as well as negatively at higher
A B

DC

FIGURE 4

Effect of CeO2,-NPs applied at 200, 400, 600, 1000 and 2000 mg kg-1 dry sand alone and in combination with 0.5 mg kg-1 Cd on maize Cd and Ce
contents. (A) shoot ce (mg kg dry weight), (B) root ce (mg kg-1 dry weight), (C) shoot cd (mg kg-1 dry weight), (D) root cd (mg kg-1 dry weight). The
graphs are of mean (n = 4) ± standard deviation. Letters shown pair wise comparison via Least Significant Difference (LSD) at p ≤ 0.05.
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concentrations, as observed for rice (Rico et al., 2013a; Rico et al.,

2013b) and maize (Zhao et al., 2012). The toxicity of very fine Ce

NPs can be due to their effect on plant morphology, nutritional

acquisition, antioxidant defense, or molecular processes (Prakash

et al., 2021).

In the present investigation, the effects of 10-nm CeO2-NPs

on plant growth were negative overall, with the highest toxicity

observed with the highest applied concentration (2,000 mg kg-1);

however, when applied in combination with Cd (0.5 mg kg-1), the

NPs tended to nullify Cd toxicity, with a dose of 1,000 mg kg-1

showing the most benefit at all levels. CeO2-NPs at 200 mg kg-1 of

cerium concentration decreased the uptake of heavy metals (Cu,

Mn, Zn, and Fe) in Pisum sativum and reduced the height of

Solanum lycopersicum L.; no effect was observed on biomass

(Skiba and Wolf, 2019). Similarly, CeO2-NPs at 0.1–10 mg/L−1

in Solanum lycopersicum L have shown no significant effect at

lower concentrations, while at higher concentrations they have

exhibited toxicity with regard to plant biomass (Wang et al.,

2012). Additionally, the application of CeO2-NPs alone

decreased plant root growth parameters, with the highest
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toxicity observed in 2,000 mg kg-1-spiked sets. When applied in

combination with Cd, 1,000 mg kg-1 of CeO2-NPs caused a net

reversal in toxicity and positively affected maize seedlings to

a degree.

CeO2-NPs can modify plant physiology and nutritional aspects,

as reported in Triticum aestivum L. (Rico et al., 2014), but these

effects are subject to the potting medium, source, and NP dose, as

these NPs have been shown to be toxic in plants (Ayub et al., 2023).

The Ce and Cd content of plant tissues were in agreement with the

applied concentrations and NPs have shown some effect in

controlling shoot Cd content, with lower concentrations

increasing the net translocation of Cd into shoots and higher

concentrations (2,000 mg kg-1) somewhat decreasing shoot Cd

content. The increasing shoot Cd content with 200, 400, and 600

mg kg-1 NP doses can explain the overall decreased root dry weight,

while higher NP doses caused a reversal via decreasing Cd uptake

(although the effect was not significant). The main mechanisms

involved could be specific adsorption (Fouda-Mbanga et al., 2022)

and the development of root barriers to counteract Cd translocation

into plant bodies (Rossi et al., 2016; Rossi et al., 2017; Rossi et al.,
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FIGURE 5

Effect of CeO2-NPs applied at 200, 400, 600, 1000 and 2000 mg kg-1 dry sand alone and in combination with 0.5 mg kg-1 Cd on maize Cd and Ce
contents. (A) shoot b (mg kg-1 dry weight), (B) root b (mg kg-1 dry weight); (C) shoot ni (mg kg-1 dry weight), (D) root ni (mg kg-1 dry weight);
(E) shoot mn (mg kg-1 dry weight), (F) root mn (mg kg-1 dry weight); (G) shoot cu (mg kg-1 dry weight), (H) root cu (mg kg-1 dry weight); (I) shoot fe
(mg kg-1 dry weight), (J) root fe (mg kg-1 dry weight); (K) shoot zn (mg kg-1 dry weight). (L) root zn (mg kg-1 dry weight); (M) shoot mm (mg kg-1 dry
weight), (N) root mn (mg kg-1 dry weight). The graphs are of mean (n = 4) ± standard deviation. Letters shown pair wise comparison via Least
Significant Difference (LSD) at p ≤ 0.05.
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2018), which is highly dependent on NP size (Ayub et al., 2023).

The tested concentrations of CeO2-NPs controlled the uptake and

translocation of micronutrients and beneficial elements (Si and Co).

The concentrations of the micronutrients Fe, Zn, and B increased in

maize seedling shoots with the application of CeO2-NPs alone;

however, in combination with Cd (Cd-0.5), no significant effect was

observed. In a study conducted by Posć̌ić et al. (2016), it was evident
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that cerium NPs and, in particular, titanium oxide NPs (applied at

500 and 1,000 mg kg-1) altered amino acid, crude protein,

macronutrient, and micronutrient content in barley. Skiba and

Wolf (2019) suggested that CeO2-NPs applied at 200 ppm of Ce

can decrease Cu, Zn, and Fe uptake, but in our case, NPs increased

shoot Fe and Zn content, while shoot Mn content decreased. When
A B

DC

FIGURE 6

Effect of CeO2-NPs applied at 200, 400, 600, 1000 and 2000 mg kg-1 dry sand alone and in combination with 0.5 mg kg-1 Cd on maize Co and Si
contents. (A) Shoot Si (mg kg-1 dry weight), (B) Shoot Co (mg kg-1 dry weight), (C) Root Si (mg kg-1 dry weight). (D) Root Co (mg kg-1 dry weight).
The graphs are of mean (n = 4) ± standard deviation. Letters shown pair wise comparison via Least Significant Difference (LSD) at p < 0.05.
A

B
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FIGURE 7

Root endodermal Suberin Lamellae (barrier formation) length on maize seedling roots under CeO2-NPs applied at 200, 400, 600, 1000 and 2000
mg kg-1 dry sand alone (Cd-) and in combination with 0.5 mg kg-1 Cd (Cd+). (A) Cross section of root with full barrier formation, (B) The gradual
development of barriers from tip (green color development), (C) Mean root barrier distance from root tip. The error bars given on mean are of
standard deviation (SD).
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NPs were applied in combination with Cd, variable effects

were observed.

The various studies on CeO2-NPs in plants were conducted

using concentrations of 1−1,000 mg/L-1 (Wang et al., 2012; Holden

et al., 2014; Rossi et al., 2017; Skiba andWolf, 2019), and for toxicity

studies, a dose of 2,000 mg/L-1 (Zhang et al., 2019) was used;

however, the present investigation was conducted using dry sand,

and NPs were applied on the basis of weight. The findings of this

study conclude that CeO2-10 nm NPs are significantly toxic to

plants when applied alone, although they can help reverse Cd

toxicity to a certain extent. The correlation tree map shows that

the heavy metal nutrients Zn, Cu, and Ni in shoots were negatively

correlated with shoot growth parameters, suggesting the uptake of

these nutrients was above permissible limits, and shoot Ce was also

negatively correlated with shoot growth, suggesting significant
Frontiers in Plant Science 10
effects when applied from nano sources. Root growth parameters

were positively correlated with plant shoot growth, showing

that healthy roots can affect plant shoot growth and

development (Figure 8).
5 Conclusion

CeO2-10 nm NPs were toxic for corn growth when applied

alone, while in combination with Cd, no significant toxicity on corn

growth was observed as the 1,000 mg kg-1 dose increased shoot

growth. The effect on root growth was variable due to the divergent

uptake of nutrients, beneficial elements, Ce, and Cd. The NPs also

altered root barrier formation and showed that they could

potentially affect plant root anatomy.
FIGURE 8

The Correlation tree map among acquired parameters of maize seedling (n = 12) as, shoot dry weight (SDW), root dry weight (RDW), plant height
(PH), plant diameter (PD), root barrier length (RB), total root length (RL), average root diameter (RD), root length per unit volume (RLPUV), number of
root tips (Ntip), number of root forks (Nfork), number of root crosses (Neros), total root surface area (TSA), total root projected area (TPA), total root
volume (TV). shoot and root elemental contents (Ce, Cd, B, Si, Mn, Fe, Co, Ni, Cu, Zn, Mo).
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